aop-prelude-0.3.0.2: prelude for Algebra of Programming

Safe HaskellNone
LanguageHaskell2010

AOPPrelude

Synopsis

Documentation

(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 Source #

const :: a -> b -> a Source #

id :: a -> a Source #

outl :: (a, b) -> a Source #

outr :: (a, b) -> b Source #

swap :: (a, b) -> (b, a) Source #

assocl :: (a, (b, c)) -> ((a, b), c) Source #

assocr :: ((a, b), c) -> (a, (b, c)) Source #

dupl :: (a, (b, c)) -> ((a, b), (a, c)) Source #

dupr :: ((a, b), c) -> ((a, c), (b, c)) Source #

pair :: (a -> b, a -> c) -> a -> (b, c) Source #

cross :: (a -> c, b -> d) -> (a, b) -> (c, d) Source #

cond :: (a -> Bool) -> (a -> b, a -> b) -> a -> b Source #

curry :: ((a, b) -> c) -> a -> b -> c Source #

uncurry :: (a -> b -> c) -> (a, b) -> c Source #

false :: a -> Bool Source #

true :: a -> Bool Source #

(&&) :: Bool -> Bool -> Bool infixr 3 Source #

(||) :: Bool -> Bool -> Bool infixr 2 Source #

leq :: Ord a => (a, a) -> Bool Source #

less :: Ord a => (a, a) -> Bool Source #

eql :: Ord a => (a, a) -> Bool Source #

neq :: Ord a => (a, a) -> Bool Source #

gtr :: Ord a => (a, a) -> Bool Source #

geq :: Ord a => (a, a) -> Bool Source #

meet :: (a -> Bool, a -> Bool) -> a -> Bool Source #

join :: (a -> Bool, a -> Bool) -> a -> Bool Source #

wok :: ((b, a) -> c) -> (a, b) -> c Source #

zero :: Num a => t -> a Source #

succ :: Num a => a -> a Source #

pred :: Num a => a -> a Source #

plus :: Num a => (a, a) -> a Source #

minus :: Num a => (a, a) -> a Source #

times :: Num a => (a, a) -> a Source #

divide :: Fractional a => (a, a) -> a Source #

negative :: (Ord a, Num a) => a -> Bool Source #

positive :: (Ord a, Num a) => a -> Bool Source #

(++) :: [a] -> [a] -> [a] infixr 5 Source #

null :: [a] -> Bool Source #

nil :: t -> [a] Source #

wrap :: a -> [a] Source #

cons :: (a, [a]) -> [a] Source #

cat :: ([a], [a]) -> [a] Source #

concat :: [[a]] -> [a] Source #

snoc :: ([a], a) -> [a] Source #

head :: [a] -> a Source #

tail :: [a] -> [a] Source #

split :: [a] -> (a, [a]) Source #

last :: [a] -> a Source #

init :: [a] -> [a] Source #

inits :: [a] -> [[a]] Source #

tails :: [a] -> [[a]] Source #

splits :: [a] -> [([a], [a])] Source #

cpp :: ([a], [b]) -> [(a, b)] Source #

cpl :: ([a], b) -> [(a, b)] Source #

cpr :: (a, [b]) -> [(a, b)] Source #

cplist :: [[a]] -> [[a]] Source #

minlist :: ((a, a) -> Bool) -> [a] -> a Source #

bmin :: ((a, a) -> Bool) -> (a, a) -> a Source #

maxlist :: ((a, a) -> Bool) -> [a] -> a Source #

bmax :: ((a, a) -> Bool) -> (a, a) -> a Source #

thinlist :: ((a, a) -> Bool) -> [a] -> [a] Source #

length :: Num a => [t] -> a Source #

sum :: Num a => [a] -> a Source #

trans :: [[a]] -> [[a]] Source #

list :: (a -> b) -> [a] -> [b] Source #

filter :: (a -> Bool) -> [a] -> [a] Source #

catalist :: (b, (a, b) -> b) -> [a] -> b Source #

cata1list :: (a -> b, (a, b) -> b) -> [a] -> b Source #

cata2list :: ((a, a) -> b, (a, b) -> b) -> [a] -> b Source #

loop :: ((a, b) -> a) -> (a, [b]) -> a Source #

merge :: ((a, a) -> Bool) -> ([a], [a]) -> [a] Source #

zip :: ([a], [b]) -> [(a, b)] Source #

unzip :: [(a, b)] -> ([a], [b]) Source #

ord :: Char -> Int #

The fromEnum method restricted to the type Char.

chr :: Int -> Char #

The toEnum method restricted to the type Char.

