Copyright | Copyright (c) 2009-2015, David Sorokin <david.sorokin@gmail.com> |
---|---|
License | BSD3 |
Maintainer | David Sorokin <david.sorokin@gmail.com> |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
Tested with: GHC 7.10.1
The infinite stream of data in time.
- newtype Stream a = Cons {}
- emptyStream :: Stream a
- mergeStreams :: Stream a -> Stream a -> Stream a
- mergeQueuedStreams :: EnqueueStrategy s => s -> Stream a -> Stream a -> Stream a
- mergePriorityStreams :: PriorityQueueStrategy s p => s -> Stream (p, a) -> Stream (p, a) -> Stream a
- concatStreams :: [Stream a] -> Stream a
- concatQueuedStreams :: EnqueueStrategy s => s -> [Stream a] -> Stream a
- concatPriorityStreams :: PriorityQueueStrategy s p => s -> [Stream (p, a)] -> Stream a
- splitStream :: Int -> Stream a -> Simulation [Stream a]
- splitStreamQueueing :: EnqueueStrategy s => s -> Int -> Stream a -> Simulation [Stream a]
- splitStreamPrioritising :: PriorityQueueStrategy s p => s -> [Stream p] -> Stream a -> Simulation [Stream a]
- splitStreamFiltering :: [a -> Event Bool] -> Stream a -> Simulation [Stream a]
- splitStreamFilteringQueueing :: EnqueueStrategy s => s -> [a -> Event Bool] -> Stream a -> Simulation [Stream a]
- streamUsingId :: ProcessId -> Stream a -> Stream a
- prefetchStream :: Stream a -> Stream a
- delayStream :: a -> Stream a -> Stream a
- arrivalStream :: Stream a -> Stream (Arrival a)
- memoStream :: Stream a -> Simulation (Stream a)
- zipStreamSeq :: Stream a -> Stream b -> Stream (a, b)
- zipStreamParallel :: Stream a -> Stream b -> Stream (a, b)
- zip3StreamSeq :: Stream a -> Stream b -> Stream c -> Stream (a, b, c)
- zip3StreamParallel :: Stream a -> Stream b -> Stream c -> Stream (a, b, c)
- unzipStream :: Stream (a, b) -> Simulation (Stream a, Stream b)
- streamSeq :: [Stream a] -> Stream [a]
- streamParallel :: [Stream a] -> Stream [a]
- consumeStream :: (a -> Process ()) -> Stream a -> Process ()
- sinkStream :: Stream a -> Process ()
- repeatProcess :: Process a -> Stream a
- mapStream :: (a -> b) -> Stream a -> Stream b
- mapStreamM :: (a -> Process b) -> Stream a -> Stream b
- accumStream :: (acc -> a -> Process (acc, b)) -> acc -> Stream a -> Stream b
- apStream :: Stream (a -> b) -> Stream a -> Stream b
- apStreamM :: Stream (a -> Process b) -> Stream a -> Stream b
- filterStream :: (a -> Bool) -> Stream a -> Stream a
- filterStreamM :: (a -> Process Bool) -> Stream a -> Stream a
- takeStream :: Int -> Stream a -> Stream a
- takeStreamWhile :: (a -> Bool) -> Stream a -> Stream a
- takeStreamWhileM :: (a -> Process Bool) -> Stream a -> Stream a
- dropStream :: Int -> Stream a -> Stream a
- dropStreamWhile :: (a -> Bool) -> Stream a -> Stream a
- dropStreamWhileM :: (a -> Process Bool) -> Stream a -> Stream a
- singletonStream :: a -> Stream a
- joinStream :: Process (Stream a) -> Stream a
- failoverStream :: [Stream a] -> Stream a
- signalStream :: Signal a -> Process (Stream a)
- streamSignal :: Stream a -> Process (Signal a)
- leftStream :: Stream (Either a b) -> Stream a
- rightStream :: Stream (Either a b) -> Stream b
- replaceLeftStream :: Stream (Either a b) -> Stream c -> Stream (Either c b)
- replaceRightStream :: Stream (Either a b) -> Stream c -> Stream (Either a c)
- partitionEitherStream :: Stream (Either a b) -> Simulation (Stream a, Stream b)
- cloneStream :: Int -> Stream a -> Simulation [Stream a]
- firstArrivalStream :: Int -> Stream a -> Stream a
- lastArrivalStream :: Int -> Stream a -> Stream a
- assembleAccumStream :: (acc -> a -> Process (acc, Maybe b)) -> acc -> Stream a -> Stream b
- traceStream :: Maybe String -> Maybe String -> Stream a -> Stream a
Stream Type
Represents an infinite stream of data in time, some kind of the cons cell.
