{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE NoStarIsType #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE RoleAnnotations #-}

{-| This module is an internal GHC module.  It declares the constants used
in the implementation of type-level natural numbers.  The programmer interface
for working with type-level naturals should be defined in a separate library.

@since 4.10.0.0
-}

module GHC.TypeNats
  ( -- * Nat Kind
    Natural -- declared in GHC.Num.Natural in package ghc-bignum
  , Nat
    -- * Linking type and value level
  , KnownNat(natSing), natVal, natVal'
  , SomeNat(..)
  , someNatVal
  , sameNat
  , decideNat
    -- ** Singleton values
  , SNat
  , pattern SNat
  , fromSNat
  , withSomeSNat
  , withKnownNat

    -- * Functions on type literals
  , type (<=), type (<=?), type (+), type (*), type (^), type (-)
  , CmpNat
  , cmpNat
  , Div, Mod, Log2

  ) where

import GHC.Base( Eq(..), Functor(..), Ord(..), WithDict(..), (.), otherwise
               , Void, errorWithoutStackTrace, (++))
import GHC.Types
import GHC.Num.Natural(Natural)
import GHC.Show(Show(..), appPrec, appPrec1, showParen, showString)
import GHC.Read(Read(..))
import GHC.Prim(Proxy#)
import Data.Either(Either(..))
import Data.Maybe(Maybe(..))
import Data.Proxy (Proxy(..))
import Data.Type.Coercion (Coercion(..), TestCoercion(..))
import Data.Type.Equality((:~:)(Refl), TestEquality(..))
import Data.Type.Ord(OrderingI(..), type (<=), type (<=?))
import Unsafe.Coerce(unsafeCoerce)

import GHC.TypeNats.Internal(CmpNat)

-- | A type synonym for 'Natural'.
--
-- Previously, this was an opaque data type, but it was changed to a type
-- synonym.
--
-- @since 4.16.0.0

type Nat = Natural
--------------------------------------------------------------------------------

-- | This class gives the integer associated with a type-level natural.
-- There are instances of the class for every concrete literal: 0, 1, 2, etc.
--
-- @since 4.7.0.0
class KnownNat (n :: Nat) where
  natSing :: SNat n

-- | @since 4.10.0.0
natVal :: forall n proxy. KnownNat n => proxy n -> Natural
natVal :: forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal proxy n
_ = case SNat n
forall (n :: Nat). KnownNat n => SNat n
natSing :: SNat n of
             UnsafeSNat Nat
x -> Nat
x

-- | @since 4.10.0.0
natVal' :: forall n. KnownNat n => Proxy# n -> Natural
natVal' :: forall (n :: Nat). KnownNat n => Proxy# n -> Nat
natVal' Proxy# n
_ = case SNat n
forall (n :: Nat). KnownNat n => SNat n
natSing :: SNat n of
             UnsafeSNat Nat
x -> Nat
x

-- | This type represents unknown type-level natural numbers.
--
-- @since 4.10.0.0
data SomeNat    = forall n. KnownNat n    => SomeNat    (Proxy n)

-- | Convert an integer into an unknown type-level natural.
--
-- @since 4.10.0.0
someNatVal :: Natural -> SomeNat
someNatVal :: Nat -> SomeNat
someNatVal Nat
n = Nat -> (forall (n :: Nat). SNat n -> SomeNat) -> SomeNat
forall r. Nat -> (forall (n :: Nat). SNat n -> r) -> r
withSomeSNat Nat
n (\(SNat n
sn :: SNat n) ->
               SNat n -> (KnownNat n => SomeNat) -> SomeNat
forall (n :: Nat) r. SNat n -> (KnownNat n => r) -> r
withKnownNat SNat n
sn (forall (n :: Nat). KnownNat n => Proxy n -> SomeNat
SomeNat @n Proxy n
forall {k} (t :: k). Proxy t
Proxy))

{-
Note [NOINLINE withSomeSNat]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function

    withSomeSNat :: forall rep (r :: TYPE rep).
                    Natural -> (forall k. SNat k -> r) -> r

converts a `Natural` number to a singleton natural `SNat k`, where the `k` is
locally quantified in a continuation (hence the `forall k`). The local
quantification is important: we can manufacture an `SNat k` value, but it can
never be confused with (say) an `SNat 33` value, because we should never be
able to prove that `k ~ 33`. Moreover, if we call `withSomeSNat` twice, we'll
get an `SNat k1` value and an `SNat k2` value, but again we can't confuse them.
`SNat` is a singleton type!

But how to implement `withSomeSNat`? We have no way to make up a fresh type
variable. To do that we need `runExists`: see #19675.

