Portability | portable |
---|---|
Stability | experimental |
Maintainer | Bryan O'Sullivan <bos@serpentine.com> |
Types and functions for working efficiently with JSON data.
(A note on naming: in Greek mythology, Aeson was the father of Jason.)
- decode :: FromJSON a => ByteString -> Maybe a
- decode' :: FromJSON a => ByteString -> Maybe a
- encode :: ToJSON a => a -> ByteString
- data Value
- type Array = Vector Value
- type Object = HashMap Text Value
- newtype DotNetTime = DotNetTime {}
- class FromJSON a where
- data Result a
- fromJSON :: FromJSON a => Value -> Result a
- class ToJSON a where
- (.=) :: ToJSON a => Text -> a -> Pair
- (.:) :: FromJSON a => Object -> Text -> Parser a
- (.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a)
- (.!=) :: Parser (Maybe a) -> a -> Parser a
- object :: [Pair] -> Value
- json :: Parser Value
- json' :: Parser Value
Encoding and decoding
decode :: FromJSON a => ByteString -> Maybe aSource
Efficiently deserialize a JSON value from a lazy ByteString
.
If this fails due to incomplete or invalid input, Nothing
is
returned.
This function parses immediately, but defers conversion. See
json
for details.
decode' :: FromJSON a => ByteString -> Maybe aSource
Efficiently deserialize a JSON value from a lazy ByteString
.
If this fails due to incomplete or invalid input, Nothing
is
returned.
This function parses and performs conversion immediately. See
json'
for details.
encode :: ToJSON a => a -> ByteStringSource
Efficiently serialize a JSON value as a lazy ByteString
.
Core JSON types
A JSON value represented as a Haskell value.
Convenience types
newtype DotNetTime Source
A newtype wrapper for UTCTime
that uses the same non-standard
serialization format as Microsoft .NET, whose System.DateTime
type is by default serialized to JSON as in the following example:
/Date(1302547608878)/
The number represents milliseconds since the Unix epoch.
Type conversion
A type that can be converted from JSON, with the possibility of failure.
When writing an instance, use empty
, mzero
, or fail
to make a
conversion fail, e.g. if an Object
is missing a required key, or
the value is of the wrong type.
An example type and instance:
{-# LANGUAGE OverloadedStrings #-} data Coord { x :: Double, y :: Double } instance FromJSON Coord where parseJSON (Object
v) = Coord<$>
v.:
"x"<*>
v.:
"y" -- A non-Object
value is of the wrong type, so usemzero
to fail. parseJSON _ =mzero
Note the use of the OverloadedStrings
language extension which enables
Text
values to be written as string literals.
Instead of manually writing your FromJSON
instance, there are three options
to do it automatically:
-
Data.Aeson.TH
provides template-haskell functions which will derive an instance at compile-time. The generated instance is optimized for your type so will probably be more efficient than the following two options: -
Data.Aeson.Generic
provides a genericfromJSON
function that parses to any type which is an instance ofData
. - If your compiler has support for the
DeriveGeneric
andDefaultSignatures
language extensions,parseJSON
will have a default generic implementation.
To use this, simply add a deriving
clause to your datatype and
declare a Generic
FromJSON
instance for your datatype without giving a definition
for parseJSON
.
For example the previous example can be simplified to just:
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics data Coord { x :: Double, y :: Double } deriving Generic instance FromJSON Coord
The result of running a Parser
.
fromJSON :: FromJSON a => Value -> Result aSource
Convert a value from JSON, failing if the types do not match.
A type that can be converted to JSON.
An example type and instance:
{-# LANGUAGE OverloadedStrings #-} data Coord { x :: Double, y :: Double } instance ToJSON Coord where toJSON (Coord x y) =object
["x".=
x, "y".=
y]
Note the use of the OverloadedStrings
language extension which enables
Text
values to be written as string literals.
Instead of manually writing your ToJSON
instance, there are three options
to do it automatically:
-
Data.Aeson.TH
provides template-haskell functions which will derive an instance at compile-time. The generated instance is optimized for your type so will probably be more efficient than the following two options: -
Data.Aeson.Generic
provides a generictoJSON
function that accepts any type which is an instance ofData
. - If your compiler has support for the
DeriveGeneric
andDefaultSignatures
language extensions,toJSON
will have a default generic implementation.
To use the latter option, simply add a deriving
clause to your
datatype and declare a Generic
ToJSON
instance for your datatype without giving a
definition for toJSON
.
For example the previous example can be simplified to just:
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics data Coord { x :: Double, y :: Double } deriving Generic instance ToJSON Coord
Constructors and accessors
(.:) :: FromJSON a => Object -> Text -> Parser aSource
Retrieve the value associated with the given key of an Object
.
The result is empty
if the key is not present or the value cannot
be converted to the desired type.
This accessor is appropriate if the key and value must be present in an object for it to be valid. If the key and value are optional, use '(.:?)' instead.
(.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a)Source
Retrieve the value associated with the given key of an Object
.
The result is Nothing
if the key is not present, or empty
if
the value cannot be converted to the desired type.
This accessor is most useful if the key and value can be absent from an object without affecting its validity. If the key and value are mandatory, use '(.:)' instead.
(.!=) :: Parser (Maybe a) -> a -> Parser aSource
Helper for use in combination with .:?
to provide default
values for optional JSON object fields.
This combinator is most useful if the key and value can be absent from an object without affecting its validity and we know a default value to assign in that case. If the key and value are mandatory, use '(.:)' instead.
Example usage:
v1 <- o.:?
"opt_field_with_dfl" .!= "default_val" v2 <- o.:
"mandatory_field" v3 <- o.:?
"opt_field2"
Parsing
Parse a top-level JSON value. This must be either an object or an array, per RFC 4627.
The conversion of a parsed value to a Haskell value is deferred until the Haskell value is needed. This may improve performance if only a subset of the results of conversions are needed, but at a cost in thunk allocation.
Parse a top-level JSON value. This must be either an object or an array, per RFC 4627.
This is a strict version of json
which avoids building up thunks
during parsing; it performs all conversions immediately. Prefer
this version if most of the JSON data needs to be accessed.