aeson-0.9.0.1: Fast JSON parsing and encoding

Copyright(c) 2011, 2012 Bryan O'Sullivan (c) 2011 MailRank, Inc.
LicenseApache
MaintainerBryan O'Sullivan <bos@serpentine.com>
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell98

Data.Aeson

Contents

Description

Types and functions for working efficiently with JSON data.

(A note on naming: in Greek mythology, Aeson was the father of Jason.)

Synopsis

How to use this library

This section contains basic information on the different ways to decode data using this library. These range from simple but inflexible, to complex but flexible.

The most common way to use the library is to define a data type, corresponding to some JSON data you want to work with, and then write either a FromJSON instance, a to ToJSON instance, or both for that type. For example, given this JSON data:

{ "name": "Joe", "age": 12 }

we create a matching data type:

data Person = Person
    { name :: Text
    , age  :: Int
    } deriving Show

To decode data, we need to define a FromJSON instance:

{-# LANGUAGE OverloadedStrings #-}

instance FromJSON Person where
    parseJSON (Object v) = Person <$>
                           v .: "name" <*>
                           v .: "age"
    -- A non-Object value is of the wrong type, so fail.
    parseJSON _          = mzero

We can now parse the JSON data like so:

>>> decode "{\"name\":\"Joe\",\"age\":12}" :: Maybe Person
Just (Person {name = "Joe", age = 12})

To encode data, we need to define a ToJSON instance:

instance ToJSON Person where
    toJSON (Person name age) = object ["name" .= name, "age" .= age]

We can now encode a value like so:

>>> encode (Person {name = "Joe", age = 12})
"{\"name\":\"Joe\",\"age\":12}"

There are predefined FromJSON and ToJSON instances for many types. Here's an example using lists and Ints:

>>> decode "[1,2,3]" :: Maybe [Int]
Just [1,2,3]

And here's an example using the Map type to get a map of Ints.

>>> decode "{\"foo\":1,\"bar\":2}" :: Maybe (Map String Int)
Just (fromList [("bar",2),("foo",1)])

Working with the AST

Sometimes you want to work with JSON data directly, without first converting it to a custom data type. This can be useful if you want to e.g. convert JSON data to YAML data, without knowing what the contents of the original JSON data was. The Value type, which is an instance of FromJSON, is used to represent an arbitrary JSON AST (abstract syntax tree). Example usage:

>>> decode "{\"foo\": 123}" :: Maybe Value
Just (Object (fromList [("foo",Number 123)]))
>>> decode "{\"foo\": [\"abc\",\"def\"]}" :: Maybe Value
Just (Object (fromList [("foo",Array (fromList [String "abc",String "def"]))]))

Once you have a Value you can write functions to traverse it and make arbitrary transformations.

Decoding to a Haskell value

Any instance of FromJSON can be specified (but see the "Pitfalls" section here—Data.Aeson):

λ> decode "[1,2,3]" :: Maybe [Int]
Just [1,2,3]

Alternatively, there are instances for standard data types, so you can use them directly. For example, use the Map type to get a map of Ints.

λ> :m + Data.Map
λ> decode "{\"foo\":1,\"bar\":2}" :: Maybe (Map String Int)
Just (fromList [("bar",2),("foo",1)])

Decoding a mixed-type object

The above approach with maps of course will not work for mixed-type objects that don't follow a strict schema, but there are a couple of approaches available for these.

The Object type contains JSON objects:

λ> decode "{\"name\":\"Dave\",\"age\":2}" :: Maybe Object
Just (fromList) [("name",String "Dave"),("age",Number 2)]

You can extract values from it with a parser using parse, parseEither or, in this example, parseMaybe:

λ> do result <- decode "{\"name\":\"Dave\",\"age\":2}"
      flip parseMaybe result $ \obj -> do
        age <- obj .: "age"
        name <- obj .: "name"
        return (name ++ ": " ++ show (age*2))

Just "Dave: 4"

Considering that any type that implements FromJSON can be used here, this is quite a powerful way to parse JSON. See the documentation in FromJSON for how to implement this class for your own data types.

