assoc-1.1: swap and assoc: Symmetric and Semigroupy Bifunctors

Data.Bifunctor.Swap

Synopsis
• class Swap p where
• swap :: p a b -> p b a

Documentation

class Swap p where Source #

Symmetric Bifunctors.

swap . swap = id


If p is a Bifunctor the following property is assumed to hold:

swap . bimap f g = bimap g f . swap


Swap isn't a subclass of Bifunctor, as for example

>>> newtype Bipredicate a b = Bipredicate (a -> b -> Bool)


is not a Bifunctor but has Swap instance

>>> instance Swap Bipredicate where swap (Bipredicate p) = Bipredicate (flip p)


Methods

swap :: p a b -> p b a Source #

Instances

Instances details
 Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: Either a b -> Either b a Source # Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: (a, b) -> (b, a) Source # Swap ((,,) x) Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: (x, a, b) -> (x, b, a) Source # Swap ((,,,) x y) Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: (x, y, a, b) -> (x, y, b, a) Source # Swap ((,,,,) x y z) Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: (x, y, z, a, b) -> (x, y, z, b, a) Source # Swap ((,,,,,) x y z w) Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: (x, y, z, w, a, b) -> (x, y, z, w, b, a) Source # Swap ((,,,,,,) x y z w v) Source # Instance detailsDefined in Data.Bifunctor.Swap Methodsswap :: (x, y, z, w, v, a, b) -> (x, y, z, w, v, b, a) Source #