FAI-0.1.0.20: Haskell Foreign Accelerate Interface

Copyright(C) 2018 Johann Lee <me@qinka.pro>
LicenseLGPL3
Maintainerme@qinka.pro
Stabilityexperimental
Portabilityunknown
Safe HaskellSafe
LanguageHaskell2010

Foreign.FAI.Types

Description

The types and the class of FAI.

Synopsis

Documentation

type family Pf p t :: * Source #

Platform types

Instances
type Pf Host Double Source # 
Instance details

Defined in Foreign.FAI.Platform.Host

type Pf Host Float Source # 
Instance details

Defined in Foreign.FAI.Platform.Host

type Pf Host Int Source # 
Instance details

Defined in Foreign.FAI.Platform.Host

type Pf Host Int = Int
type Pf Host Word Source # 
Instance details

Defined in Foreign.FAI.Platform.Host

type Pf Host Word = Word

data Buffer p a Source #

buffer hosted pointer and size

Constructors

Buffer 

Fields

Instances
Eq (Buffer p a) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

(==) :: Buffer p a -> Buffer p a -> Bool #

(/=) :: Buffer p a -> Buffer p a -> Bool #

Show (Buffer p a) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

showsPrec :: Int -> Buffer p a -> ShowS #

show :: Buffer p a -> String #

showList :: [Buffer p a] -> ShowS #

newtype Context p Source #

Context of platform

The Haskell GC can not guarantee that Context p will be released after all the Buffer p a is released. So the C implement at lower level need to make sure it.

Constructors

Context 
Instances
Eq (Context p) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

(==) :: Context p -> Context p -> Bool #

(/=) :: Context p -> Context p -> Bool #

Show (Context p) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

showsPrec :: Int -> Context p -> ShowS #

show :: Context p -> String #

showList :: [Context p] -> ShowS #

newtype Accelerate p a Source #

Accelearate type.

Constructors

Accelerate 

Fields

Instances
Monad (Accelerate p) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

(>>=) :: Accelerate p a -> (a -> Accelerate p b) -> Accelerate p b #

(>>) :: Accelerate p a -> Accelerate p b -> Accelerate p b #

return :: a -> Accelerate p a #

fail :: String -> Accelerate p a #

Functor (Accelerate p) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

fmap :: (a -> b) -> Accelerate p a -> Accelerate p b #

(<$) :: a -> Accelerate p b -> Accelerate p a #

Applicative (Accelerate p) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

pure :: a -> Accelerate p a #

(<*>) :: Accelerate p (a -> b) -> Accelerate p a -> Accelerate p b #

liftA2 :: (a -> b -> c) -> Accelerate p a -> Accelerate p b -> Accelerate p c #

(*>) :: Accelerate p a -> Accelerate p b -> Accelerate p b #

(<*) :: Accelerate p a -> Accelerate p b -> Accelerate p a #

MonadIO (Accelerate p) Source # 
Instance details

Defined in Foreign.FAI.Types

Methods

liftIO :: IO a -> Accelerate p a #

class FAI p where Source #

FAI interface

Minimal complete definition

faiMemAllocate, faiMemRelease, faiMemReleaseP

Methods

faiMemAllocate Source #

Arguments

:: Context p

Context

-> Int

size

-> IO (Ptr a)

Pointer

faiMemRelease Source #

Arguments

:: Context p

Context

-> Ptr a

Pointer

-> IO () 

faiMemReleaseP Source #

Arguments

:: Context p

Context

-> IO (FinalizerContextPtr p a)

pointer of the function of release the pointer

class (FAI p1, FAI p2) => FAICopy p1 p2 where Source #

Copy data from platform p1 to platform p2.

Minimal complete definition

faiMemCopy

Methods

faiMemCopy Source #

Arguments

:: (Storable b, Pf p1 a ~ b, Storable c, Pf p2 a ~ c) 
=> Buffer p2 a

Destination

-> Buffer p1 a

Source

-> IO () 
Instances
FAICopy Host Host Source # 
Instance details

Defined in Foreign.FAI.Platform.Host

Methods

faiMemCopy :: (Storable b, Pf Host a ~ b, Storable c, Pf Host a ~ c) => Buffer Host a -> Buffer Host a -> IO () Source #

type FinalizerContextPtr p a = Either (FinalizerEnvPtr (Context p) a) (FinalizerPtr a) Source #

Context concened finalizer

class Storable a where #

The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.

Memory addresses are represented as values of type Ptr a, for some a which is an instance of class Storable. The type argument to Ptr helps provide some valuable type safety in FFI code (you can't mix pointers of different types without an explicit cast), while helping the Haskell type system figure out which marshalling method is needed for a given pointer.