Lacking `runExists`, we use a trick to implement `withSomeSNat`: instead of
generating a "fresh" type for each use of `withSomeSNat`, we simply use GHC's
placeholder type `Any` (of kind `Nat`), thus (in Core):

  withSomeSNat n f = f @T (UnsafeSNat @T n)
    where type T = Any @Nat

***  BUT we must mark `withSomeSNat` as NOINLINE! ***
(And the same for withSomeSSymbol and withSomeSChar in GHC.TypeLits.)

If we inline it we'll lose the type distinction between separate calls (those
"fresh" type variables just turn into `T`). And that can interact badly with
GHC's type-class specialiser. Consider this definition, where
`foo :: KnownNat n => blah`:

  ex :: Natural
  ex = withSomeSNat 1 (\(s1 :: SNat one) -> withKnownNat @one s1 $
       withSomeSNat 2 (\(s2 :: SNat two) -> withKnownNat @two s2 $
       foo @one ... + foo @two ...))

In the last line we have in scope two distinct dictionaries of types
`KnownNat one` and `KnownNat two`. The calls `foo @one` and `foo @two` each pick
out one of those dictionaries to pass to `foo`.

But if we inline `withSomeSNat` we'll get (switching to Core):

  ex = withKnownNat @T (UnsafeSNat @T 1) (\(kn1 :: KnownNat T) ->
       withKnownNat @T (UnsafeSNat @T 2) (\(kn2 :: KnownNat T) ->
       foo @T kn1 ... + foo @T kn2 ...))
    where type T = Any Nat

We are now treading on thin ice. We have two dictionaries `kn1` and `kn2`, both
of type `KnownNat T`, but with different implementations. GHC may specialise
`foo` at type `T` using one of these dictionaries and use that same
specialisation for the other. See #16586 for more examples of where something
like this has actually happened.

`KnownNat` should be a singleton type, but if we allow `withSomeSNat` to inline
it won't be a singleton type any more. We have lost the "fresh type variable".

TL;DR. We avoid this problem by making the definition of `withSomeSNat` opaque,
using an `NOINLINE` pragma. When we get `runExists` (#19675) we will be able to
stop using this hack.
-}


-- | @since 4.7.0.0
instance Eq SomeNat where
  SomeNat Proxy n
x == :: SomeNat -> SomeNat -> Bool
== SomeNat Proxy n
y = Proxy n -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal Proxy n
x Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy n -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal Proxy n
y

-- | @since 4.7.0.0
instance Ord SomeNat where
  compare :: SomeNat -> SomeNat -> Ordering
compare (SomeNat Proxy n
x) (SomeNat Proxy n
y) = Nat -> Nat -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Proxy n -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal Proxy n
x) (Proxy n -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal Proxy n
y)

-- | @since 4.7.0.0
instance Show SomeNat where
  showsPrec :: Int -> SomeNat -> ShowS
showsPrec Int
p (SomeNat Proxy n
x) = Int -> Nat -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
p (Proxy n -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal Proxy n
x)

-- | @since 4.7.0.0
instance Read SomeNat where
  readsPrec :: Int -> ReadS SomeNat
readsPrec Int
p String
xs = do (Nat
a,String
ys) <- Int -> ReadS Nat
forall a. Read a => Int -> ReadS a
readsPrec Int
p String
xs
                      [(Nat -> SomeNat
someNatVal Nat
a, String
ys)]

--------------------------------------------------------------------------------

infixl 6 +, -
infixl 7 *, `Div`, `Mod`
infixr 8 ^

-- | Addition of type-level naturals.
--
-- @since 4.7.0.0
type family (m :: Nat) + (n :: Nat) :: Nat

-- | Multiplication of type-level naturals.
--
-- @since 4.7.0.0
type family (m :: Nat) * (n :: Nat) :: Nat

-- | Exponentiation of type-level naturals.
--
-- @since 4.7.0.0
type family (m :: Nat) ^ (n :: Nat) :: Nat

-- | Subtraction of type-level naturals.
--
-- @since 4.7.0.0
type family (m :: Nat) - (n :: Nat) :: Nat

-- | Division (round down) of natural numbers.
-- @Div x 0@ is undefined (i.e., it cannot be reduced).
--
-- @since 4.11.0.0
type family Div (m :: Nat) (n :: Nat) :: Nat

-- | Modulus of natural numbers.
-- @Mod x 0@ is undefined (i.e., it cannot be reduced).
--
-- @since 4.11.0.0
type family Mod (m :: Nat) (n :: Nat) :: Nat

