>
> module Data.Hash.MD5 (md5, md5s, md5i,
> MD5(..), ABCD(..), Zord64, Str(..), BoolList(..), WordList(..)) where
> import Data.Char
> import Data.Bits
> import Data.Word
Nasty kludge to create a type Zord64 which is really a Word64 but works
how we want in hugs ands nhc98 too...
Also need a rotate left function that actually works.
#ifdef __GLASGOW_HASKELL__
#define rotL rotateL
> type Zord64 = Word64
#else
> import Data.Hash.MD5.Zord64_HARD
> rotL :: Word32 -> Rotation -> Word32
> rotL a s = shiftL a s .|. shiftL a (s-32)
#endif
======================== TYPES AND CLASS DEFINTIONS ========================
> type XYZ = (Word32, Word32, Word32)
> type Rotation = Int
> newtype ABCD = ABCD (Word32, Word32, Word32, Word32) deriving (Eq, Show)
> newtype Str = Str String
> newtype BoolList = BoolList [Bool]
> newtype WordList = WordList ([Word32], Zord64)
>
> class MD5 a where
> get_next :: a -> ([Word32], Int, a)
>
>
>
> len_pad :: Zord64 -> a -> a
> finished :: a -> Bool
Mainly exists because it's fairly easy to do MD5s on input where the
length is not a multiple of 8
> instance MD5 BoolList where
> get_next (BoolList s) = (bools_to_word32s ys, length ys, BoolList zs)
> where (ys, zs) = splitAt 512 s
> len_pad l (BoolList bs)
> = BoolList (bs ++ [True]
> ++ replicate (fromIntegral $ (447 - l) .&. 511) False
> ++ [l .&. (shiftL 1 x) > 0 | x <- (mangle [0..63])]
> )
> where mangle [] = []
> mangle xs = reverse ys ++ mangle zs
> where (ys, zs) = splitAt 8 xs
> finished (BoolList s) = s == []
The string instance is fairly straightforward
> instance MD5 Str where
> get_next (Str s) = (string_to_word32s ys, 8 * length ys, Str zs)
> where (ys, zs) = splitAt 64 s
> len_pad c64 (Str s) = Str (s ++ padding ++ l)
> where padding = '\128':replicate (fromIntegral zeros) '\000'
> zeros = shiftR ((440 - c64) .&. 511) 3
> l = length_to_chars 8 c64
> finished (Str s) = s == ""
YA instance that is believed will be useful
> instance MD5 WordList where
> get_next (WordList (ws, l)) = (xs, fromIntegral taken, WordList (ys, l - taken))
> where (xs, ys) = splitAt 16 ws
> taken = if l > 511 then 512 else l .&. 511
> len_pad c64 (WordList (ws, l)) = WordList (beginning ++ nextish ++ blanks ++ size, newlen)
> where beginning = if length ws > 0 then start ++ lastone' else []
> start = init ws
> lastone = last ws
> offset = c64 .&. 31
> lastone' = [if offset > 0 then lastone + theone else lastone]
> theone = shiftL (shiftR 128 (fromIntegral $ offset .&. 7))
> (fromIntegral $ offset .&. (31 - 7))
> nextish = if offset == 0 then [128] else []
> c64' = c64 + (32 - offset)
> num_blanks = (fromIntegral $ shiftR ((448 - c64') .&. 511) 5)
> blanks = replicate num_blanks 0
> lowsize = fromIntegral $ c64 .&. (shiftL 1 32 - 1)
> topsize = fromIntegral $ shiftR c64 32
> size = [lowsize, topsize]
> newlen = l .&. (complement 511)
> + if c64 .&. 511 >= 448 then 1024 else 512
> finished (WordList (_, z)) = z == 0
> instance Num ABCD where
> ABCD (a1, b1, c1, d1) + ABCD (a2, b2, c2, d2) = ABCD (a1 + a2, b1 + b2, c1 + c2, d1 + d2)
======================== EXPORTED FUNCTIONS ========================
>
> md5 :: (MD5 a) => a -> ABCD
> md5 m = md5_main False 0 magic_numbers m
>
> md5s :: (MD5 a) => a -> String
> md5s = abcd_to_string . md5
>
> md5i :: (MD5 a) => a -> Integer
> md5i = abcd_to_integer . md5
======================== THE CORE ALGORITHM ========================
Decides what to do. The first argument indicates if padding has been
added. The second is the length mod 2^64 so far. Then we have the
starting state, the rest of the string and the final state.
