FiniteCategories-0.1.0.0: Finite categories and usual categorical constructions on them.
CopyrightGuillaume Sabbagh 2021
LicenseGPL-3
Maintainerguillaumesabbagh@protonmail.com
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

OppositeCategory.OppositeCategory

Description

The opposite of a category is a category with reversed arrows.

Synopsis

Documentation

data OppositeMorphism m o Source #

Morphism in an opposite category.

Constructors

OpMorph m 

Instances

Instances details
Eq m => Eq (OppositeMorphism m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Methods

(==) :: OppositeMorphism m o -> OppositeMorphism m o -> Bool

(/=) :: OppositeMorphism m o -> OppositeMorphism m o -> Bool

Ord m => Ord (OppositeMorphism m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Show m => Show (OppositeMorphism m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Methods

showsPrec :: Int -> OppositeMorphism m o -> ShowS

show :: OppositeMorphism m o -> String

showList :: [OppositeMorphism m o] -> ShowS

PrettyPrintable m => PrettyPrintable (OppositeMorphism m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Morphism m o => Morphism (OppositeMorphism m o) o Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

(GeneratedFiniteCategory c m o, Morphism m o) => GeneratedFiniteCategory (OppositeCategory c m o) (OppositeMorphism m o) o Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

(FiniteCategory c m o, Morphism m o) => FiniteCategory (OppositeCategory c m o) (OppositeMorphism m o) o Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

data OppositeCategory c m o Source #

Opposite category of a given category.

Constructors

Op c 

Instances

Instances details
Eq c => Eq (OppositeCategory c m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Methods

(==) :: OppositeCategory c m o -> OppositeCategory c m o -> Bool

(/=) :: OppositeCategory c m o -> OppositeCategory c m o -> Bool

Ord c => Ord (OppositeCategory c m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Methods

compare :: OppositeCategory c m o -> OppositeCategory c m o -> Ordering

(<) :: OppositeCategory c m o -> OppositeCategory c m o -> Bool

(<=) :: OppositeCategory c m o -> OppositeCategory c m o -> Bool

(>) :: OppositeCategory c m o -> OppositeCategory c m o -> Bool

(>=) :: OppositeCategory c m o -> OppositeCategory c m o -> Bool

max :: OppositeCategory c m o -> OppositeCategory c m o -> OppositeCategory c m o

min :: OppositeCategory c m o -> OppositeCategory c m o -> OppositeCategory c m o

Show c => Show (OppositeCategory c m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

Methods

showsPrec :: Int -> OppositeCategory c m o -> ShowS

show :: OppositeCategory c m o -> String

showList :: [OppositeCategory c m o] -> ShowS

PrettyPrintable c => PrettyPrintable (OppositeCategory c m o) Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

(GeneratedFiniteCategory c m o, Morphism m o) => GeneratedFiniteCategory (OppositeCategory c m o) (OppositeMorphism m o) o Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

(FiniteCategory c m o, Morphism m o) => FiniteCategory (OppositeCategory c m o) (OppositeMorphism m o) o Source # 
Instance details

Defined in OppositeCategory.OppositeCategory

opOpMorph :: OppositeMorphism m o -> m Source #

Transforms back an opposite morphism into the original morphism.

opOp :: OppositeCategory c m o -> c Source #

Transforms an opposite category into the original category.