algebraic-graphs-0.6.1: A library for algebraic graph construction and transformation
Copyright(c) Andrey Mokhov 2016-2022
LicenseMIT (see the file LICENSE)
Maintainerandrey.mokhov@gmail.com
Stabilityunstable
Safe HaskellNone
LanguageHaskell2010

Algebra.Graph.AdjacencyIntMap.Algorithm

Description

Alga is a library for algebraic construction and manipulation of graphs in Haskell. See this paper for the motivation behind the library, the underlying theory, and implementation details.

This module provides basic graph algorithms, such as depth-first search, implemented for the Algebra.Graph.AdjacencyIntMap data type.

Some of the worst-case complexities include the term min(n,W). Following IntSet and IntMap, the W stands for word size (usually 32 or 64 bits).

Synopsis

Algorithms

bfsForest :: [Int] -> AdjacencyIntMap -> Forest Int Source #

Compute the breadth-first search forest of a graph, such that adjacent vertices are explored in increasing order according to their Ord instance. The search is seeded by a list of vertices that will become the roots of the resulting forest. Duplicates in the list will have their first occurrence expanded and subsequent ones ignored. The seed vertices that do not belong to the graph are also ignored.

Complexity: O((L+m)*log n) time and O(n) space, where L is the number of seed vertices.

forest (bfsForest [1,2] $ edge 1 2)      == vertices [1,2]
forest (bfsForest [2]   $ edge 1 2)      == vertex 2
forest (bfsForest [3]   $ edge 1 2)      == empty
forest (bfsForest [2,1] $ edge 1 2)      == vertices [1,2]
isSubgraphOf (forest $ bfsForest vs x) x == True
bfsForest (vertexList g) g               == map (v -> Node v []) (nub $ vertexList g)
bfsForest [] x                           == []
bfsForest [1,4] (3 * (1 + 4) * (1 + 5))  == [ Node { rootLabel = 1
                                                   , subForest = [ Node { rootLabel = 5
                                                                        , subForest = [] }]}
                                            , Node { rootLabel = 4
                                                   , subForest = [] }]
forest (bfsForest [3] (circuit [1..5] + circuit [5,4..1])) == path [3,2,1] + path [3,4,5]

bfs :: [Int] -> AdjacencyIntMap -> [[Int]] Source #

A version of bfsForest where the resulting forest is converted to a level structure. Adjacent vertices are explored in the increasing order according to their Ord instance. Flattening the result via concat . bfs vs gives an enumeration of vertices reachable from vs in the BFS order.

Complexity: O((L+m)*min(n,W)) time and O(n) space, where L is the number of seed vertices.

bfs vs empty                                         == []
bfs [] g                                             == []
bfs [1]   (edge 1 1)                                 == [[1]]
bfs [1]   (edge 1 2)                                 == [[1],[2]]
bfs [2]   (edge 1 2)                                 == [[2]]
bfs [1,2] (edge 1 2)                                 == [[1,2]]
bfs [2,1] (edge 1 2)                                 == [[2,1]]
bfs [3]   (edge 1 2)                                 == []
bfs [1,2] ( (1*2) + (3*4) + (5*6) )                  == [[1,2]]
bfs [1,3] ( (1*2) + (3*4) + (5*6) )                  == [[1,3],[2,4]]
bfs [3] (3 * (1 + 4) * (1 + 5))                      == [[3],[1,4,5]]
bfs [2] (circuit [1..5] + circuit [5,4..1])          == [[2],[1,3],[5,4]]
concat (bfs [3] $ circuit [1..5] + circuit [5,4..1]) == [3,2,4,1,5]
bfs vs == map concat . transpose . map levels . bfsForest vs

dfsForest :: AdjacencyIntMap -> Forest Int Source #

Compute the depth-first search forest of a graph, where adjacent vertices are explored in the increasing order according to their Ord instance.