The downside is that you have to write the parser yourself; the upside is that you have complete control over the way the JSON is parsed.

Automatically decoding data types

If you don't want fine control and would prefer the JSON be parsed to your own data types automatically according to some reasonably sensible isomorphic implementation, you can use the generic parser based on Typeable and Data. Switch to the Generic module, and you can do the following:

λ> decode "[1]" :: Maybe [Int]
Just [1]
λ> :m + Data.Typeable Data.Data
λ> :set -XDeriveDataTypeable
λ> data Person = Person { personName :: String, personAge :: Int } deriving (Data,Typeable,Show)
λ> encode Person { personName = "Chris", personAge = 123 }
"{\"personAge\":123,\"personName\":\"Chris\"}"
λ> decode "{\"personAge\":123,\"personName\":\"Chris\"}" :: Maybe Person
Just (Person {
personName = "Chris", personAge = 123
})

Be aware that the encoding may not always be what you'd naively expect:

λ> data Foo = Foo Int Int deriving (Data,Typeable,Show)
λ> encode (Foo 1 2)
"[1,2]"

With this approach, it's best to treat the decode and encode functions as an isomorphism, and not to rely upon (or care about) the specific intermediate representation.

Pitfalls

Note that the JSON standard requires that the top-level value be either an array or an object. If you try to use decode with a result type that is not represented in JSON as an array or object, your code will typecheck, but it will always "fail" at runtime:

>>> decode "1" :: Maybe Int
Nothing
>>> decode "1" :: Maybe String
Nothing

So stick to objects (e.g. maps in Haskell) or arrays (lists or vectors in Haskell):

>>> decode "[1,2,3]" :: Maybe [Int]
Just [1,2,3]

When encoding to JSON you can encode anything that's an instance of ToJSON, and this may include simple types. So beware that this aspect of the API is not isomorphic. You can round-trip arrays and maps, but not simple values:

>>> encode [1,2,3]
"[1,2,3]"
>>> decode (encode [1]) :: Maybe [Int]
Just [1]
>>> encode 1
"1"
>>> decode (encode (1 :: Int)) :: Maybe Int
Nothing

Alternatively, see value to parse non-top-level JSON values.

Encoding and decoding

Encoding and decoding are each two-step processes.

  • To encode a value, it is first converted to an abstract syntax tree (AST), using ToJSON. This generic representation is then encoded as bytes.
  • When decoding a value, the process is reversed: the bytes are converted to an AST, then the FromJSON class is used to convert to the desired type.

For convenience, the encode and decode functions combine both steps.

decode :: FromJSON a => ByteString -> Maybe a Source

Efficiently deserialize a JSON value from a lazy ByteString. If this fails due to incomplete or invalid input, Nothing is returned.

The input must consist solely of a JSON document, with no trailing data except for whitespace.

This function parses immediately, but defers conversion. See json for details.

decode' :: FromJSON a => ByteString -> Maybe a Source

Efficiently deserialize a JSON value from a lazy ByteString. If this fails due to incomplete or invalid input, Nothing is returned.

The input must consist solely of a JSON document, with no trailing data except for whitespace. This restriction is necessary to ensure that if data is being lazily read from a file handle, the file handle will be closed in a timely fashion once the document has been parsed.

This function parses and performs conversion immediately. See json' for details.

eitherDecode :: FromJSON a => ByteString -> Either String a Source

Like decode but returns an error message when decoding fails.

eitherDecode' :: FromJSON a => ByteString -> Either String a Source

Like decode' but returns an error message when decoding fails.

encode :: ToJSON a => a -> ByteString Source

Efficiently serialize a JSON value as a lazy ByteString.

Variants for strict bytestrings

decodeStrict :: FromJSON a => ByteString -> Maybe a Source

Efficiently deserialize a JSON value from a strict ByteString. If this fails due to incomplete or invalid input, Nothing is returned.

The input must consist solely of a JSON document, with no trailing data except for whitespace.

