| Safe Haskell | None |
|---|---|
| Language | Haskell98 |
Math.QuantumAlgebra.QuantumPlane
Description
A module defining the quantum plane and its symmetries
Documentation
detq :: (Ord (m [Char]), Show (m [Char]), Algebra (Vect Q LaurentMonomial) (m [Char]), Monomial m) => Vect (LaurentPoly Q) (m [Char]) Source #
aq20 :: (Ord (m [Char]), Show (m [Char]), Algebra (Vect Q LaurentMonomial) (m [Char]), Monomial m) => [Vect (LaurentPoly Q) (m [Char])] Source #
Constructors
| Aq20 (NonComMonomial v) |
aq02 :: (Show (m [Char]), Algebra (Vect Q LaurentMonomial) (m [Char]), Monomial m, Ord (m [Char])) => [Vect (LaurentPoly Q) (m [Char])] Source #
Constructors
| Aq02 (NonComMonomial v) |
m2q :: (Ord (m [Char]), Show (m [Char]), Algebra (Vect Q LaurentMonomial) (m [Char]), Monomial m) => [Vect (LaurentPoly Q) (m [Char])] Source #
Constructors
| M2q (NonComMonomial v) |
Instances
| Monomial M2q Source # | |
| Eq v => Eq (M2q v) Source # | |
| Ord v => Ord (M2q v) Source # | |
| (Eq v, Show v) => Show (M2q v) Source # | |
| Bialgebra (LaurentPoly Q) (M2q String) Source # | |
Defined in Math.QuantumAlgebra.QuantumPlane | |
| Coalgebra (LaurentPoly Q) (M2q String) Source # | |
| Algebra (LaurentPoly Q) (M2q String) Source # | |
| Comodule (LaurentPoly Q) (M2q String) (Aq20 String) Source # | |
sl2q :: (Ord (m [Char]), Show (m [Char]), Algebra (Vect Q LaurentMonomial) (m [Char]), Monomial m) => [Vect (LaurentPoly Q) (m [Char])] Source #
Constructors
| SL2q (NonComMonomial v) |
Instances
| Monomial SL2q Source # | |
| Eq v => Eq (SL2q v) Source # | |
| Ord v => Ord (SL2q v) Source # | |
| (Eq v, Show v) => Show (SL2q v) Source # | |
| HopfAlgebra (LaurentPoly Q) (SL2q String) Source # | |
Defined in Math.QuantumAlgebra.QuantumPlane | |
| Bialgebra (LaurentPoly Q) (SL2q String) Source # | |
Defined in Math.QuantumAlgebra.QuantumPlane | |
| Coalgebra (LaurentPoly Q) (SL2q String) Source # | |
| Algebra (LaurentPoly Q) (SL2q String) Source # | |
yb :: (Ord b, Show b, Algebra (Vect Q LaurentMonomial) b) => Vect (LaurentPoly Q) (b, b) -> Vect (LaurentPoly Q) (b, b) Source #