Complexity: O((n+m)*min(n,W)) time and O(n) space.

dfsForest empty                       == []
forest (dfsForest $ edge 1 1)         == vertex 1
forest (dfsForest $ edge 1 2)         == edge 1 2
forest (dfsForest $ edge 2 1)         == vertices [1,2]
isSubgraphOf (forest $ dfsForest x) x == True
isDfsForestOf (dfsForest x) x         == True
dfsForest . forest . dfsForest        == dfsForest
dfsForest (vertices vs)               == map (\v -> Node v []) (nub $ sort vs)
dfsForestFrom (vertexList x) x        == dfsForest x
dfsForest $ 3 * (1 + 4) * (1 + 5)     == [ Node { rootLabel = 1
                                                , subForest = [ Node { rootLabel = 5
                                                                     , subForest = [] }]}
                                         , Node { rootLabel = 3
                                                , subForest = [ Node { rootLabel = 4
                                                                     , subForest = [] }]}]
forest (dfsForest $ circuit [1..5] + circuit [5,4..1]) == path [1,2,3,4,5]

dfsForestFrom :: [Int] -> AdjacencyIntMap -> Forest Int Source #

Compute the depth-first search forest of a graph starting from the given seed vertices, where adjacent vertices are explored in the increasing order according to their Ord instance. Note that the resulting forest does not necessarily span the whole graph, as some vertices may be unreachable. The seed vertices which do not belong to the graph are ignored.

Complexity: O((L+m)*log n) time and O(n) space, where L be the number of seed vertices.

dfsForestFrom vs empty                           == []
forest (dfsForestFrom [1]   $ edge 1 1)          == vertex 1
forest (dfsForestFrom [1]   $ edge 1 2)          == edge 1 2
forest (dfsForestFrom [2]   $ edge 1 2)          == vertex 2
forest (dfsForestFrom [3]   $ edge 1 2)          == empty
forest (dfsForestFrom [2,1] $ edge 1 2)          == vertices [1,2]
isSubgraphOf (forest $ dfsForestFrom vs x) x     == True
isDfsForestOf (dfsForestFrom (vertexList x) x) x == True
dfsForestFrom (vertexList x) x                   == dfsForest x
dfsForestFrom vs             (vertices vs)       == map (\v -> Node v []) (nub vs)
dfsForestFrom []             x                   == []
dfsForestFrom [1,4] $ 3 * (1 + 4) * (1 + 5)      == [ Node { rootLabel = 1
                                                           , subForest = [ Node { rootLabel = 5
                                                                                , subForest = [] }
                                                    , Node { rootLabel = 4
                                                           , subForest = [] }]
forest (dfsForestFrom [3] $ circuit [1..5] + circuit [5,4..1]) == path [3,2,1,5,4]

dfs :: [Int] -> AdjacencyIntMap -> [Int] Source #

Return the list vertices visited by the depth-first search in a graph, starting from the given seed vertices. Adjacent vertices are explored in the increasing order according to their Ord instance.

Complexity: O((L+m)*log n) time and O(n) space, where L is the number of seed vertices.

dfs vs    $ empty                    == []
dfs [1]   $ edge 1 1                 == [1]
dfs [1]   $ edge 1 2                 == [1,2]
dfs [2]   $ edge 1 2                 == [2]
dfs [3]   $ edge 1 2                 == []
dfs [1,2] $ edge 1 2                 == [1,2]
dfs [2,1] $ edge 1 2                 == [2,1]
dfs []    $ x                        == []
dfs [1,4] $ 3 * (1 + 4) * (1 + 5)    == [1,5,4]
isSubgraphOf (vertices $ dfs vs x) x == True
dfs [3] $ circuit [1..5] + circuit [5,4..1] == [3,2,1,5,4]

reachable :: Int -> AdjacencyIntMap -> [Int] Source #

Return the list of vertices that are reachable from a given source vertex in a graph. The vertices in the resulting list appear in the depth-first order.

Complexity: O(m*log n) time and O(n) space.

reachable x $ empty                       == []
reachable 1 $ vertex 1                    == [1]
reachable 1 $ vertex 2                    == []
reachable 1 $ edge 1 1                    == [1]
reachable 1 $ edge 1 2                    == [1,2]
reachable 4 $ path    [1..8]              == [4..8]
reachable 4 $ circuit [1..8]              == [4..8] ++ [1..3]
reachable 8 $ clique  [8,7..1]            == [8] ++ [1..7]
isSubgraphOf (vertices $ reachable x y) y == True

topSort :: AdjacencyIntMap -> Either (Cycle Int) [Int] Source #

Compute a topological sort of a graph or discover a cycle.