(==) :: Eq a => a -> a -> Bool infix 4 #

(/=) :: Eq a => a -> a -> Bool infix 4 #

(<=) :: Ord a => a -> a -> Bool infix 4 #

(<) :: Ord a => a -> a -> Bool infix 4 #

(>=) :: Ord a => a -> a -> Bool infix 4 #

(>) :: Ord a => a -> a -> Bool infix 4 #

(+) :: Num a => a -> a -> a infixl 6 #

(-) :: Num a => a -> a -> a infixl 6 #

(/) :: Fractional a => a -> a -> a infixl 7 #

fractional division

div :: Integral a => a -> a -> a infixl 7 #

integer division truncated toward negative infinity

mod :: Integral a => a -> a -> a infixl 7 #

integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

(*) :: Num a => a -> a -> a infixl 7 #

negate :: Num a => a -> a #

Unary negation.

primPrint :: Show a => a -> IO () Source #

strict :: (a -> b) -> a -> b Source #

error :: HasCallStack => [Char] -> a #

error stops execution and displays an error message.

show :: Show a => a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

flip :: (a -> b -> c) -> b -> a -> c Source #

type String = [Char] #

A String is a list of characters. String constants in Haskell are values of type String.

class Num a #

Basic numeric class.

The Haskell Report defines no laws for Num. However, '(+)' and '(*)' are customarily expected to define a ring and have the following properties:

Associativity of (+)
(x + y) + z = x + (y + z)
Commutativity of (+)
x + y = y + x
fromInteger 0 is the additive identity
x + fromInteger 0 = x
negate gives the additive inverse
x + negate x = fromInteger 0
Associativity of (*)
(x * y) * z = x * (y * z)
fromInteger 1 is the multiplicative identity
x * fromInteger 1 = x and fromInteger 1 * x = x
Distributivity of (*) with respect to (+)
a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)

Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Instances
Num Int

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Num Integer

Since: base-2.1

Instance details

Defined in GHC.Num

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

Since: base-4.8.0.0

Instance details

Defined in GHC.Num

Num Word

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Integral a => Num (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

class Num a => Fractional a #

Fractional numbers, supporting real division.

The Haskell Report defines no laws for Fractional. However, '(+)' and '(*)' are customarily expected to define a division ring and have the following properties:

recip gives the multiplicative inverse
x * recip x = recip x * x = fromInteger 1

Note that it isn't customarily expected that a type instance of Fractional implement a field. However, all instances in base do.

Minimal complete definition

fromRational, (recip | (/))

Instances
Integral a => Fractional (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

class Show a #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Instances
Show Bool

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Int

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Integer

Since: base-2.1

Instance details

Defined in GHC.Show

Show Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Show

Show Ordering

Since: base-2.1

Instance details

Defined in GHC.Show

Show Word

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show RuntimeRep

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show VecCount

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show VecElem

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show CallStack

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show ()

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show TyCon

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show Module

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show TrName

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show KindRep 
Instance details

Defined in GHC.Show

Show TypeLitSort

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show SrcLoc

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show a => Show [a]

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

Show a => Show (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show a => Show (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

(Show a, Show b) => Show (a, b)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b) -> ShowS #

show :: (a, b) -> String #

showList :: [(a, b)] -> ShowS #

(Show a, Show b, Show c) => Show (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c) -> ShowS #

show :: (a, b, c) -> String #

showList :: [(a, b, c)] -> ShowS #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS #

show :: (a, b, c, d) -> String #

showList :: [(a, b, c, d)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS #

show :: (a, b, c, d, e) -> String #

showList :: [(a, b, c, d, e)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS #

show :: (a, b, c, d, e, f) -> String #

showList :: [(a, b, c, d, e, f)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS #

show :: (a, b, c, d, e, f, g) -> String #

showList :: [(a, b, c, d, e, f, g)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS #

show :: (a, b, c, d, e, f, g, h) -> String #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i) -> String #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS #

data Natural #

Type representing arbitrary-precision non-negative integers.

>>> 2^100 :: Natural
1267650600228229401496703205376

Operations whose result would be negative throw (Underflow :: ArithException),

>>> -1 :: Natural
*** Exception: arithmetic underflow

Since: base-4.8.0.0

Instances
Eq Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Natural

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Integral Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

Since: base-4.8.0.0

Instance details

Defined in GHC.Num

Ord Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Natural

Real Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Show Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Show

module GHC.Types