All marshalling between Haskell and a foreign language ultimately boils down to translating Haskell data structures into the binary representation of a corresponding data structure of the foreign language and vice versa. To code this marshalling in Haskell, it is necessary to manipulate primitive data types stored in unstructured memory blocks. The class Storable facilitates this manipulation on all types for which it is instantiated, which are the standard basic types of Haskell, the fixed size Int types (Int8, Int16, Int32, Int64), the fixed size Word types (Word8, Word16, Word32, Word64), StablePtr, all types from Foreign.C.Types, as well as Ptr.

Minimal complete definition

sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)

Methods

sizeOf :: a -> Int #

Computes the storage requirements (in bytes) of the argument. The value of the argument is not used.

alignment :: a -> Int #

Computes the alignment constraint of the argument. An alignment constraint x is fulfilled by any address divisible by x. The value of the argument is not used.

peekElemOff :: Ptr a -> Int -> IO a #

Read a value from a memory area regarded as an array of values of the same kind. The first argument specifies the start address of the array and the second the index into the array (the first element of the array has index 0). The following equality holds,

peekElemOff addr idx = IOExts.fixIO $ \result ->
  peek (addr `plusPtr` (idx * sizeOf result))

Note that this is only a specification, not necessarily the concrete implementation of the function.

pokeElemOff :: Ptr a -> Int -> a -> IO () #

Write a value to a memory area regarded as an array of values of the same kind. The following equality holds:

pokeElemOff addr idx x = 
  poke (addr `plusPtr` (idx * sizeOf x)) x

peekByteOff :: Ptr b -> Int -> IO a #

Read a value from a memory location given by a base address and offset. The following equality holds:

peekByteOff addr off = peek (addr `plusPtr` off)

pokeByteOff :: Ptr b -> Int -> a -> IO () #

Write a value to a memory location given by a base address and offset. The following equality holds:

pokeByteOff addr off x = poke (addr `plusPtr` off) x

peek :: Ptr a -> IO a #

Read a value from the given memory location.

Note that the peek and poke functions might require properly aligned addresses to function correctly. This is architecture dependent; thus, portable code should ensure that when peeking or poking values of some type a, the alignment constraint for a, as given by the function alignment is fulfilled.

poke :: Ptr a -> a -> IO () #

Write the given value to the given memory location. Alignment restrictions might apply; see peek.

Instances
Storable Bool

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Bool -> Int #

alignment :: Bool -> Int #

peekElemOff :: Ptr Bool -> Int -> IO Bool #

pokeElemOff :: Ptr Bool -> Int -> Bool -> IO () #

peekByteOff :: Ptr b -> Int -> IO Bool #

pokeByteOff :: Ptr b -> Int -> Bool -> IO () #

peek :: Ptr Bool -> IO Bool #

poke :: Ptr Bool -> Bool -> IO () #

Storable Char

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Char -> Int #

alignment :: Char -> Int #

peekElemOff :: Ptr Char -> Int -> IO Char #

pokeElemOff :: Ptr Char -> Int -> Char -> IO () #

peekByteOff :: Ptr b -> Int -> IO Char #

pokeByteOff :: Ptr b -> Int -> Char -> IO () #

peek :: Ptr Char -> IO Char #

poke :: Ptr Char -> Char -> IO () #

Storable Double

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable Float

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Float -> Int #

alignment :: Float -> Int #

peekElemOff :: Ptr Float -> Int -> IO Float #

pokeElemOff :: Ptr Float -> Int -> Float -> IO () #

peekByteOff :: Ptr b -> Int -> IO Float #

pokeByteOff :: Ptr b -> Int -> Float -> IO () #

peek :: Ptr Float -> IO Float #

poke :: Ptr Float -> Float -> IO () #

Storable Int

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int -> Int #

alignment :: Int -> Int #

peekElemOff :: Ptr Int -> Int -> IO Int #

pokeElemOff :: Ptr Int -> Int -> Int -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int #

pokeByteOff :: Ptr b -> Int -> Int -> IO () #

peek :: Ptr Int -> IO Int #

poke :: Ptr Int -> Int -> IO () #

Storable Int8

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int8 -> Int #

alignment :: Int8 -> Int #

peekElemOff :: Ptr Int8 -> Int -> IO Int8 #

pokeElemOff :: Ptr Int8 -> Int -> Int8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int8 #

pokeByteOff :: Ptr b -> Int -> Int8 -> IO () #

peek :: Ptr Int8 -> IO Int8 #

poke :: Ptr Int8 -> Int8 -> IO () #

Storable Int16

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int16 -> Int #

alignment :: Int16 -> Int #

peekElemOff :: Ptr Int16 -> Int -> IO Int16 #

pokeElemOff :: Ptr Int16 -> Int -> Int16 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int16 #