Vertices are explored in the decreasing order according to their Ord instance. This gives the lexicographically smallest topological ordering in the case of success. In the case of failure, the cycle is characterized by being the lexicographically smallest up to rotation with respect to Ord (Dual Int) in the first connected component of the graph containing a cycle, where the connected components are ordered by their largest vertex with respect to Ord a.

Complexity: O((n+m)*min(n,W)) time and O(n) space.

topSort (1 * 2 + 3 * 1)                    == Right [3,1,2]
topSort (path [1..5])                      == Right [1..5]
topSort (3 * (1 * 4 + 2 * 5))              == Right [3,1,2,4,5]
topSort (1 * 2 + 2 * 1)                    == Left (2 :| [1])
topSort (path [5,4..1] + edge 2 4)         == Left (4 :| [3,2])
topSort (circuit [1..3])                   == Left (3 :| [1,2])
topSort (circuit [1..3] + circuit [3,2,1]) == Left (3 :| [2])
topSort (1*2 + 2*1 + 3*4 + 4*3 + 5*1)      == Left (1 :| [2])
fmap (flip isTopSortOf x) (topSort x)      /= Right False
topSort . vertices                         == Right . nub . sort

isAcyclic :: AdjacencyIntMap -> Bool Source #

Check if a given graph is acyclic.

Complexity: O((n+m)*min(n,W)) time and O(n) space.

isAcyclic (1 * 2 + 3 * 1) == True
isAcyclic (1 * 2 + 2 * 1) == False
isAcyclic . circuit       == null
isAcyclic                 == isRight . topSort

Correctness properties

isDfsForestOf :: Forest Int -> AdjacencyIntMap -> Bool Source #

Check if a given forest is a correct depth-first search forest of a graph. The implementation is based on the paper "Depth-First Search and Strong Connectivity in Coq" by François Pottier.

isDfsForestOf []                              empty            == True
isDfsForestOf []                              (vertex 1)       == False
isDfsForestOf [Node 1 []]                     (vertex 1)       == True
isDfsForestOf [Node 1 []]                     (vertex 2)       == False
isDfsForestOf [Node 1 [], Node 1 []]          (vertex 1)       == False
isDfsForestOf [Node 1 []]                     (edge 1 1)       == True
isDfsForestOf [Node 1 []]                     (edge 1 2)       == False
isDfsForestOf [Node 1 [], Node 2 []]          (edge 1 2)       == False
isDfsForestOf [Node 2 [], Node 1 []]          (edge 1 2)       == True
isDfsForestOf [Node 1 [Node 2 []]]            (edge 1 2)       == True
isDfsForestOf [Node 1 [], Node 2 []]          (vertices [1,2]) == True
isDfsForestOf [Node 2 [], Node 1 []]          (vertices [1,2]) == True
isDfsForestOf [Node 1 [Node 2 []]]            (vertices [1,2]) == False
isDfsForestOf [Node 1 [Node 2 [Node 3 []]]]   (path [1,2,3])   == True
isDfsForestOf [Node 1 [Node 3 [Node 2 []]]]   (path [1,2,3])   == False
isDfsForestOf [Node 3 [], Node 1 [Node 2 []]] (path [1,2,3])   == True
isDfsForestOf [Node 2 [Node 3 []], Node 1 []] (path [1,2,3])   == True
isDfsForestOf [Node 1 [], Node 2 [Node 3 []]] (path [1,2,3])   == False

isTopSortOf :: [Int] -> AdjacencyIntMap -> Bool Source #

Check if a given list of vertices is a correct topological sort of a graph.

isTopSortOf [3,1,2] (1 * 2 + 3 * 1) == True
isTopSortOf [1,2,3] (1 * 2 + 3 * 1) == False
isTopSortOf []      (1 * 2 + 3 * 1) == False
isTopSortOf []      empty           == True
isTopSortOf [x]     (vertex x)      == True
isTopSortOf [x]     (edge x x)      == False

Type synonyms