Copyright | Guillaume Sabbagh 2021 |
---|---|
License | GPL-3 |
Maintainer | guillaumesabbagh@protonmail.com |
Stability | experimental |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
A left cone on I is I with another object called the cone point and a single morphism from the cone point to every other object of I.
See Category Theory for the Sciences (2014) David I. Spivak for more details.
An usual cone on C is then a functor from a left cone on I to C.
Synopsis
- data LeftCone c m o = LeftCone c
- inclusionFunctor :: (FiniteCategory c m o, Morphism m o) => LeftCone c m o -> Diagram c m o (LeftCone c m o) (LeftConeMorphism m o) (LeftConeObject o)
- data ConeCategory c1 m1 o1 c2 m2 o2 = ConeCategory (Diagram c1 m1 o1 c2 m2 o2)
Cone related functions and types.
The left cone category associated to a category.
LeftCone c |
inclusionFunctor :: (FiniteCategory c m o, Morphism m o) => LeftCone c m o -> Diagram c m o (LeftCone c m o) (LeftConeMorphism m o) (LeftConeObject o) Source #
Inclusion functor from a category to its left cone category.
data ConeCategory c1 m1 o1 c2 m2 o2 Source #
The category of cones defined according to the left cone definition.
It is less efficient than the ConeCategory
implementation. This is only defined for pedagogical purposes.
ConeCategory (Diagram c1 m1 o1 c2 m2 o2) |
Instances
(Eq c1, Eq c2, Eq o1, Eq o2, Eq m1, Eq m2) => Eq (ConeCategory c1 m1 o1 c2 m2 o2) Source # | |
Defined in ConeCategory.LeftCone (==) :: ConeCategory c1 m1 o1 c2 m2 o2 -> ConeCategory c1 m1 o1 c2 m2 o2 -> Bool (/=) :: ConeCategory c1 m1 o1 c2 m2 o2 -> ConeCategory c1 m1 o1 c2 m2 o2 -> Bool | |
(Show c1, Show c2, Show o1, Show o2, Show m1, Show m2) => Show (ConeCategory c1 m1 o1 c2 m2 o2) Source # | |
Defined in ConeCategory.LeftCone showsPrec :: Int -> ConeCategory c1 m1 o1 c2 m2 o2 -> ShowS show :: ConeCategory c1 m1 o1 c2 m2 o2 -> String showList :: [ConeCategory c1 m1 o1 c2 m2 o2] -> ShowS |