Merging and Splitting Stream
emptyStream :: Stream a Source
An empty stream that never returns data.
mergeStreams :: Stream a -> Stream a -> Stream a Source
Merge two streams applying the FCFS
strategy for enqueuing the input data.
:: EnqueueStrategy s | |
=> s | the strategy applied for enqueuing the input data |
-> Stream a | the fist input stream |
-> Stream a | the second input stream |
-> Stream a | the output combined stream |
Merge two streams.
If you don't know what the strategy to apply, then you probably
need the FCFS
strategy, or function mergeStreams
that
does namely this.
:: PriorityQueueStrategy s p | |
=> s | the strategy applied for enqueuing the input data |
-> Stream (p, a) | the fist input stream |
-> Stream (p, a) | the second input stream |
-> Stream a | the output combined stream |
Merge two priority streams.
concatStreams :: [Stream a] -> Stream a Source
Concatenate the input streams applying the FCFS
strategy and
producing one output stream.
:: EnqueueStrategy s | |
=> s | the strategy applied for enqueuing the input data |
-> [Stream a] | the input stream |
-> Stream a | the combined output stream |
Concatenate the input streams producing one output stream.
If you don't know what the strategy to apply, then you probably
need the FCFS
strategy, or function concatStreams
that
does namely this.
:: PriorityQueueStrategy s p | |
=> s | the strategy applied for enqueuing the input data |
-> [Stream (p, a)] | the input stream |
-> Stream a | the combined output stream |
Concatenate the input priority streams producing one output stream.
splitStream :: Int -> Stream a -> Simulation [Stream a] Source
Split the input stream into the specified number of output streams
after applying the FCFS
strategy for enqueuing the output requests.
:: EnqueueStrategy s | |
=> s | the strategy applied for enqueuing the output requests |
-> Int | the number of output streams |
-> Stream a | the input stream |
-> Simulation [Stream a] | the splitted output streams |
Split the input stream into the specified number of output streams.
If you don't know what the strategy to apply, then you probably
need the FCFS
strategy, or function splitStream
that
does namely this.
splitStreamPrioritising Source
:: PriorityQueueStrategy s p | |
=> s | the strategy applied for enqueuing the output requests |
-> [Stream p] | the streams of priorities |
-> Stream a | the input stream |
-> Simulation [Stream a] | the splitted output streams |
Split the input stream into a list of output streams using the specified priorities.
splitStreamFiltering :: [a -> Event Bool] -> Stream a -> Simulation [Stream a] Source
Split the input stream into the specified number of output streams
after filtering and applying the FCFS
strategy for enqueuing the output requests.
splitStreamFilteringQueueing Source
:: EnqueueStrategy s | |
=> s | the strategy applied for enqueuing the output requests |
-> [a -> Event Bool] | the filters for output streams |
-> Stream a | the input stream |
-> Simulation [Stream a] | the splitted output streams |
Split the input stream into the specified number of output streams after filtering.
If you don't know what the strategy to apply, then you probably
need the FCFS
strategy, or function splitStreamFiltering
that
does namely this.
Specifying Identifier
streamUsingId :: ProcessId -> Stream a -> Stream a Source
Create a stream that will use the specified process identifier.
It can be useful to refer to the underlying Process
computation which
can be passivated, interrupted, canceled and so on. See also the
processUsingId
function for more details.
Prefetching and Delaying Stream
prefetchStream :: Stream a -> Stream a Source
Prefetch the input stream requesting for one more data item in advance while the last received item is not yet fully processed in the chain of streams, usually by the processors.
You can think of this as the prefetched stream could place its latest data item in some temporary space for later use, which is very useful for modeling a sequence of separate and independent work places.
delayStream :: a -> Stream a -> Stream a Source
Delay the stream by one step using the specified initial value.
Stream Arriving
arrivalStream :: Stream a -> Stream (Arrival a) Source
Transform a stream so that the resulting stream returns a sequence of arrivals saving the information about the time points at which the original stream items were received by demand.
Memoizing, Zipping and Uzipping Stream
memoStream :: Stream a -> Simulation (Stream a) Source
Memoize the stream so that it would always return the same data within the simulation run.
zipStreamSeq :: Stream a -> Stream b -> Stream (a, b) Source
Zip two streams trying to get data sequentially.
zipStreamParallel :: Stream a -> Stream b -> Stream (a, b) Source
Zip two streams trying to get data as soon as possible, launching the sub-processes in parallel.
zip3StreamSeq :: Stream a -> Stream b -> Stream c -> Stream (a, b, c) Source
Zip three streams trying to get data sequentially.
zip3StreamParallel :: Stream a -> Stream b -> Stream c -> Stream (a, b, c) Source
Zip three streams trying to get data as soon as possible, launching the sub-processes in parallel.
unzipStream :: Stream (a, b) -> Simulation (Stream a, Stream b) Source
Unzip the stream.
streamSeq :: [Stream a] -> Stream [a] Source
To form each new portion of data for the output stream, read data sequentially from the input streams.
