{-# LANGUAGE Safe #-}
module Data.Compression.Inflate (inflate_string,
inflate_string_remainder,
inflate, Output, Bit,
bits_to_word32) where
import Control.Applicative
import Control.Monad
import Data.Array
import qualified Data.Char
import Data.List
import Data.Maybe
import Data.Bits
import Data.Word
inflate_string :: String -> String
inflate_string = fst . inflate_string_remainder
inflate_string_remainder :: String -> (String, String)
inflate_string_remainder s =
let res = inflate $ map Data.Char.ord s
convw32l l = map (Data.Char.chr . fromIntegral) l
output = convw32l $ fst res
b2w32 [] = []
b2w32 b = let (this, next) = splitAt 8 b
in
bits_to_word32 this : b2w32 next
remainder = convw32l $ b2w32 $ snd res
in
(output, remainder)
type Output = [Word32]
type Code = Word32
type Dist = Code
type LitLen = Code
type Length = Word32
type Table = InfM Code
type Tables = (Table, Table)
newtype Bit = Bit Bool
deriving Eq
instance Show Bit where
show = (\x -> [x]) . show_b
showList bs = showString $ "'" ++ map show_b bs ++ "'"
show_b :: Bit -> Char
show_b (Bit True) = '1'
show_b (Bit False) = '0'
int_to_bits :: Int -> [Bit]
int_to_bits = word8_to_bits . fromIntegral
word8_to_bits :: Word8 -> [Bit]
word8_to_bits n = map (\i -> Bit (testBit n i)) [0..7]
bits_to_word32 :: [Bit] -> Word32
bits_to_word32 = foldr (\(Bit b) i -> 2 * i + (if b then 1 else 0)) 0
data State = State { bits :: [Bit],
offset :: !Word32,
history :: Array Word32 Word32,
loc :: Word32
}
data InfM a = InfM (State -> (a, State))
instance Monad InfM where
InfM v >>= f = InfM $ \s -> let (x, s') = v s
InfM y = f x
in y s'
return x = InfM $ \s -> (x, s)
instance Applicative InfM where
pure = return
(<*>) = ap
instance Functor InfM where
fmap f (InfM g) = InfM $ \s ->
case g s of ~(a, s') -> (f a, s')
set_bits :: [Bit] -> InfM ()
set_bits bs = InfM $ const ((), State bs 0 (array (0, 32767) []) 0)
align_8_bits :: InfM ()
align_8_bits
= InfM $ \s -> ((), s { bits = genericDrop ((8 - offset s) `mod` 8) (bits s),
offset = 0 })
get_bits :: Word32 -> InfM [Bit]
get_bits n = InfM $ \s -> case need n (bits s) of
(ys, zs) ->
(ys, s { bits = zs,
offset = (n + offset s) `mod` 8 } )
where need 0 xs = ([], xs)
need _ [] = error "get_bits: Don't have enough!"
need i (x:xs) = let (ys, zs) = need (i-1) xs in (x:ys, zs)
extract_InfM :: InfM a -> (a, [Bit])
extract_InfM (InfM f) = let (x, s) = f undefined in (x, bits s)
output_w32 :: Word32 -> InfM ()
output_w32 w = InfM $ \s -> let l = loc s
in ((), s { history = history s // [(l, w)],
loc = l + 1 })
repeat_w32s :: Word32 -> Word32 -> InfM [Word32]
repeat_w32s len dist
= InfM $ \s -> let l = loc s
h = history s
new = map (h!) $ genericTake dist ([(l - dist) `mod` 32768..32767] ++ [0..])
new_bit = genericTake len (cycle new)
h' = h // zip (map (`mod` 32768) [l..]) new_bit
in (new_bit, s { history = h', loc = (l + len) `mod` 32768 })
get_word32s :: Word32 -> Word32 -> InfM [Word32]
get_word32s _ 0 = return []
get_word32s b n = do w <- get_w32 b
ws <- get_word32s b (n-1)
return (w:ws)
get_w32 :: Word32 -> InfM Word32
get_w32 i = do bs <- get_bits i
return (bits_to_word32 bs)
get_bit :: InfM Bit
get_bit = do res <- get_bits 1
case res of
[x] -> return x
_ -> error $ "get_bit: expected exactly one bit"
inflate :: [Int] -> (Output, [Bit])
inflate is = extract_InfM $ do set_bits $ concatMap int_to_bits is
x <- inflate_blocks False
align_8_bits
return x
inflate_blocks :: Bool -> InfM Output
inflate_blocks True = return []
inflate_blocks False
= do res <- get_bits 3
case res of
[Bit is_last, Bit t1, Bit t2] ->
case (t1, t2) of
(False, False) ->
do align_8_bits
len <- get_w32 16
nlen <- get_w32 16
unless (len + nlen == 2^(32 :: Int) - 1)
$ error "inflate_blocks: Mismatched lengths"
ws <- get_word32s 8 len
mapM_ output_w32 ws
return ws
(True, False) ->
inflate_codes is_last inflate_trees_fixed
(False, True) ->
do tables <- inflate_tables
inflate_codes is_last tables
(True, True) ->
error ("inflate_blocks: case 11 reserved")
_ -> error ("inflate_blocks: expected 3 bits")
inflate_tables :: InfM Tables
inflate_tables
= do hlit <- get_w32 5
hdist <- get_w32 5
hclen <- get_w32 4
llc_bs <- get_bits ((hclen + 4) * 3)
let llc_bs' = zip (map bits_to_word32 $ triple llc_bs)
[16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]
tab = make_table llc_bs'
lit_dist_lengths <- make_lit_dist_lengths tab
(258 + hlit + hdist)
(error "inflate_tables dummy")
let (lit_lengths, dist_lengths) = genericSplitAt (257 + hlit)
lit_dist_lengths
lit_table = make_table (zip lit_lengths [0..])
