{-# OPTIONS_GHC -fno-warn-warnings-deprecations #-}
{-# LANGUAGE ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, StandaloneDeriving #-}
-----------------------------------------------------------------------------------------
-- |
-- Module      :  FRP.Yampa.Vector3
-- Copyright   :  (c) Antony Courtney and Henrik Nilsson, Yale University, 2003
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  nilsson@cs.yale.edu
-- Stability   :  provisional
-- Portability :  non-portable (GHC extensions)
--
-- 3D vector abstraction (R^3).
--
-----------------------------------------------------------------------------------------

module FRP.Yampa.Vector3 (
    Vector3,            -- Abstract, instance of VectorSpace
    vector3,            -- :: RealFloat a => a -> a -> a -> Vector3 a
    vector3X,           -- :: RealFloat a => Vector3 a -> a
    vector3Y,           -- :: RealFloat a => Vector3 a -> a
    vector3Z,           -- :: RealFloat a => Vector3 a -> a
    vector3XYZ,         -- :: RealFloat a => Vector3 a -> (a, a, a)
    vector3Spherical,   -- :: RealFloat a => a -> a -> a -> Vector3 a
    vector3Rho,         -- :: RealFloat a => Vector3 a -> a
    vector3Theta,       -- :: RealFloat a => Vector3 a -> a
    vector3Phi,         -- :: RealFloat a => Vector3 a -> a
    vector3RhoThetaPhi, -- :: RealFloat a => Vector3 a -> (a, a, a)
    vector3Rotate       -- :: RealFloat a => a -> a -> Vector3 a -> Vector3 a
) where

import FRP.Yampa.VectorSpace
import FRP.Yampa.Forceable

-- * 3D vector, constructors and selectors


-- | 3D Vector.

-- Restrict coefficient space to RealFloat (rather than Floating) for now.
-- While unclear if a complex coefficient space would be useful (and if the
-- result really would be a 3d vector), the only thing causing trouble is the
-- use of atan2 in vector3Theta and vector3Phi. Maybe atan2 can be generalized?

data Vector3 a = RealFloat a => Vector3 !a !a !a

deriving instance Eq a => Eq (Vector3 a)

deriving instance Show a => Show (Vector3 a)

-- | Creates a 3D vector from the cartesian coordinates.
vector3 :: RealFloat a => a -> a -> a -> Vector3 a
vector3 = Vector3

-- | X cartesian coordinate.
vector3X :: RealFloat a => Vector3 a -> a
vector3X (Vector3 x _ _) = x

-- | Y cartesian coordinate.
vector3Y :: RealFloat a => Vector3 a -> a
vector3Y (Vector3 _ y _) = y

-- | Z cartesian coordinate.
vector3Z :: RealFloat a => Vector3 a -> a
vector3Z (Vector3 _ _ z) = z

-- | Returns a vector's cartesian coordinates.
vector3XYZ :: RealFloat a => Vector3 a -> (a, a, a)
vector3XYZ (Vector3 x y z) = (x, y, z)

-- | Creates a 3D vector from the spherical coordinates.
vector3Spherical :: RealFloat a => a -> a -> a -> Vector3 a
vector3Spherical rho theta phi =
    Vector3 (rhoSinPhi * cos theta) (rhoSinPhi * sin theta) (rho * cos phi)
    where
        rhoSinPhi = rho * sin phi

-- | Calculates the vector's radial distance.
vector3Rho :: RealFloat a => Vector3 a -> a
vector3Rho (Vector3 x y z) = sqrt (x * x + y * y + z * z)

-- | Calculates the vector's azimuth.
vector3Theta :: RealFloat a => Vector3 a -> a
vector3Theta (Vector3 x y _) = atan2 y x

-- | Calculates the vector's inclination.
vector3Phi :: RealFloat a => Vector3 a -> a
vector3Phi v@(Vector3 _ _ z) = acos (z / vector3Rho v)

-- | Spherical coordinate representation of a 3D vector.
vector3RhoThetaPhi :: RealFloat a => Vector3 a -> (a, a, a)
vector3RhoThetaPhi (Vector3 x y z) = (rho, theta, phi)
    where
        rho   = sqrt (x * x + y * y + z * z)
        theta = atan2 y x
        phi   = acos (z / rho)

-- * Vector space instance

instance RealFloat a => VectorSpace (Vector3 a) a where
    zeroVector = Vector3 0 0 0

    a *^ (Vector3 x y z) = Vector3 (a * x) (a * y) (a * z)

    (Vector3 x y z) ^/ a = Vector3 (x / a) (y / a) (z / a)

    negateVector (Vector3 x y z) = (Vector3 (-x) (-y) (-z))

    (Vector3 x1 y1 z1) ^+^ (Vector3 x2 y2 z2) = Vector3 (x1+x2) (y1+y2) (z1+z2)

    (Vector3 x1 y1 z1) ^-^ (Vector3 x2 y2 z2) = Vector3 (x1-x2) (y1-y2) (z1-z2)

    (Vector3 x1 y1 z1) `dot` (Vector3 x2 y2 z2) = x1 * x2 + y1 * y2 + z1 * z2

-- * Additional operations

-- | Rotates a vector with a given polar and azimuthal angles.
vector3Rotate :: RealFloat a => a -> a -> Vector3 a -> Vector3 a
vector3Rotate theta' phi' v =
    vector3Spherical (vector3Rho v)
                     (vector3Theta v + theta')
                     (vector3Phi v + phi')

-- * Forceable instance

instance RealFloat a => Forceable (Vector3 a) where
     force = id