-- | Log base 2 (round down) of natural numbers.
-- @Log 0@ is undefined (i.e., it cannot be reduced).
--
-- @since 4.11.0.0
type family Log2 (m :: Nat) :: Nat

--------------------------------------------------------------------------------

-- | We either get evidence that this function was instantiated with the
-- same type-level numbers, or 'Nothing'.
--
-- @since 4.7.0.0
sameNat :: forall a b proxy1 proxy2.
           (KnownNat a, KnownNat b) =>
           proxy1 a -> proxy2 b -> Maybe (a :~: b)
sameNat :: forall (a :: Nat) (b :: Nat) (proxy1 :: Nat -> Type)
       (proxy2 :: Nat -> Type).
(KnownNat a, KnownNat b) =>
proxy1 a -> proxy2 b -> Maybe (a :~: b)
sameNat proxy1 a
_ proxy2 b
_ = SNat a -> SNat b -> Maybe (a :~: b)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> Maybe (a :~: b)
forall {k} (f :: k -> Type) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality (forall (n :: Nat). KnownNat n => SNat n
natSing @a) (forall (n :: Nat). KnownNat n => SNat n
natSing @b)

-- | We either get evidence that this function was instantiated with the
-- same type-level numbers, or that the type-level numbers are distinct.
--
-- @since 4.19.0.0
decideNat :: forall a b proxy1 proxy2.
           (KnownNat a, KnownNat b) =>
           proxy1 a -> proxy2 b -> Either (a :~: b -> Void) (a :~: b)
decideNat :: forall (a :: Nat) (b :: Nat) (proxy1 :: Nat -> Type)
       (proxy2 :: Nat -> Type).
(KnownNat a, KnownNat b) =>
proxy1 a -> proxy2 b -> Either ((a :~: b) -> Void) (a :~: b)
decideNat proxy1 a
_ proxy2 b
_ = SNat a -> SNat b -> Either ((a :~: b) -> Void) (a :~: b)
forall (a :: Nat) (b :: Nat).
SNat a -> SNat b -> Either ((a :~: b) -> Void) (a :~: b)
decNat (forall (n :: Nat). KnownNat n => SNat n
natSing @a) (forall (n :: Nat). KnownNat n => SNat n
natSing @b)

-- Not exported: See [Not exported decNat, decSymbol and decChar]
decNat :: SNat a -> SNat b -> Either (a :~: b -> Void) (a :~: b)
decNat :: forall (a :: Nat) (b :: Nat).
SNat a -> SNat b -> Either ((a :~: b) -> Void) (a :~: b)
decNat (UnsafeSNat Nat
x) (UnsafeSNat Nat
y)
  | Nat
x Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
y    = (a :~: b) -> Either ((a :~: b) -> Void) (a :~: b)
forall a b. b -> Either a b
Right ((Any :~: Any) -> a :~: b
forall a b. a -> b
unsafeCoerce Any :~: Any
forall {k} (a :: k). a :~: a
Refl)
  | Bool
otherwise = ((a :~: b) -> Void) -> Either ((a :~: b) -> Void) (a :~: b)
forall a b. a -> Either a b
Left (\a :~: b
Refl -> String -> Void
forall a. String -> a
errorWithoutStackTrace (String
"decideNat: Impossible equality proof " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Nat -> String
forall a. Show a => a -> String
show Nat
x String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" :~: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Nat -> String
forall a. Show a => a -> String
show Nat
y))

{-
Note [Not exported decNat, decSymbol and decChar]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The decNat, decSymbol and decChar are not (yet) exported.

There are two development paths:
1. export them.
2. Add `decideEquality :: f a -> f b -> Either (a :~: b -> Void) (a :~: b)`
   to the `Data.Type.Equality.TestEquality` typeclass.

The second option looks nicer given the current base API:
there aren't `eqNat :: SNat a -> SNat b -> Maybe (a :~: b)` like functions,
they are abstracted by `TestEquality` typeclass.

Also TestEquality class has a law that testEquality result
should be Just Refl iff the types applied to are equal:

testEquality (x :: f a) (y :: f b) = Just Refl  <=> a = b

As consequence we have that testEquality should be Nothing
iff the types applied are inequal:

testEquality (x :: f a) (y :: f b) = Nothing   <=> a /= b

And the decideEquality would enforce that.

However, adding a new method is a breaking change,
as default implementation cannot be (safely) provided.
Also there are unlawful instances of `TestEquality` out there,
(e.g. https://hackage.haskell.org/package/parameterized-utils Index instance
      https://hackage.haskell.org/package/witness various types)
which makes adding unsafe default implementation a bad idea.

