RepLib-0.5.4: Generic programming library with representation types

LicenseBSD
Maintainersweirich@cis.upenn.edu
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Generics.RepLib

Contents

Description

 

Synopsis

Basic infrastructure

Basic Representations of types

Parameterized Representations of types

Representations of Prelude Types

Template Haskell for deriving representations

Libraries for defining Generic Operations

Library code for defining generic operations

Scrap your boilerplate operations

Generic Utilities and Applications

Library of generic operations

Derivable type classes written as generic operations

data (k :~: a) b :: forall k. k -> k -> * where infix 4 #

Propositional equality. If a :~: b is inhabited by some terminating value, then the type a is the same as the type b. To use this equality in practice, pattern-match on the a :~: b to get out the Refl constructor; in the body of the pattern-match, the compiler knows that a ~ b.

Since: 4.7.0.0

Constructors

Refl :: (:~:) k a a 

Instances

TestEquality k ((:~:) k a) 

Methods

testEquality :: f a -> f b -> Maybe (((k :~: a) :~: a) b) #

(Rep a, Rep b, Sat (ctx a), Sat (ctx b)) => Rep1 ctx ((:~:) * a b) Source # 

Methods

rep1 :: R1 ctx ((* :~: a) b) Source #

(~) k a b => Bounded ((:~:) k a b) 

Methods

minBound :: (k :~: a) b #

maxBound :: (k :~: a) b #

(~) k a b => Enum ((:~:) k a b) 

Methods

succ :: (k :~: a) b -> (k :~: a) b #

pred :: (k :~: a) b -> (k :~: a) b #

toEnum :: Int -> (k :~: a) b #

fromEnum :: (k :~: a) b -> Int #

enumFrom :: (k :~: a) b -> [(k :~: a) b] #

enumFromThen :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromTo :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromThenTo :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

Eq ((:~:) k a b) 

Methods

(==) :: (k :~: a) b -> (k :~: a) b -> Bool #

(/=) :: (k :~: a) b -> (k :~: a) b -> Bool #

((~) * a b, Data a) => Data ((:~:) * a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> (* :~: a) b -> c ((* :~: a) b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((* :~: a) b) #

toConstr :: (* :~: a) b -> Constr #

dataTypeOf :: (* :~: a) b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((* :~: a) b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((* :~: a) b)) #

gmapT :: (forall c. Data c => c -> c) -> (* :~: a) b -> (* :~: a) b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (* :~: a) b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (* :~: a) b -> r #

gmapQ :: (forall d. Data d => d -> u) -> (* :~: a) b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (* :~: a) b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

Ord ((:~:) k a b) 

Methods

compare :: (k :~: a) b -> (k :~: a) b -> Ordering #

(<) :: (k :~: a) b -> (k :~: a) b -> Bool #

(<=) :: (k :~: a) b -> (k :~: a) b -> Bool #

(>) :: (k :~: a) b -> (k :~: a) b -> Bool #

(>=) :: (k :~: a) b -> (k :~: a) b -> Bool #

max :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b #

min :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b #

(~) k a b => Read ((:~:) k a b) 

Methods

readsPrec :: Int -> ReadS ((k :~: a) b) #

readList :: ReadS [(k :~: a) b] #

readPrec :: ReadPrec ((k :~: a) b) #

readListPrec :: ReadPrec [(k :~: a) b] #

Show ((:~:) k a b) 

Methods

showsPrec :: Int -> (k :~: a) b -> ShowS #

show :: (k :~: a) b -> String #

showList :: [(k :~: a) b] -> ShowS #

(Rep a, Rep b) => Rep ((:~:) * a b) Source # 

Methods

rep :: R ((* :~: a) b) Source #

class TestEquality k f where #

This class contains types where you can learn the equality of two types from information contained in terms. Typically, only singleton types should inhabit this class.

Instances

TestEquality k ((:~:) k a) 

Methods

testEquality :: f a -> f b -> Maybe (((k :~: a) :~: a) b) #