accelerate-1.1.0.0: An embedded language for accelerated array processing

Copyright[2016..2017] Trevor L. McDonell
LicenseBSD3
MaintainerTrevor L. McDonell <tmcdonell@cse.unsw.edu.au>
Stabilityexperimental
Portabilitynon-portable (GHC extensions)
Safe HaskellNone
LanguageHaskell98

Data.Array.Accelerate.Data.Monoid

Contents

Description

Monoid instances for Accelerate

Synopsis

Documentation

class Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

  • mappend mempty x = x
  • mappend x mempty = x
  • mappend x (mappend y z) = mappend (mappend x y) z
  • mconcat = foldr mappend mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

Minimal complete definition

mempty, mappend

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

mconcat :: [a] -> a #

Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances

Monoid Ordering

Since: 2.1

Monoid ()

Since: 2.1

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid All

Since: 2.1

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any

Since: 2.1

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid ShortByteString 
Monoid ByteString 
Monoid ByteString 
Monoid Builder 
Monoid IntSet 
Monoid Slot 

Methods

mempty :: Slot #

mappend :: Slot -> Slot -> Slot #

mconcat :: [Slot] -> Slot #

Monoid Doc 

Methods

mempty :: Doc #

mappend :: Doc -> Doc -> Doc #

mconcat :: [Doc] -> Doc #

Monoid [a]

Since: 2.1

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there used to be no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Since: 2.1

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a)

Since: 4.9.0.0

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

(Ord a, Bounded a) => Monoid (Min a)

Since: 4.9.0.0

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a)

Since: 4.9.0.0

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m)

Since: 4.9.0.0

Semigroup a => Monoid (Option a)

Since: 4.9.0.0

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid a => Monoid (Identity a) 

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Monoid a => Monoid (Dual a)

Since: 2.1

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a)

Since: 2.1

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Sum a)

Since: 2.1

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Monoid (Product a)

Since: 2.1

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Monoid (First a)

Since: 2.1

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: 2.1

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid (IntMap a) 

Methods

mempty :: IntMap a #

mappend :: IntMap a -> IntMap a -> IntMap a #

mconcat :: [IntMap a] -> IntMap a #

Monoid (Seq a) 

Methods

mempty :: Seq a #

mappend :: Seq a -> Seq a -> Seq a #

mconcat :: [Seq a] -> Seq a #

Ord a => Monoid (Set a) 

Methods

mempty :: Set a #

mappend :: Set a -> Set a -> Set a #

mconcat :: [Set a] -> Set a #

Monoid (Doc a) 

Methods

mempty :: Doc a #

mappend :: Doc a -> Doc a -> Doc a #

mconcat :: [Doc a] -> Doc a #

Monoid (Array a) 

Methods

mempty :: Array a #

mappend :: Array a -> Array a -> Array a #

mconcat :: [Array a] -> Array a #

(Hashable a, Eq a) => Monoid (HashSet a) 

Methods

mempty :: HashSet a #

mappend :: HashSet a -> HashSet a -> HashSet a #

mconcat :: [HashSet a] -> HashSet a #

Prim a => Monoid (Vector a) 

Methods

mempty :: Vector a #

mappend :: Vector a -> Vector a -> Vector a #

mconcat :: [Vector a] -> Vector a #

Monoid (Vector a) 

Methods

mempty :: Vector a #

mappend :: Vector a -> Vector a -> Vector a #

mconcat :: [Vector a] -> Vector a #

Monoid b => Monoid (a -> b)

Since: 2.1

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

(Monoid a, Monoid b) => Monoid (a, b)

Since: 2.1

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid (Proxy k s)

Since: 4.7.0.0

Methods

mempty :: Proxy k s #

mappend :: Proxy k s -> Proxy k s -> Proxy k s #

mconcat :: [Proxy k s] -> Proxy k s #

Ord k => Monoid (Map k v) 

Methods

mempty :: Map k v #

mappend :: Map k v -> Map k v -> Map k v #

mconcat :: [Map k v] -> Map k v #

(Eq k, Hashable k) => Monoid (HashMap k v) 

Methods

mempty :: HashMap k v #

mappend :: HashMap k v -> HashMap k v -> HashMap k v #

mconcat :: [HashMap k v] -> HashMap k v #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: 2.1

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Monoid a => Monoid (Const k a b) 

Methods

mempty :: Const k a b #

mappend :: Const k a b -> Const k a b -> Const k a b #

mconcat :: [Const k a b] -> Const k a b #

Alternative f => Monoid (Alt * f a)

Since: 4.8.0.0

Methods

mempty :: Alt * f a #

mappend :: Alt * f a -> Alt * f a -> Alt * f a #

mconcat :: [Alt * f a] -> Alt * f a #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: 2.1

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: 2.1

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

(<>) :: Monoid m => m -> m -> m infixr 6 #

An infix synonym for mappend.