Adding own typeclass:

class TestEquality f => DecideEquality f where
  decideEquality :: f a -> f b -> Either (a :~: b -> Void) (a :~: b)

is bad design, as `TestEquality` already implies that it should be possible.
In other words, every f with (lawful) `TestEquality` instance should have
`DecideEquality` instance as well.

We hold on doing either 1. or 2. yet, as doing 2. is "harder",
but if it is done eventually, doing 1. is pointless.
In other words the paths can be thought as mutually exclusive.

Fortunately the dec* functions can be simulated using decide* variants
if needed, so there is no hurry to commit to either development paths.

-}

-- | Like 'sameNat', but if the numbers aren't equal, this additionally
-- provides proof of LT or GT.
--
-- @since 4.16.0.0
cmpNat :: forall a b proxy1 proxy2. (KnownNat a, KnownNat b)
       => proxy1 a -> proxy2 b -> OrderingI a b
cmpNat :: forall (a :: Nat) (b :: Nat) (proxy1 :: Nat -> Type)
       (proxy2 :: Nat -> Type).
(KnownNat a, KnownNat b) =>
proxy1 a -> proxy2 b -> OrderingI a b
cmpNat proxy1 a
x proxy2 b
y = case Nat -> Nat -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (proxy1 a -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal proxy1 a
x) (proxy2 b -> Nat
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Nat
natVal proxy2 b
y) of
  Ordering
EQ -> case (Any :~: Any, Any :~: Any) -> (CmpNat a b :~: 'EQ, a :~: b)
forall a b. a -> b
unsafeCoerce (Any :~: Any
forall {k} (a :: k). a :~: a
Refl, Any :~: Any
forall {k} (a :: k). a :~: a
Refl) :: (CmpNat a b :~: 'EQ, a :~: b) of
    (CmpNat a b :~: 'EQ
Refl, a :~: b
Refl) -> OrderingI a a
OrderingI a b
forall {k} (a :: k). (Compare a a ~ 'EQ) => OrderingI a a
EQI
  Ordering
LT -> case (Any :~: Any) -> CmpNat a b :~: 'LT
forall a b. a -> b
unsafeCoerce Any :~: Any
forall {k} (a :: k). a :~: a
Refl :: (CmpNat a b :~: 'LT) of
    CmpNat a b :~: 'LT
Refl -> OrderingI a b
forall {k} (a :: k) (b :: k). (Compare a b ~ 'LT) => OrderingI a b
LTI
  Ordering
GT -> case (Any :~: Any) -> CmpNat a b :~: 'GT
forall a b. a -> b
unsafeCoerce Any :~: Any
forall {k} (a :: k). a :~: a
Refl :: (CmpNat a b :~: 'GT) of
    CmpNat a b :~: 'GT
Refl -> OrderingI a b
forall {k} (a :: k) (b :: k). (Compare a b ~ 'GT) => OrderingI a b
GTI



--------------------------------------------------------------------------------
-- Singleton values

-- | A value-level witness for a type-level natural number. This is commonly
-- referred to as a /singleton/ type, as for each @n@, there is a single value
-- that inhabits the type @'SNat' n@ (aside from bottom).
--
-- The definition of 'SNat' is intentionally left abstract. To obtain an 'SNat'
-- value, use one of the following:
--
-- 1. The 'natSing' method of 'KnownNat'.
--
-- 2. The @SNat@ pattern synonym.
--
-- 3. The 'withSomeSNat' function, which creates an 'SNat' from a 'Natural'
--    number.
--
-- @since 4.18.0.0
newtype SNat (n :: Nat) = UnsafeSNat Natural
type role SNat nominal

-- | A explicitly bidirectional pattern synonym relating an 'SNat' to a
-- 'KnownNat' constraint.
--
-- As an __expression__: Constructs an explicit @'SNat' n@ value from an
-- implicit @'KnownNat' n@ constraint:
--
-- @
-- SNat @n :: 'KnownNat' n => 'SNat' n
-- @
--
-- As a __pattern__: Matches on an explicit @'SNat' n@ value bringing
-- an implicit @'KnownNat' n@ constraint into scope:
--
-- @
-- f :: 'SNat' n -> ..
-- f SNat = {- SNat n in scope -}
-- @
--
-- @since 4.18.0.0
pattern SNat :: forall n. () => KnownNat n => SNat n
pattern $mSNat :: forall {r} {n :: Nat}.
SNat n -> (KnownNat n => r) -> ((# #) -> r) -> r
$bSNat :: forall (n :: Nat). KnownNat n => SNat n
SNat <- (knownNatInstance -> KnownNatInstance)
  where SNat = SNat n
forall (n :: Nat). KnownNat n => SNat n
natSing
{-# COMPLETE SNat #-}