This function parses immediately, but defers conversion. See json for details.

decodeStrict' :: FromJSON a => ByteString -> Maybe a Source

Efficiently deserialize a JSON value from a lazy ByteString. If this fails due to incomplete or invalid input, Nothing is returned.

The input must consist solely of a JSON document, with no trailing data except for whitespace.

This function parses and performs conversion immediately. See json' for details.

eitherDecodeStrict :: FromJSON a => ByteString -> Either String a Source

Like decodeStrict but returns an error message when decoding fails.

eitherDecodeStrict' :: FromJSON a => ByteString -> Either String a Source

Like decodeStrict' but returns an error message when decoding fails.

Core JSON types

data Value Source

A JSON value represented as a Haskell value.

type Array = Vector Value Source

A JSON "array" (sequence).

type Object = HashMap Text Value Source

A JSON "object" (key/value map).

Convenience types

newtype DotNetTime Source

A newtype wrapper for UTCTime that uses the same non-standard serialization format as Microsoft .NET, whose System.DateTime type is by default serialized to JSON as in the following example:

/Date(1302547608878)/

The number represents milliseconds since the Unix epoch.

Constructors

DotNetTime 

Type conversion

class FromJSON a where Source

A type that can be converted from JSON, with the possibility of failure.

When writing an instance, use empty, mzero, or fail to make a conversion fail, e.g. if an Object is missing a required key, or the value is of the wrong type.

An example type and instance:

{-# LANGUAGE OverloadedStrings #-}

data Coord = Coord { x :: Double, y :: Double }

instance FromJSON Coord where
  parseJSON (Object v) = Coord    <$>
                         v .: "x" <*>
                         v .: "y"

  -- A non-Object value is of the wrong type, so use mzero to fail.
  parseJSON _          = mzero

Note the use of the OverloadedStrings language extension which enables Text values to be written as string literals.

Instead of manually writing your FromJSON instance, there are three options to do it automatically:

  • Data.Aeson.TH provides template-haskell functions which will derive an instance at compile-time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
  • Data.Aeson.Generic provides a generic fromJSON function that parses to any type which is an instance of Data.
  • If your compiler has support for the DeriveGeneric and DefaultSignatures language extensions, parseJSON will have a default generic implementation.

To use this, simply add a deriving Generic clause to your datatype and declare a FromJSON instance for your datatype without giving a definition for parseJSON.

For example the previous example can be simplified to just:

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data Coord = Coord { x :: Double, y :: Double } deriving Generic

instance FromJSON Coord

Note that, instead of using DefaultSignatures, it's also possible to parameterize the generic decoding using genericParseJSON applied to your encoding/decoding Options:

instance FromJSON Coord where
    parseJSON = genericParseJSON defaultOptions

Minimal complete definition

Nothing

Methods

parseJSON :: Value -> Parser a Source

Instances

FromJSON Bool 
FromJSON Char 
FromJSON Double 
FromJSON Float 
FromJSON Int 
FromJSON Int8 
FromJSON Int16 
FromJSON Int32 
FromJSON Int64 
FromJSON Integer

WARNING: Only parse Integers from trusted input since an attacker could easily fill up the memory of the target system by specifying a scientific number with a big exponent like 1e1000000000.

FromJSON Word 
FromJSON Word8 
FromJSON Word16 
FromJSON Word32 
FromJSON Word64 
FromJSON () 
FromJSON Text 
FromJSON Text 
FromJSON Number 
FromJSON IntSet 
FromJSON Scientific 
FromJSON ZonedTime 
FromJSON UTCTime 
FromJSON DotNetTime 
FromJSON Value 
FromJSON [Char] 
FromJSON a => FromJSON [a] 
FromJSON (Ratio Integer) 
FromJSON a => FromJSON (Maybe a) 
HasResolution a => FromJSON (Fixed a)

WARNING: Only parse fixed-precision numbers from trusted input since an attacker could easily fill up the memory of the target system by specifying a scientific number with a big exponent like 1e1000000000.