Since: 4.5.0.0

newtype Sum a :: * -> * #

Monoid under addition.

Constructors

Sum 

Fields

Instances

Monad Sum

Since: 4.8.0.0

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Functor Sum

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

MonadFix Sum

Since: 4.8.0.0

Methods

mfix :: (a -> Sum a) -> Sum a #

Applicative Sum

Since: 4.8.0.0

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Foldable Sum

Since: 4.8.0.0

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Traversable Sum

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

NFData1 Sum

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Sum a -> () #

Bounded a => Bounded (Sum a) 

Methods

minBound :: Sum a #

maxBound :: Sum a #

Eq a => Eq (Sum a) 

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Num a => Num (Sum a) 

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Ord a => Ord (Sum a) 

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Read a => Read (Sum a) 
Show a => Show (Sum a) 

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Generic (Sum a) 

Associated Types

type Rep (Sum a) :: * -> * #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Num a => Semigroup (Sum a)

Since: 4.9.0.0

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Monoid (Sum a)

Since: 2.1

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

NFData a => NFData (Sum a)

Since: 1.4.0.0

Methods

rnf :: Sum a -> () #

Generic1 * Sum 

Associated Types

type Rep1 Sum (f :: Sum -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 Sum f a #

to1 :: Rep1 Sum f a -> f a #

type Rep (Sum a) 
type Rep (Sum a) = D1 * (MetaData "Sum" "Data.Monoid" "base" True) (C1 * (MetaCons "Sum" PrefixI True) (S1 * (MetaSel (Just Symbol "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 * a)))
type Plain (Sum a) Source # 
type Plain (Sum a) = Sum (Plain a)
type Rep1 * Sum 
type Rep1 * Sum = D1 * (MetaData "Sum" "Data.Monoid" "base" True) (C1 * (MetaCons "Sum" PrefixI True) (S1 * (MetaSel (Just Symbol "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

newtype Product a :: * -> * #

Monoid under multiplication.

Constructors

Product 

Fields

Instances

Monad Product

Since: 4.8.0.0

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Functor Product

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

MonadFix Product

Since: 4.8.0.0

Methods

mfix :: (a -> Product a) -> Product a #

Applicative Product

Since: 4.8.0.0

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Foldable Product

Since: 4.8.0.0

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Traversable Product

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

NFData1 Product

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Product a -> () #

Bounded a => Bounded (Product a) 
Eq a => Eq (Product a) 

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Num a => Num (Product a) 

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Ord a => Ord (Product a) 

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Read a => Read (Product a) 
Show a => Show (Product a) 

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Generic (Product a) 

Associated Types

type Rep (Product a) :: * -> * #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Num a => Semigroup (Product a)

Since: 4.9.0.0

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Monoid (Product a)

Since: 2.1

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

NFData a => NFData (Product a)

Since: 1.4.0.0

Methods

rnf :: Product a -> () #

Generic1 * Product 

Associated Types

type Rep1 Product (f :: Product -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 Product f a #

to1 :: Rep1 Product f a -> f a #

type Rep (Product a) 
type Rep (Product a) = D1 * (MetaData "Product" "Data.Monoid" "base" True) (C1 * (MetaCons "Product" PrefixI True) (S1 * (MetaSel (Just Symbol "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 * a)))
type Plain (Product a) Source # 
type Plain (Product a) = Product (Plain a)
type Rep1 * Product 
type Rep1 * Product = D1 * (MetaData "Product" "Data.Monoid" "base" True) (C1 * (MetaCons "Product" PrefixI True) (S1 * (MetaSel (Just Symbol "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