dist_table = make_table (zip dist_lengths [0..])
return (lit_table, dist_table)
triple :: [a] -> [[a]]
triple (a:b:c:xs) = [a,b,c]:triple xs
triple [] = []
triple _ = error "triple: can't happen"
make_lit_dist_lengths :: Table -> Word32 -> Word32 -> InfM [Word32]
make_lit_dist_lengths _ i _ | i < 0 = error "make_lit_dist_lengths i < 0"
make_lit_dist_lengths _ 0 _ = return []
make_lit_dist_lengths tab i last_thing
= do c <- tab
(ls, i', last_thing') <- meta_code i c last_thing
ws <- make_lit_dist_lengths tab i' last_thing'
return (ls ++ ws)
meta_code :: Word32 -> Code -> Word32 -> InfM ([Word32], Word32, Word32)
meta_code c i _ | i < 16 = return ([i], c - 1, i)
meta_code c 16 last_thing
= do xs <- get_bits 2
let l = 3 + bits_to_word32 xs
return (genericReplicate l last_thing, c - l, last_thing)
meta_code c 17 _ = do xs <- get_bits 3
let l = 3 + bits_to_word32 xs
return (genericReplicate l 0, c - l, 0)
meta_code c 18 _ = do xs <- get_bits 7
let l = 11 + bits_to_word32 xs
return (genericReplicate l 0, c - l, 0)
meta_code _ i _ = error $ "meta_code: " ++ show i
inflate_codes :: Bool -> Tables -> InfM Output
inflate_codes seen_last tabs@(tab_litlen, tab_dist)
=
do i <- tab_litlen;
if i == 256
then inflate_blocks seen_last
else
do pref <- if i < 256
then do output_w32 i
return [i]
else case lookup i litlens of
Nothing -> error "do_code_litlen"
Just (base, num_bits) ->
do extra <- get_w32 num_bits
let l = base + extra
dist <- dist_code tab_dist
repeat_w32s l dist
o <- inflate_codes seen_last tabs
return (pref ++ o)
litlens :: [(Code, (LitLen, Word32))]
litlens = zip [257..285] $ mk_bases 3 litlen_counts ++ [(258, 0)]
where litlen_counts = [(8,0),(4,1),(4,2),(4,3),(4,4),(4,5)]
dist_code :: Table -> InfM Dist
dist_code tab
= do code <- tab
case lookup code dists of
Nothing -> error "dist_code"
Just (base, num_bits) -> do extra <- get_w32 num_bits
return (base + extra)
dists :: [(Code, (Dist, Word32))]
dists = zip [0..29] $ mk_bases 1 dist_counts
where dist_counts = (4,0):map ((,) 2) [1..13]
mk_bases :: Word32 -> [(Int, Word32)] -> [(Word32, Word32)]
mk_bases base counts = snd $ mapAccumL next_base base incs
where next_base current bs = (current + 2^bs, (current, bs))
incs = concat $ map (uncurry replicate) counts
inflate_trees_fixed :: Tables
inflate_trees_fixed = (make_table $ [(8, c) | c <- [0..143]]
++ [(9, c) | c <- [144..255]]
++ [(7, c) | c <- [256..279]]
++ [(8, c) | c <- [280..287]],
make_table [(5, c) | c <- [0..29]])
data Tree = Branch Tree Tree | Leaf Word32 | Null
make_table :: [(Length, Code)] -> Table
make_table lcs = case make_tree 0 $ sort $ filter ((/= 0) . fst) lcs of
(tree, []) -> get_code tree
_ -> error $ "make_table: Left-over lcs from"
get_code :: Tree -> InfM Code
get_code (Branch zero_tree one_tree)
= do Bit b <- get_bit
if b then get_code one_tree else get_code zero_tree
get_code (Leaf w) = return w
get_code Null = error "get_code Null"
make_tree :: Word32 -> [(Length, Code)] -> (Tree, [(Length, Code)])
make_tree _ [] = (Null, [])
make_tree i lcs@((l, c):lcs')
| i == l = (Leaf c, lcs')
| i < l = let (zero_tree, lcs_z) = make_tree (i+1) lcs
(one_tree, lcs_o) = make_tree (i+1) lcs_z
in (Branch zero_tree one_tree, lcs_o)
| otherwise = error "make_tree: can't happen"