{-# LANGUAGE OverloadedStrings #-} ----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Export -- Copyright : (c) Andrey Mokhov 2016-2019 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines basic functionality for exporting graphs in textual and -- binary formats. "Algebra.Graph.Export.Dot" provides DOT-specific functions. ----------------------------------------------------------------------------- module Algebra.Graph.Export ( -- * Constructing and exporting documents Doc, isEmpty, literal, render, -- * Common combinators for text documents (<+>), brackets, doubleQuotes, indent, unlines, -- * Generic graph export export ) where import Data.Foldable (fold) import Data.Semigroup import Data.String hiding (unlines) import Prelude hiding (unlines) import Algebra.Graph.ToGraph (ToGraph, ToVertex, toAdjacencyMap) import Algebra.Graph.AdjacencyMap (vertexList, edgeList) import Algebra.Graph.Internal -- | An abstract document data type with /O(1)/ time concatenation (the current -- implementation uses difference lists). Here @s@ is the type of abstract -- symbols or strings (text or binary). 'Doc' @s@ is a 'Monoid', therefore -- 'mempty' corresponds to the /empty document/ and two documents can be -- concatenated with 'mappend' (or operator 'Data.Monoid.<>'). Documents -- comprising a single symbol or string can be constructed using the function -- 'literal'. Alternatively, you can construct documents as string literals, -- e.g. simply as @"alga"@, by using the @OverloadedStrings@ GHC extension. To -- extract the document contents use the function 'render'. -- -- Note that the document comprising a single empty string is considered to be -- different from the empty document. This design choice is motivated by the -- desire to support string types @s@ that have no 'Eq' instance, such as -- "Data.ByteString.Builder", for which there is no way to check whether a -- string is empty or not. As a consequence, the 'Eq' and 'Ord' instances are -- defined as follows: -- -- @ -- 'mempty' /= 'literal' "" -- 'mempty' < 'literal' "" -- @ newtype Doc s = Doc (List s) deriving (Monoid, Semigroup) instance (Monoid s, Show s) => Show (Doc s) where show = show . render instance (Monoid s, Eq s) => Eq (Doc s) where x == y | isEmpty x = isEmpty y | isEmpty y = False | otherwise = render x == render y -- | The empty document is smallest. instance (Monoid s, Ord s) => Ord (Doc s) where compare x y | isEmpty x = if isEmpty y then EQ else LT | isEmpty y = GT | otherwise = compare (render x) (render y) instance IsString s => IsString (Doc s) where fromString = literal . fromString -- | Check if a document is empty. The result is the same as when comparing the -- given document to 'mempty', but this function does not require the 'Eq' @s@ -- constraint. Note that the document comprising a single empty string is -- considered to be different from the empty document. -- -- @ -- isEmpty 'mempty' == True -- isEmpty ('literal' \"\") == False -- isEmpty x == (x == 'mempty') -- @ isEmpty :: Doc s -> Bool isEmpty (Doc xs) = null xs -- | Construct a document comprising a single symbol or string. If @s@ is an -- instance of class 'IsString', then documents of type 'Doc' @s@ can be -- constructed directly from string literals (see the second example below). -- -- @ -- literal "Hello, " 'Data.Monoid.<>' literal "World!" == literal "Hello, World!" -- literal "I am just a string literal" == "I am just a string literal" -- 'render' . literal == 'id' -- @ literal :: s -> Doc s literal = Doc . pure -- | Render the document as a single string. An inverse of the function 'literal'. -- -- @ -- render ('literal' "al" 'Data.Monoid.<>' 'literal' "ga") :: ('IsString' s, 'Monoid' s) => s -- render ('literal' "al" 'Data.Monoid.<>' 'literal' "ga") == "alga" -- render 'mempty' == 'mempty' -- render . 'literal' == 'id' -- @ render :: Monoid s => Doc s -> s render (Doc x) = fold x -- | Concatenate two documents, separated by a single space, unless one of the -- documents is empty. The operator \<+\> is associative with identity 'mempty'. -- -- @ -- x \<+\> 'mempty' == x -- 'mempty' \<+\> x == x -- x \<+\> (y \<+\> z) == (x \<+\> y) \<+\> z -- "name" \<+\> "surname" == "name surname" -- @ (<+>) :: IsString s => Doc s -> Doc s -> Doc s x <+> y | isEmpty x = y | isEmpty y = x | otherwise = x <> " " <> y infixl 7 <+> -- | Wrap a document in square brackets. -- -- @ -- brackets "i" == "[i]" -- brackets 'mempty' == "[]" -- @ brackets :: IsString s => Doc s -> Doc s brackets x = "[" <> x <> "]" -- | Wrap a document into double quotes. -- -- @ -- doubleQuotes "\/path\/with spaces" == "\\"\/path\/with spaces\\"" -- doubleQuotes (doubleQuotes 'mempty') == "\\"\\"\\"\\"" -- @ doubleQuotes :: IsString s => Doc s -> Doc s doubleQuotes x = "\"" <> x <> "\"" -- | Prepend a given number of spaces to a document. -- -- @ -- indent 0 == 'id' -- indent 1 'mempty' == " " -- @ indent :: IsString s => Int -> Doc s -> Doc s indent spaces x = fromString (replicate spaces ' ') <> x -- | Concatenate documents after appending a terminating newline symbol to each. -- -- @ -- unlines [] == 'mempty' -- unlines ['mempty'] == "\\n" -- unlines ["title", "subtitle"] == "title\\nsubtitle\\n" -- @ unlines :: IsString s => [Doc s] -> Doc s unlines [] = mempty unlines (x:xs) = x <> "\n" <> unlines xs -- TODO: Avoid round-trip graph conversion if g :: AdjacencyMap a. -- | Export a graph into a document given two functions that construct documents -- for individual vertices and edges. The order of export is: vertices, sorted -- by 'Ord' @a@, and then edges, sorted by 'Ord' @(a, a)@. -- -- For example: -- -- @ -- vDoc x = 'literal' ('show' x) <> "\\n" -- eDoc x y = 'literal' ('show' x) <> " -> " <> 'literal' ('show' y) <> "\\n" -- > putStrLn $ 'render' $ export vDoc eDoc (1 + 2 * (3 + 4) :: 'Algebra.Graph.Graph' Int) -- -- 1 -- 2 -- 3 -- 4 -- 2 -> 3 -- 2 -> 4 -- @ export :: (Ord a, ToGraph g, ToVertex g ~ a) => (a -> Doc s) -> (a -> a -> Doc s) -> g -> Doc s export v e g = vDoc <> eDoc where vDoc = mconcat $ map v (vertexList adjMap) eDoc = mconcat $ map (uncurry e) (edgeList adjMap) adjMap = toAdjacencyMap g