Orphan instances

Elt a => Unlift Exp (Sum (Exp a)) Source # 

Methods

unlift :: Exp (Plain (Sum (Exp a))) -> Sum (Exp a) Source #

Elt a => Unlift Exp (Product (Exp a)) Source # 

Methods

unlift :: Exp (Plain (Product (Exp a))) -> Product (Exp a) Source #

(Lift Exp a, Elt (Plain a)) => Lift Exp (Sum a) Source # 

Associated Types

type Plain (Sum a) :: * Source #

Methods

lift :: Sum a -> Exp (Plain (Sum a)) Source #

(Lift Exp a, Elt (Plain a)) => Lift Exp (Product a) Source # 

Associated Types

type Plain (Product a) :: * Source #

Methods

lift :: Product a -> Exp (Plain (Product a)) Source #

Num a => Num (Exp (Sum a)) Source # 

Methods

(+) :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a) #

(-) :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a) #

(*) :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a) #

negate :: Exp (Sum a) -> Exp (Sum a) #

abs :: Exp (Sum a) -> Exp (Sum a) #

signum :: Exp (Sum a) -> Exp (Sum a) #

fromInteger :: Integer -> Exp (Sum a) #

Num a => Num (Exp (Product a)) Source # 

Methods

(+) :: Exp (Product a) -> Exp (Product a) -> Exp (Product a) #

(-) :: Exp (Product a) -> Exp (Product a) -> Exp (Product a) #

(*) :: Exp (Product a) -> Exp (Product a) -> Exp (Product a) #

negate :: Exp (Product a) -> Exp (Product a) #

abs :: Exp (Product a) -> Exp (Product a) #

signum :: Exp (Product a) -> Exp (Product a) #

fromInteger :: Integer -> Exp (Product a) #

Monoid (Exp ()) Source # 

Methods

mempty :: Exp () #

mappend :: Exp () -> Exp () -> Exp () #

mconcat :: [Exp ()] -> Exp () #

(Elt a, Elt b, Monoid (Exp a), Monoid (Exp b)) => Monoid (Exp (a, b)) Source # 

Methods

mempty :: Exp (a, b) #

mappend :: Exp (a, b) -> Exp (a, b) -> Exp (a, b) #

mconcat :: [Exp (a, b)] -> Exp (a, b) #

(Elt a, Elt b, Elt c, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c)) => Monoid (Exp (a, b, c)) Source # 

Methods

mempty :: Exp (a, b, c) #

mappend :: Exp (a, b, c) -> Exp (a, b, c) -> Exp (a, b, c) #

mconcat :: [Exp (a, b, c)] -> Exp (a, b, c) #

(Elt a, Elt b, Elt c, Elt d, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c), Monoid (Exp d)) => Monoid (Exp (a, b, c, d)) Source # 

Methods

mempty :: Exp (a, b, c, d) #

mappend :: Exp (a, b, c, d) -> Exp (a, b, c, d) -> Exp (a, b, c, d) #

mconcat :: [Exp (a, b, c, d)] -> Exp (a, b, c, d) #

(Elt a, Elt b, Elt c, Elt d, Elt e, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c), Monoid (Exp d), Monoid (Exp e)) => Monoid (Exp (a, b, c, d, e)) Source # 

Methods

mempty :: Exp (a, b, c, d, e) #

mappend :: Exp (a, b, c, d, e) -> Exp (a, b, c, d, e) -> Exp (a, b, c, d, e) #

mconcat :: [Exp (a, b, c, d, e)] -> Exp (a, b, c, d, e) #

Num a => Monoid (Exp (Sum a)) Source # 

Methods

mempty :: Exp (Sum a) #

mappend :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a) #

mconcat :: [Exp (Sum a)] -> Exp (Sum a) #

Num a => Monoid (Exp (Product a)) Source # 

Methods

mempty :: Exp (Product a) #

mappend :: Exp (Product a) -> Exp (Product a) -> Exp (Product a) #

mconcat :: [Exp (Product a)] -> Exp (Product a) #

Elt a => Elt (Sum a) Source # 

Methods

eltType :: Sum a -> TupleType (EltRepr (Sum a))

fromElt :: Sum a -> EltRepr (Sum a)

toElt :: EltRepr (Sum a) -> Sum a

Elt a => Elt (Product a) Source # 

Methods

eltType :: Product a -> TupleType (EltRepr (Product a))

fromElt :: Product a -> EltRepr (Product a)

toElt :: EltRepr (Product a) -> Product a

Eq a => Eq (Sum a) Source # 

Methods

(==) :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool Source #

(/=) :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool Source #

Eq a => Eq (Product a) Source # 

Methods

(==) :: Exp (Product a) -> Exp (Product a) -> Exp Bool Source #

(/=) :: Exp (Product a) -> Exp (Product a) -> Exp Bool Source #

Ord a => Ord (Sum a) Source # 

Methods

(<) :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool Source #

(>) :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool Source #

(<=) :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool Source #

(>=) :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool Source #

min :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a) Source #

max :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a) Source #

Ord a => Ord (Product a) Source # 

Methods

(<) :: Exp (Product a) -> Exp (Product a) -> Exp Bool Source #

(>) :: Exp (Product a) -> Exp (Product a) -> Exp Bool Source #

(<=) :: Exp (Product a) -> Exp (Product a) -> Exp Bool Source #

(>=) :: Exp (Product a) -> Exp (Product a) -> Exp Bool Source #

min :: Exp (Product a) -> Exp (Product a) -> Exp (Product a) Source #

max :: Exp (Product a) -> Exp (Product a) -> Exp (Product a) Source #