FromJSON a => FromJSON (Dual a) 
FromJSON a => FromJSON (First a) 
FromJSON a => FromJSON (Last a) 
FromJSON a => FromJSON (IntMap a) 
(Ord a, FromJSON a) => FromJSON (Set a) 
FromJSON v => FromJSON (Tree v) 
FromJSON a => FromJSON (Seq a) 
FromJSON a => FromJSON (Identity a) 
(Eq a, Hashable a, FromJSON a) => FromJSON (HashSet a) 
FromJSON a => FromJSON (Vector a) 
(Vector Vector a, FromJSON a) => FromJSON (Vector a) 
(Storable a, FromJSON a) => FromJSON (Vector a) 
(Prim a, FromJSON a) => FromJSON (Vector a) 
(FromJSON a, FromJSON b) => FromJSON (Either a b) 
(FromJSON a, FromJSON b) => FromJSON (a, b) 
FromJSON v => FromJSON (Map String v) 
FromJSON v => FromJSON (Map Text v) 
FromJSON v => FromJSON (Map Text v) 
FromJSON v => FromJSON (HashMap String v) 
FromJSON v => FromJSON (HashMap Text v) 
FromJSON v => FromJSON (HashMap Text v) 
(FromJSON a, FromJSON b, FromJSON c) => FromJSON (a, b, c) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d) => FromJSON (a, b, c, d) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e) => FromJSON (a, b, c, d, e) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f) => FromJSON (a, b, c, d, e, f) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g) => FromJSON (a, b, c, d, e, f, g) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h) => FromJSON (a, b, c, d, e, f, g, h) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i) => FromJSON (a, b, c, d, e, f, g, h, i) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i, FromJSON j) => FromJSON (a, b, c, d, e, f, g, h, i, j) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i, FromJSON j, FromJSON k) => FromJSON (a, b, c, d, e, f, g, h, i, j, k) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i, FromJSON j, FromJSON k, FromJSON l) => FromJSON (a, b, c, d, e, f, g, h, i, j, k, l) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i, FromJSON j, FromJSON k, FromJSON l, FromJSON m) => FromJSON (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i, FromJSON j, FromJSON k, FromJSON l, FromJSON m, FromJSON n) => FromJSON (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d, FromJSON e, FromJSON f, FromJSON g, FromJSON h, FromJSON i, FromJSON j, FromJSON k, FromJSON l, FromJSON m, FromJSON n, FromJSON o) => FromJSON (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

data Result a Source

The result of running a Parser.

Constructors

Error String 
Success a 

fromJSON :: FromJSON a => Value -> Result a Source

Convert a value from JSON, failing if the types do not match.

class ToJSON a where Source

A type that can be converted to JSON.

An example type and instance:

@{-# LANGUAGE OverloadedStrings #-}

data Coord = Coord { x :: Double, y :: Double }

instance ToJSON Coord where toJSON (Coord x y) = object ["x" .= x, "y" .= y] @

Note the use of the OverloadedStrings language extension which enables Text values to be written as string literals.

Instead of manually writing your ToJSON instance, there are three options to do it automatically:

  • Data.Aeson.TH provides template-haskell functions which will derive an instance at compile-time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
  • Data.Aeson.Generic provides a generic toJSON function that accepts any type which is an instance of Data.
  • If your compiler has support for the DeriveGeneric and DefaultSignatures language extensions (GHC 7.2 and newer), toJSON will have a default generic implementation.

To use the latter option, simply add a deriving Generic clause to your datatype and declare a ToJSON instance for your datatype without giving a definition for toJSON.

For example the previous example can be simplified to just:

@{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data Coord = Coord { x :: Double, y :: Double } deriving Generic

instance ToJSON Coord @

Note that, instead of using DefaultSignatures, it's also possible to parameterize the generic encoding using genericToJSON applied to your encoding/decoding Options:

instance ToJSON Coord where
    toJSON = genericToJSON defaultOptions

Minimal complete definition

Nothing

Methods

toJSON :: a -> Value Source

Instances

ToJSON Bool 
ToJSON Char 
ToJSON Double 
ToJSON Float 
ToJSON Int 
ToJSON Int8 
ToJSON Int16 
ToJSON Int32 
ToJSON Int64 
ToJSON Integer 
ToJSON Word 
ToJSON Word8 
ToJSON Word16 
ToJSON Word32 
ToJSON Word64 
ToJSON () 
ToJSON Text 
ToJSON Text 
ToJSON Number 
ToJSON IntSet 
ToJSON Scientific 
ToJSON ZonedTime 
ToJSON UTCTime 
ToJSON DotNetTime 
ToJSON Value 
ToJSON [Char] 
ToJSON a => ToJSON [a] 
ToJSON (Ratio Integer) 
ToJSON a => ToJSON (Maybe a) 
HasResolution a => ToJSON (Fixed a) 
ToJSON a => ToJSON (Dual a) 
ToJSON a => ToJSON (First a) 
ToJSON a => ToJSON (Last a) 
ToJSON a => ToJSON (IntMap a) 
ToJSON a => ToJSON (Set a) 
ToJSON v => ToJSON (Tree v) 
ToJSON a => ToJSON (Seq a) 
ToJSON a => ToJSON (Identity a) 
ToJSON a => ToJSON (HashSet a) 
ToJSON a => ToJSON (Vector a) 
(Vector Vector a, ToJSON a) => ToJSON (Vector a) 
(Storable a, ToJSON a) => ToJSON (Vector a) 
(Prim a, ToJSON a) => ToJSON (Vector a) 
(ToJSON a, ToJSON b) => ToJSON (Either a b) 
(ToJSON a, ToJSON b) => ToJSON (a, b) 
ToJSON v => ToJSON (Map String v) 
ToJSON v => ToJSON (Map Text v) 
ToJSON v => ToJSON (Map Text v) 
ToJSON v => ToJSON (HashMap String v) 
ToJSON v => ToJSON (HashMap Text v) 
ToJSON v => ToJSON (HashMap Text v) 
(ToJSON a, ToJSON b, ToJSON c) => ToJSON (a, b, c) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d) => ToJSON (a, b, c, d) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e) => ToJSON (a, b, c, d, e) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f) => ToJSON (a, b, c, d, e, f) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g) => ToJSON (a, b, c, d, e, f, g) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h) => ToJSON (a, b, c, d, e, f, g, h) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i) => ToJSON (a, b, c, d, e, f, g, h, i) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i, ToJSON j) => ToJSON (a, b, c, d, e, f, g, h, i, j) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i, ToJSON j, ToJSON k) => ToJSON (a, b, c, d, e, f, g, h, i, j, k) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i, ToJSON j, ToJSON k, ToJSON l) => ToJSON (a, b, c, d, e, f, g, h, i, j, k, l) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i, ToJSON j, ToJSON k, ToJSON l, ToJSON m) => ToJSON (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i, ToJSON j, ToJSON k, ToJSON l, ToJSON m, ToJSON n) => ToJSON (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(ToJSON a, ToJSON b, ToJSON c, ToJSON d, ToJSON e, ToJSON f, ToJSON g, ToJSON h, ToJSON i, ToJSON j, ToJSON k, ToJSON l, ToJSON m, ToJSON n, ToJSON o) => ToJSON (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Generic JSON classes

class GFromJSON f where Source

Class of generic representation types (Rep) that can be converted from JSON.

Methods

gParseJSON :: Options -> Value -> Parser (f a) Source

This method (applied to defaultOptions) is used as the default generic implementation of parseJSON.

Instances

GFromJSON U1 
FromJSON a => GFromJSON (K1 i a) 
(AllNullary ((:+:) a b) allNullary, ParseSum ((:+:) a b) allNullary) => GFromJSON ((:+:) a b) 
(FromProduct a, FromProduct b, ProductSize a, ProductSize b) => GFromJSON ((:*:) a b) 
ConsFromJSON a => GFromJSON (C1 c a) 
GFromJSON a => GFromJSON (M1 i c a) 

class GToJSON f where Source

Class of generic representation types (Rep) that can be converted to JSON.

Methods

gToJSON :: Options -> f a -> Value Source

This method (applied to defaultOptions) is used as the default generic implementation of toJSON.