-- An internal data type that is only used for defining the SNat pattern
-- synonym.
data KnownNatInstance (n :: Nat) where
  KnownNatInstance :: KnownNat n => KnownNatInstance n

-- An internal function that is only used for defining the SNat pattern
-- synonym.
knownNatInstance :: SNat n -> KnownNatInstance n
knownNatInstance :: forall (n :: Nat). SNat n -> KnownNatInstance n
knownNatInstance SNat n
sn = SNat n -> (KnownNat n => KnownNatInstance n) -> KnownNatInstance n
forall (n :: Nat) r. SNat n -> (KnownNat n => r) -> r
withKnownNat SNat n
sn KnownNatInstance n
KnownNat n => KnownNatInstance n
forall (n :: Nat). KnownNat n => KnownNatInstance n
KnownNatInstance

-- | @since 4.19.0.0
instance Eq (SNat n) where
  SNat n
_ == :: SNat n -> SNat n -> Bool
== SNat n
_ = Bool
True

-- | @since 4.19.0.0
instance Ord (SNat n) where
  compare :: SNat n -> SNat n -> Ordering
compare SNat n
_ SNat n
_ = Ordering
EQ

-- | @since 4.18.0.0
instance Show (SNat n) where
  showsPrec :: Int -> SNat n -> ShowS
showsPrec Int
p (UnsafeSNat Nat
n)
    = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
appPrec)
      ( String -> ShowS
showString String
"SNat @"
        ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Nat -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
appPrec1 Nat
n
      )

-- | @since 4.18.0.0
instance TestEquality SNat where
  testEquality :: forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> Maybe (a :~: b)
testEquality SNat a
a SNat b
b = case SNat a -> SNat b -> Either ((a :~: b) -> Void) (a :~: b)
forall (a :: Nat) (b :: Nat).
SNat a -> SNat b -> Either ((a :~: b) -> Void) (a :~: b)
decNat SNat a
a SNat b
b of
    Right a :~: b
x -> (a :~: b) -> Maybe (a :~: b)
forall a. a -> Maybe a
Just a :~: b
x
    Left (a :~: b) -> Void
_  -> Maybe (a :~: b)
forall a. Maybe a
Nothing

-- | @since 4.18.0.0
instance TestCoercion SNat where
  testCoercion :: forall (a :: Nat) (b :: Nat).
SNat a -> SNat b -> Maybe (Coercion a b)
testCoercion SNat a
x SNat b
y = ((a :~: b) -> Coercion a b)
-> Maybe (a :~: b) -> Maybe (Coercion a b)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (\a :~: b
Refl -> Coercion a b
forall {k} (a :: k) (b :: k). Coercible a b => Coercion a b
Coercion) (SNat a -> SNat b -> Maybe (a :~: b)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> Maybe (a :~: b)
forall {k} (f :: k -> Type) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality SNat a
x SNat b
y)

-- | Return the 'Natural' number corresponding to @n@ in an @'SNat' n@ value.
--
-- @since 4.18.0.0
fromSNat :: SNat n -> Natural
fromSNat :: forall (n :: Nat). SNat n -> Nat
fromSNat (UnsafeSNat Nat
n) = Nat
n

-- | Convert an explicit @'SNat' n@ value into an implicit @'KnownNat' n@
-- constraint.
--
-- @since 4.18.0.0
withKnownNat :: forall n rep (r :: TYPE rep).
                SNat n -> (KnownNat n => r) -> r
withKnownNat :: forall (n :: Nat) r. SNat n -> (KnownNat n => r) -> r
withKnownNat = forall (cls :: Constraint) meth r.
WithDict cls meth =>
meth -> (cls => r) -> r
withDict @(KnownNat n)
-- See Note [withDict] in "GHC.Tc.Instance.Class" in GHC

-- | Convert a 'Natural' number into an @'SNat' n@ value, where @n@ is a fresh
-- type-level natural number.
--
-- @since 4.18.0.0
withSomeSNat :: forall rep (r :: TYPE rep).
                Natural -> (forall n. SNat n -> r) -> r
withSomeSNat :: forall r. Nat -> (forall (n :: Nat). SNat n -> r) -> r
withSomeSNat Nat
n forall (n :: Nat). SNat n -> r
k = SNat Any -> r
forall (n :: Nat). SNat n -> r
k (Nat -> SNat Any
forall (n :: Nat). Nat -> SNat n
UnsafeSNat Nat
n)
{-# NOINLINE withSomeSNat #-} -- See Note [NOINLINE withSomeSNat]