> md5_main :: (MD5 a) =>
> Bool
> -> Zord64
> -> ABCD
> -> a
> -> ABCD
> md5_main padded ilen abcd m
> = if finished m && padded
> then abcd
> else md5_main padded' (ilen + 512) (abcd + abcd') m''
> where (m16, l, m') = get_next m
> len' = ilen + fromIntegral l
> ((m16', _, m''), padded') = if not padded && l < 512
> then (get_next $ len_pad len' m, True)
> else ((m16, l, m'), padded)
> abcd' = md5_do_block abcd m16'
md5_do_block processes a 512 bit block by calling md5_round 4 times to
apply each round with the correct constants and permutations of the
block
> md5_do_block :: ABCD
> -> [Word32]
> -> ABCD
> md5_do_block abcd0 w = abcd4
> where (r1, r2, r3, r4) = rounds
>
> perm5 [c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15]
> = [c1,c6,c11,c0,c5,c10,c15,c4,c9,c14,c3,c8,c13,c2,c7,c12]
> perm5 _ = error "broke at perm5"
> perm3 [c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15]
> = [c5,c8,c11,c14,c1,c4,c7,c10,c13,c0,c3,c6,c9,c12,c15,c2]
> perm3 _ = error "broke at perm3"
> perm7 [c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15]
> = [c0,c7,c14,c5,c12,c3,c10,c1,c8,c15,c6,c13,c4,c11,c2,c9]
> perm7 _ = error "broke at perm7"
> abcd1 = md5_round md5_f abcd0 w r1
> abcd2 = md5_round md5_g abcd1 (perm5 w) r2
> abcd3 = md5_round md5_h abcd2 (perm3 w) r3
> abcd4 = md5_round md5_i abcd3 (perm7 w) r4
md5_round does one of the rounds. It takes an auxiliary function and foldls
(md5_inner_function f) to repeatedly apply it to the initial state with the
correct constants
> md5_round :: (XYZ -> Word32)
>
>
> -> ABCD
> -> [Word32]
> -> [(Rotation, Word32)]
>
> -> ABCD
> md5_round f abcd s ns = foldl (md5_inner_function f) abcd ns'
> where ns' = zipWith (\x (y, z) -> (y, x + z)) s ns
Apply one of the functions md5_[fghi] and put the new ABCD together
> md5_inner_function :: (XYZ -> Word32)
> -> ABCD
> -> (Rotation, Word32)
>
> -> ABCD
> md5_inner_function f (ABCD (a, b, c, d)) (s, ki) = ABCD (d, a', b, c)
> where mid_a = a + f(b,c,d) + ki
> rot_a = rotL mid_a s
> a' = b + rot_a
The 4 auxiliary functions
> md5_f :: XYZ -> Word32
> md5_f (x, y, z) = z `xor` (x .&. (y `xor` z))
>
> md5_g :: XYZ -> Word32
> md5_g (x, y, z) = md5_f (z, x, y)
>
> md5_h :: XYZ -> Word32
> md5_h (x, y, z) = x `xor` y `xor` z
> md5_i :: XYZ -> Word32
> md5_i (x, y, z) = y `xor` (x .|. (complement z))
The magic numbers from the RFC.
