{-# LANGUAGE TypeFamilies, FlexibleInstances #-}
module Simulation.Aivika.Branch.Generator () where
import Control.Monad
import Control.Monad.Trans
import qualified System.Random.MWC as MWC
import System.Random
import Data.IORef
import Simulation.Aivika.Trans
import Simulation.Aivika.Trans.Generator.Primitive
import Simulation.Aivika.Branch.Internal.BR
instance MonadGenerator (BR IO) where
data Generator (BR IO) =
Generator { Generator (BR IO) -> BR IO Double
generator01 :: BR IO Double,
Generator (BR IO) -> BR IO Double
generatorNormal01 :: BR IO Double,
Generator (BR IO) -> BR IO Int
generatorSequenceNo :: BR IO Int
}
generateUniform :: Generator (BR IO) -> Double -> Double -> BR IO Double
generateUniform = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateUniform01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateUniformInt :: Generator (BR IO) -> Int -> Int -> BR IO Int
generateUniformInt = forall (m :: * -> *). Monad m => m Double -> Int -> Int -> m Int
generateUniformInt01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateTriangular :: Generator (BR IO) -> Double -> Double -> Double -> BR IO Double
generateTriangular = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> Double -> m Double
generateTriangular01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateNormal :: Generator (BR IO) -> Double -> Double -> BR IO Double
generateNormal = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateNormal01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generatorNormal01
generateLogNormal :: Generator (BR IO) -> Double -> Double -> BR IO Double
generateLogNormal = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateLogNormal01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generatorNormal01
generateExponential :: Generator (BR IO) -> Double -> BR IO Double
generateExponential = forall (m :: * -> *). Monad m => m Double -> Double -> m Double
generateExponential01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateErlang :: Generator (BR IO) -> Double -> Int -> BR IO Double
generateErlang = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Int -> m Double
generateErlang01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generatePoisson :: Generator (BR IO) -> Double -> BR IO Int
generatePoisson = forall (m :: * -> *). Monad m => m Double -> Double -> m Int
generatePoisson01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateBinomial :: Generator (BR IO) -> Double -> Int -> BR IO Int
generateBinomial = forall (m :: * -> *). Monad m => m Double -> Double -> Int -> m Int
generateBinomial01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateGamma :: Generator (BR IO) -> Double -> Double -> BR IO Double
generateGamma Generator (BR IO)
g = forall (m :: * -> *).
Monad m =>
m Double -> m Double -> Double -> Double -> m Double
generateGamma01 (Generator (BR IO) -> BR IO Double
generatorNormal01 Generator (BR IO)
g) (Generator (BR IO) -> BR IO Double
generator01 Generator (BR IO)
g)
generateBeta :: Generator (BR IO) -> Double -> Double -> BR IO Double
generateBeta Generator (BR IO)
g = forall (m :: * -> *).
Monad m =>
m Double -> m Double -> Double -> Double -> m Double
generateBeta01 (Generator (BR IO) -> BR IO Double
generatorNormal01 Generator (BR IO)
g) (Generator (BR IO) -> BR IO Double
generator01 Generator (BR IO)
g)
generateWeibull :: Generator (BR IO) -> Double -> Double -> BR IO Double
generateWeibull = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateWeibull01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateDiscrete :: forall a. Generator (BR IO) -> DiscretePDF a -> BR IO a
generateDiscrete = forall (m :: * -> *) a. Monad m => m Double -> DiscretePDF a -> m a
generateDiscrete01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator (BR IO) -> BR IO Double
generator01
generateSequenceNo :: Generator (BR IO) -> BR IO Int
generateSequenceNo = Generator (BR IO) -> BR IO Int
generatorSequenceNo
newGenerator :: GeneratorType (BR IO) -> BR IO (Generator (BR IO))
newGenerator GeneratorType (BR IO)
tp =
case GeneratorType (BR IO)
tp of
GeneratorType (BR IO)
SimpleGenerator ->
do let g :: IO (IO Double)
g = forall a (m :: * -> *).