This is a generalization of zipStreamSeq
.
streamParallel :: [Stream a] -> Stream [a] Source
To form each new portion of data for the output stream, read data from the input streams in parallel.
This is a generalization of zipStreamParallel
.
Consuming and Sinking Stream
consumeStream :: (a -> Process ()) -> Stream a -> Process () Source
Consume the stream. It returns a process that infinitely reads data from the stream and then redirects them to the provided function. It is useful for modeling the process of enqueueing data in the queue from the input stream.
sinkStream :: Stream a -> Process () Source
Sink the stream. It returns a process that infinitely reads data from the stream. The resulting computation can be a moving force to simulate the whole system of the interconnected streams and processors.
Useful Combinators
repeatProcess :: Process a -> Stream a Source
Return a stream of values generated by the specified process.
mapStream :: (a -> b) -> Stream a -> Stream b Source
Map the stream according the specified function.
mapStreamM :: (a -> Process b) -> Stream a -> Stream b Source
Compose the stream.
accumStream :: (acc -> a -> Process (acc, b)) -> acc -> Stream a -> Stream b Source
Accumulator that outputs a value determined by the supplied function.
filterStream :: (a -> Bool) -> Stream a -> Stream a Source
Filter only those data values that satisfy to the specified predicate.
filterStreamM :: (a -> Process Bool) -> Stream a -> Stream a Source
Filter only those data values that satisfy to the specified predicate.
takeStream :: Int -> Stream a -> Stream a Source
Return the prefix of the stream of the specified length.
takeStreamWhile :: (a -> Bool) -> Stream a -> Stream a Source
Return the longest prefix of the stream of elements that satisfy the predicate.
takeStreamWhileM :: (a -> Process Bool) -> Stream a -> Stream a Source
Return the longest prefix of the stream of elements that satisfy the computation.
dropStream :: Int -> Stream a -> Stream a Source
Return the suffix of the stream after the specified first elements.
dropStreamWhile :: (a -> Bool) -> Stream a -> Stream a Source
Return the suffix of the stream of elements remaining after takeStreamWhile
.
dropStreamWhileM :: (a -> Process Bool) -> Stream a -> Stream a Source
Return the suffix of the stream of elements remaining after takeStreamWhileM
.
singletonStream :: a -> Stream a Source
Return a stream consisting of exactly one element and inifinite tail.
joinStream :: Process (Stream a) -> Stream a Source
Removes one level of the computation, projecting its bound stream into the outer level.
Failover
failoverStream :: [Stream a] -> Stream a Source
Takes the next stream from the list after the current stream fails because of cancelling the underlying process.
Integrating with Signals
signalStream :: Signal a -> Process (Stream a) Source
Return a stream of values triggered by the specified signal.
Since the time at which the values of the stream are requested for may differ from
the time at which the signal is triggered, it can be useful to apply the arrivalSignal
function to add the information about the time points at which the signal was
actually received.
The point is that the Stream
is requested outside, while the Signal
is triggered
inside. They are different by nature. The former is passive, while the latter is active.
The resulting stream may be a root of space leak as it uses an internal queue to store the values received from the signal. The oldest value is dequeued each time we request the stream and it is returned within the computation.
Cancel the stream's process to unsubscribe from the specified signal.
streamSignal :: Stream a -> Process (Signal a) Source
Return a computation of the signal that triggers values from the specified stream,
each time the next value of the stream is received within the underlying Process
computation.
Cancel the returned process to stop reading from the specified stream.
Utilities
replaceLeftStream :: Stream (Either a b) -> Stream c -> Stream (Either c b) Source
Replace the Left
values.
replaceRightStream :: Stream (Either a b) -> Stream c -> Stream (Either a c) Source
Replace the Right
values.
partitionEitherStream :: Stream (Either a b) -> Simulation (Stream a, Stream b) Source
Partition the stream of Either
values into two streams.
Assemblying Streams
cloneStream :: Int -> Stream a -> Simulation [Stream a] Source
Create the specified number of equivalent clones of the input stream.
firstArrivalStream :: Int -> Stream a -> Stream a Source
Return a stream of first arrivals after assembling the specified number of elements.
lastArrivalStream :: Int -> Stream a -> Stream a Source
Return a stream of last arrivals after assembling the specified number of elements.
assembleAccumStream :: (acc -> a -> Process (acc, Maybe b)) -> acc -> Stream a -> Stream b Source
Assemble an accumulated stream using the supplied function.