> magic_numbers :: ABCD
> magic_numbers = ABCD (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)
The 4 lists of (rotation, additive constant) tuples, one for each round
> rounds :: ([(Rotation, Word32)],
> [(Rotation, Word32)],
> [(Rotation, Word32)],
> [(Rotation, Word32)])
> rounds = (r1, r2, r3, r4)
> where r1 = [(s11, 0xd76aa478), (s12, 0xe8c7b756), (s13, 0x242070db),
> (s14, 0xc1bdceee), (s11, 0xf57c0faf), (s12, 0x4787c62a),
> (s13, 0xa8304613), (s14, 0xfd469501), (s11, 0x698098d8),
> (s12, 0x8b44f7af), (s13, 0xffff5bb1), (s14, 0x895cd7be),
> (s11, 0x6b901122), (s12, 0xfd987193), (s13, 0xa679438e),
> (s14, 0x49b40821)]
> r2 = [(s21, 0xf61e2562), (s22, 0xc040b340), (s23, 0x265e5a51),
> (s24, 0xe9b6c7aa), (s21, 0xd62f105d), (s22, 0x2441453),
> (s23, 0xd8a1e681), (s24, 0xe7d3fbc8), (s21, 0x21e1cde6),
> (s22, 0xc33707d6), (s23, 0xf4d50d87), (s24, 0x455a14ed),
> (s21, 0xa9e3e905), (s22, 0xfcefa3f8), (s23, 0x676f02d9),
> (s24, 0x8d2a4c8a)]
> r3 = [(s31, 0xfffa3942), (s32, 0x8771f681), (s33, 0x6d9d6122),
> (s34, 0xfde5380c), (s31, 0xa4beea44), (s32, 0x4bdecfa9),
> (s33, 0xf6bb4b60), (s34, 0xbebfbc70), (s31, 0x289b7ec6),
> (s32, 0xeaa127fa), (s33, 0xd4ef3085), (s34, 0x4881d05),
> (s31, 0xd9d4d039), (s32, 0xe6db99e5), (s33, 0x1fa27cf8),
> (s34, 0xc4ac5665)]
> r4 = [(s41, 0xf4292244), (s42, 0x432aff97), (s43, 0xab9423a7),
> (s44, 0xfc93a039), (s41, 0x655b59c3), (s42, 0x8f0ccc92),
> (s43, 0xffeff47d), (s44, 0x85845dd1), (s41, 0x6fa87e4f),
> (s42, 0xfe2ce6e0), (s43, 0xa3014314), (s44, 0x4e0811a1),
> (s41, 0xf7537e82), (s42, 0xbd3af235), (s43, 0x2ad7d2bb),
> (s44, 0xeb86d391)]
> s11 = 7
> s12 = 12
> s13 = 17
> s14 = 22
> s21 = 5
> s22 = 9
> s23 = 14
> s24 = 20
> s31 = 4
> s32 = 11
> s33 = 16
> s34 = 23
> s41 = 6
> s42 = 10
> s43 = 15
> s44 = 21
======================== CONVERSION FUNCTIONS ========================
Turn the 4 32 bit words into a string representing the hex number they
represent.
> abcd_to_string :: ABCD -> String
> abcd_to_string (ABCD (a,b,c,d)) = concat $ map display_32bits_as_hex [a,b,c,d]
Split the 32 bit word up, swap the chunks over and convert the numbers
to their hex equivalents.
> display_32bits_as_hex :: Word32 -> String
> display_32bits_as_hex w = swap_pairs cs
> where cs = map (\x -> getc $ (shiftR w (4*x)) .&. 15) [0..7]
> getc n = (['0'..'9'] ++ ['a'..'f']) !! (fromIntegral n)
> swap_pairs (x1:x2:xs) = x2:x1:swap_pairs xs
> swap_pairs _ = []
Convert to an integer, performing endianness magic as we go
> abcd_to_integer :: ABCD -> Integer
> abcd_to_integer (ABCD (a,b,c,d)) = rev_num a * 2^(96 :: Int)
> + rev_num b * 2^(64 :: Int)
> + rev_num c * 2^(32 :: Int)
> + rev_num d
> rev_num :: Word32 -> Integer
> rev_num i = toInteger j `mod` (2^(32 :: Int))
>
> where j = foldl (\so_far next -> shiftL so_far 8 + (shiftR i next .&. 255))
> 0 [0,8,16,24]
Used to convert a 64 byte string to 16 32bit words
> string_to_word32s :: String -> [Word32]
> string_to_word32s "" = []
> string_to_word32s ss = this:string_to_word32s ss'
> where (s, ss') = splitAt 4 ss
> this = foldr (\c w -> shiftL w 8 + (fromIntegral.ord) c) 0 s
Used to convert a list of 512 bools to 16 32bit words
> bools_to_word32s :: [Bool] -> [Word32]
> bools_to_word32s [] = []
> bools_to_word32s bs = this:bools_to_word32s rest
> where (bs1, bs1') = splitAt 8 bs
> (bs2, bs2') = splitAt 8 bs1'
> (bs3, bs3') = splitAt 8 bs2'
> (bs4, rest) = splitAt 8 bs3'
> this = boolss_to_word32 [bs1, bs2, bs3, bs4]
> bools_to_word8 = foldl (\w b -> shiftL w 1 + if b then 1 else 0) 0
> boolss_to_word32 = foldr (\w8 w -> shiftL w 8 + bools_to_word8 w8) 0
Convert the size into a list of characters used by the len_pad function
for strings
> length_to_chars :: Int -> Zord64 -> String
> length_to_chars 0 _ = []
> length_to_chars p n = this:length_to_chars (p-1) (shiftR n 8)
> where this = chr $ fromIntegral $ n .&. 255