Copyright | Guillaume Sabbagh 2021 |
---|---|
License | GPL-3 |
Maintainer | guillaumesabbagh@protonmail.com |
Stability | experimental |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Currying a functor (A x B) -> C
yields a functor A -> [B,C]
.
Synopsis
- curryDiagram :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2, FiniteCategory c3 m3 o3, Morphism m3 o3) => Diagram (ProductCategory c1 m1 o1 c2 m2 o2) (ProductMorphism m1 o1 m2 o2) (ProductObject o1 o2) c3 m3 o3 -> Diagram c1 m1 o1 (FunctorCategory c2 m2 o2 c3 m3 o3) (NaturalTransformation c2 m2 o2 c3 m3 o3) (Diagram c2 m2 o2 c3 m3 o3)
- uncurryDiagram :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2, FiniteCategory c3 m3 o3, Morphism m3 o3) => Diagram c1 m1 o1 (FunctorCategory c2 m2 o2 c3 m3 o3) (NaturalTransformation c2 m2 o2 c3 m3 o3) (Diagram c2 m2 o2 c3 m3 o3) -> Diagram (ProductCategory c1 m1 o1 c2 m2 o2) (ProductMorphism m1 o1 m2 o2) (ProductObject o1 o2) c3 m3 o3
- switchArg :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2, FiniteCategory c3 m3 o3, Morphism m3 o3) => Diagram c1 m1 o1 (FunctorCategory c2 m2 o2 c3 m3 o3) (NaturalTransformation c2 m2 o2 c3 m3 o3) (Diagram c2 m2 o2 c3 m3 o3) -> Diagram c2 m2 o2 (FunctorCategory c1 m1 o1 c3 m3 o3) (NaturalTransformation c1 m1 o1 c3 m3 o3) (Diagram c1 m1 o1 c3 m3 o3)
Documentation
curryDiagram :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2, FiniteCategory c3 m3 o3, Morphism m3 o3) => Diagram (ProductCategory c1 m1 o1 c2 m2 o2) (ProductMorphism m1 o1 m2 o2) (ProductObject o1 o2) c3 m3 o3 -> Diagram c1 m1 o1 (FunctorCategory c2 m2 o2 c3 m3 o3) (NaturalTransformation c2 m2 o2 c3 m3 o3) (Diagram c2 m2 o2 c3 m3 o3) Source #
Curry a functor D : A x B -> C
into a functor D' : A -> [B,C]
.
uncurryDiagram :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2, FiniteCategory c3 m3 o3, Morphism m3 o3) => Diagram c1 m1 o1 (FunctorCategory c2 m2 o2 c3 m3 o3) (NaturalTransformation c2 m2 o2 c3 m3 o3) (Diagram c2 m2 o2 c3 m3 o3) -> Diagram (ProductCategory c1 m1 o1 c2 m2 o2) (ProductMorphism m1 o1 m2 o2) (ProductObject o1 o2) c3 m3 o3 Source #
Uncurry a functor D : A -> [B,C]
into a functor D' : A x B -> C
.
switchArg :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2, FiniteCategory c3 m3 o3, Morphism m3 o3) => Diagram c1 m1 o1 (FunctorCategory c2 m2 o2 c3 m3 o3) (NaturalTransformation c2 m2 o2 c3 m3 o3) (Diagram c2 m2 o2 c3 m3 o3) -> Diagram c2 m2 o2 (FunctorCategory c1 m1 o1 c3 m3 o3) (NaturalTransformation c1 m1 o1 c3 m3 o3) (Diagram c1 m1 o1 c3 m3 o3) Source #
Switches argument of a curried diagram.