(Variate a, PrimMonad m) =>
Gen (PrimState m) -> m a
MWC.uniform forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
IO GenIO
MWC.createSystemRandom
IO Double
g' <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO IO (IO Double)
g
forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01 (forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO IO Double
g')
SimpleGeneratorWithSeed Word32
x ->
forall a. HasCallStack => [Char] -> a
error [Char]
"Unsupported generator type SimpleGeneratorWithSeed: newGenerator"
CustomGenerator BR IO (Generator (BR IO))
g ->
BR IO (Generator (BR IO))
g
CustomGenerator01 BR IO Double
g ->
forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01 BR IO Double
g
newRandomGenerator :: forall g. RandomGen g => g -> BR IO (Generator (BR IO))
newRandomGenerator g
g =
do IORef g
r <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef g
g
let g01 :: BR IO Double
g01 = do g
g <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef g
r
let (Double
x, g
g') = forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef g
r g
g'
forall (m :: * -> *) a. Monad m => a -> m a
return Double
x
forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01 BR IO Double
g01
newRandomGenerator01 :: BR IO Double -> BR IO (Generator (BR IO))
newRandomGenerator01 BR IO Double
g01 =
do BR IO Double
gNormal01 <- BR IO Double -> BR IO (BR IO Double)
newNormalGenerator01 BR IO Double
g01
IORef Int
gSeqNoRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Int
0
let gSeqNo :: BR IO Int
gSeqNo =
do Int
x <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Int
gSeqNoRef
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> (a -> a) -> IO ()
modifyIORef' IORef Int
gSeqNoRef (forall a. Num a => a -> a -> a
+Int
1)
forall (m :: * -> *) a. Monad m => a -> m a
return Int
x
forall (m :: * -> *) a. Monad m => a -> m a
return Generator { generator01 :: BR IO Double
generator01 = BR IO Double
g01,
generatorNormal01 :: BR IO Double
generatorNormal01 = BR IO Double
gNormal01,
generatorSequenceNo :: BR IO Int
generatorSequenceNo = BR IO Int
gSeqNo }
newNormalGenerator01 :: BR IO Double
-> BR IO (BR IO Double)
newNormalGenerator01 :: BR IO Double -> BR IO (BR IO Double)
newNormalGenerator01 BR IO Double
g =
do IORef Double
nextRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
IORef Bool
flagRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Bool
False
IORef Double
xi1Ref <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
IORef Double
xi2Ref <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
IORef Double
psiRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
let loop :: BR IO ()
loop =
do Double
psi <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
psiRef
if (Double
psi forall a. Ord a => a -> a -> Bool
>= Double
1.0) Bool -> Bool -> Bool
|| (Double
psi forall a. Eq a => a -> a -> Bool
== Double
0.0)
then do Double
g1 <- BR IO Double
g
Double
g2 <- BR IO Double
g
let xi1 :: Double
xi1 = Double
2.0 forall a. Num a => a -> a -> a
* Double
g1 forall a. Num a => a -> a -> a
- Double
1.0
xi2 :: Double
xi2 = Double
2.0 forall a. Num a => a -> a -> a
* Double
g2 forall a. Num a => a -> a -> a
- Double
1.0
psi :: Double
psi = Double
xi1 forall a. Num a => a -> a -> a
* Double
xi1 forall a. Num a => a -> a -> a
+ Double
xi2 forall a. Num a => a -> a -> a
* Double
xi2
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi1Ref Double
xi1
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi2Ref Double
xi2
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
psiRef Double
psi
BR IO ()
loop
else forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
psiRef forall a b. (a -> b) -> a -> b
$ forall a. Floating a => a -> a
sqrt (- Double
2.0 forall a. Num a => a -> a -> a
* forall a. Floating a => a -> a
log Double
psi forall a. Fractional a => a -> a -> a
/ Double
psi)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$
do Bool
flag <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Bool
flagRef
if Bool
flag
then do forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Bool
flagRef Bool
False
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
nextRef
else do forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi1Ref Double
0.0
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi2Ref Double
0.0
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
psiRef Double
0.0
BR IO ()
loop
Double
xi1 <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
xi1Ref
Double
xi2 <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
xi2Ref
Double
psi <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
psiRef
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Bool
flagRef Bool
True
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
nextRef forall a b. (a -> b) -> a -> b
$ Double
xi2 forall a. Num a => a -> a -> a
* Double
psi
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Double
xi1 forall a. Num a => a -> a -> a
* Double
psi