Safe Haskell | None |
---|---|
Language | Haskell2010 |
Generic generation of random test cases.
This module contains a generic version of arbitrary
from the
Test.Quickcheck library, using generics-sop
.
Documentation
garbitrary :: forall a. (Generic a, All2 Arbitrary (Code a)) => Gen a Source #
Generic generation of random test cases.
This function is a proof-of-concept implementation of a generic
arbitrary
that can be used to instantiate the Arbitrary
class
in QuickCheck
.
If you want to use it on a datatype T
for which you have a
Generic
instance, you can say:
instance Arbitrary T where arbitrary = garbitrary
Note that currently no attempts are being made to generate arbitrary values of a particular size, and it is possible that this function diverges for recursive structures.
Re-exports
Random generation and shrinking of values.
A generator for values of the given type.
Produces a (possibly) empty list of all the possible immediate shrinks of the given value. The default implementation returns the empty list, so will not try to shrink the value.
Most implementations of shrink
should try at least three things:
- Shrink a term to any of its immediate subterms.
- Recursively apply
shrink
to all immediate subterms. - Type-specific shrinkings such as replacing a constructor by a simpler constructor.
For example, suppose we have the following implementation of binary trees:
data Tree a = Nil | Branch a (Tree a) (Tree a)
We can then define shrink
as follows:
shrink Nil = [] shrink (Branch x l r) = -- shrink Branch to Nil [Nil] ++ -- shrink to subterms [l, r] ++ -- recursively shrink subterms [Branch x' l' r' | (x', l', r') <- shrink (x, l, r)]
There are a couple of subtleties here:
- QuickCheck tries the shrinking candidates in the order they
appear in the list, so we put more aggressive shrinking steps
(such as replacing the whole tree by
Nil
) before smaller ones (such as recursively shrinking the subtrees). - It is tempting to write the last line as
[Branch x' l' r' | x' <- shrink x, l' <- shrink l, r' <- shrink r]
but this is the wrong thing! It will force QuickCheck to shrinkx
,l
andr
in tandem, and shrinking will stop once one of the three is fully shrunk.
There is a fair bit of boilerplate in the code above.
We can avoid it with the help of some generic functions;
note that these only work on GHC 7.2 and above.
The function genericShrink
tries shrinking a term to all of its
subterms and, failing that, recursively shrinks the subterms.
Using it, we can define shrink
as:
shrink x = shrinkToNil x ++ genericShrink x where shrinkToNil Nil = [] shrinkToNil (Branch _ l r) = [Nil]
genericShrink
is a combination of subterms
, which shrinks
a term to any of its subterms, and recursivelyShrink
, which shrinks
all subterms of a term. These may be useful if you need a bit more
control over shrinking than genericShrink
gives you.
A final gotcha: we cannot define shrink
as simply
as this shrinks shrink
x = Nil:genericShrink
xNil
to Nil
, and shrinking will go into an
infinite loop.
If all this leaves you bewildered, you might try
to begin with,
after deriving shrink
= genericShrink
Generic
for your type. However, if your data type has any
special invariants, you will need to check that genericShrink
can't break those invariants.