Instances

GToJSON U1 
ToJSON a => GToJSON (K1 i a) 
(AllNullary ((:+:) a b) allNullary, SumToJSON ((:+:) a b) allNullary) => GToJSON ((:+:) a b) 
(WriteProduct a, WriteProduct b, ProductSize a, ProductSize b) => GToJSON ((:*:) a b) 
ConsToJSON a => GToJSON (C1 c a) 
GToJSON a => GToJSON (M1 i c a) 

genericToJSON :: (Generic a, GToJSON (Rep a)) => Options -> a -> Value Source

A configurable generic JSON encoder. This function applied to defaultOptions is used as the default for toJSON when the type is an instance of Generic.

genericParseJSON :: (Generic a, GFromJSON (Rep a)) => Options -> Value -> Parser a Source

A configurable generic JSON decoder. This function applied to defaultOptions is used as the default for parseJSON when the type is an instance of Generic.

Inspecting Values

withObject :: String -> (Object -> Parser a) -> Value -> Parser a Source

withObject expected f value applies f to the Object when value is an Object and fails using typeMismatch expected otherwise.

withText :: String -> (Text -> Parser a) -> Value -> Parser a Source

withText expected f value applies f to the Text when value is a String and fails using typeMismatch expected otherwise.

withArray :: String -> (Array -> Parser a) -> Value -> Parser a Source

withArray expected f value applies f to the Array when value is an Array and fails using typeMismatch expected otherwise.

withNumber :: String -> (Number -> Parser a) -> Value -> Parser a Source

Deprecated: Use withScientific instead

withNumber expected f value applies f to the Number when value is a Number. and fails using typeMismatch expected otherwise.

withScientific :: String -> (Scientific -> Parser a) -> Value -> Parser a Source

withScientific expected f value applies f to the Scientific number when value is a Number. and fails using typeMismatch expected otherwise.

withBool :: String -> (Bool -> Parser a) -> Value -> Parser a Source

withBool expected f value applies f to the Bool when value is a Bool and fails using typeMismatch expected otherwise.

Constructors and accessors

(.=) :: ToJSON a => Text -> a -> Pair Source

Construct a Pair from a key and a value.

(.:) :: FromJSON a => Object -> Text -> Parser a Source

Retrieve the value associated with the given key of an Object. The result is empty if the key is not present or the value cannot be converted to the desired type.

This accessor is appropriate if the key and value must be present in an object for it to be valid. If the key and value are optional, use '(.:?)' instead.

(.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a) Source

Retrieve the value associated with the given key of an Object. The result is Nothing if the key is not present, or empty if the value cannot be converted to the desired type.

This accessor is most useful if the key and value can be absent from an object without affecting its validity. If the key and value are mandatory, use '(.:)' instead.

(.!=) :: Parser (Maybe a) -> a -> Parser a Source

Helper for use in combination with .:? to provide default values for optional JSON object fields.

This combinator is most useful if the key and value can be absent from an object without affecting its validity and we know a default value to assign in that case. If the key and value are mandatory, use '(.:)' instead.

Example usage:

 v1 <- o .:? "opt_field_with_dfl" .!= "default_val"
 v2 <- o .:  "mandatory_field"
 v3 <- o .:? "opt_field2"

object :: [Pair] -> Value Source

Create a Value from a list of name/value Pairs. If duplicate keys arise, earlier keys and their associated values win.

Parsing

json :: Parser Value Source

Parse a top-level JSON value.

The conversion of a parsed value to a Haskell value is deferred until the Haskell value is needed. This may improve performance if only a subset of the results of conversions are needed, but at a cost in thunk allocation.

This function is an alias for value. In aeson 0.8 and earlier, it parsed only object or array types, in conformance with the now-obsolete RFC 4627.

json' :: Parser Value Source

Parse a top-level JSON value.

This is a strict version of json which avoids building up thunks during parsing; it performs all conversions immediately. Prefer this version if most of the JSON data needs to be accessed.

This function is an alias for value'. In aeson 0.8 and earlier, it parsed only object or array types, in conformance with the now-obsolete RFC 4627.