pokeByteOff :: Ptr b -> Int -> Int16 -> IO () #

peek :: Ptr Int16 -> IO Int16 #

poke :: Ptr Int16 -> Int16 -> IO () #

Storable Int32

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int32 -> Int #

alignment :: Int32 -> Int #

peekElemOff :: Ptr Int32 -> Int -> IO Int32 #

pokeElemOff :: Ptr Int32 -> Int -> Int32 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int32 #

pokeByteOff :: Ptr b -> Int -> Int32 -> IO () #

peek :: Ptr Int32 -> IO Int32 #

poke :: Ptr Int32 -> Int32 -> IO () #

Storable Int64

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int64 -> Int #

alignment :: Int64 -> Int #

peekElemOff :: Ptr Int64 -> Int -> IO Int64 #

pokeElemOff :: Ptr Int64 -> Int -> Int64 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int64 #

pokeByteOff :: Ptr b -> Int -> Int64 -> IO () #

peek :: Ptr Int64 -> IO Int64 #

poke :: Ptr Int64 -> Int64 -> IO () #

Storable Word

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Word -> Int #

alignment :: Word -> Int #

peekElemOff :: Ptr Word -> Int -> IO Word #

pokeElemOff :: Ptr Word -> Int -> Word -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word #

pokeByteOff :: Ptr b -> Int -> Word -> IO () #

peek :: Ptr Word -> IO Word #

poke :: Ptr Word -> Word -> IO () #

Storable Word8

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Word8 -> Int #

alignment :: Word8 -> Int #

peekElemOff :: Ptr Word8 -> Int -> IO Word8 #

pokeElemOff :: Ptr Word8 -> Int -> Word8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word8 #

pokeByteOff :: Ptr b -> Int -> Word8 -> IO () #

peek :: Ptr Word8 -> IO Word8 #

poke :: Ptr Word8 -> Word8 -> IO () #

Storable Word16

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable Word32

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable Word64

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable ()

Since: base-4.9.0.0

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: () -> Int #

alignment :: () -> Int #

peekElemOff :: Ptr () -> Int -> IO () #

pokeElemOff :: Ptr () -> Int -> () -> IO () #

peekByteOff :: Ptr b -> Int -> IO () #

pokeByteOff :: Ptr b -> Int -> () -> IO () #

peek :: Ptr () -> IO () #

poke :: Ptr () -> () -> IO () #

Storable CChar 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CChar -> Int #

alignment :: CChar -> Int #

peekElemOff :: Ptr CChar -> Int -> IO CChar #

pokeElemOff :: Ptr CChar -> Int -> CChar -> IO () #

peekByteOff :: Ptr b -> Int -> IO CChar #

pokeByteOff :: Ptr b -> Int -> CChar -> IO () #

peek :: Ptr CChar -> IO CChar #

poke :: Ptr CChar -> CChar -> IO () #

Storable CSChar 
Instance details

Defined in Foreign.C.Types

Storable CUChar 
Instance details

Defined in Foreign.C.Types

Storable CShort 
Instance details

Defined in Foreign.C.Types

Storable CUShort 
Instance details

Defined in Foreign.C.Types

Storable CInt 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CInt -> Int #

alignment :: CInt -> Int #

peekElemOff :: Ptr CInt -> Int -> IO CInt #

pokeElemOff :: Ptr CInt -> Int -> CInt -> IO () #

peekByteOff :: Ptr b -> Int -> IO CInt #

pokeByteOff :: Ptr b -> Int -> CInt -> IO () #

peek :: Ptr CInt -> IO CInt #

poke :: Ptr CInt -> CInt -> IO () #

Storable CUInt 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CUInt -> Int #

alignment :: CUInt -> Int #

peekElemOff :: Ptr CUInt -> Int -> IO CUInt #

pokeElemOff :: Ptr CUInt -> Int -> CUInt -> IO () #

peekByteOff :: Ptr b -> Int -> IO CUInt #

pokeByteOff :: Ptr b -> Int -> CUInt -> IO () #

peek :: Ptr CUInt -> IO CUInt #

poke :: Ptr CUInt -> CUInt -> IO () #

Storable CLong 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CLong -> Int #

alignment :: CLong -> Int #

peekElemOff :: Ptr CLong -> Int -> IO CLong #

pokeElemOff :: Ptr CLong -> Int -> CLong -> IO () #

peekByteOff :: Ptr b -> Int -> IO CLong #

pokeByteOff :: Ptr b -> Int -> CLong -> IO () #

peek :: Ptr CLong -> IO CLong #

poke :: Ptr CLong -> CLong -> IO () #

Storable CULong 
Instance details

Defined in Foreign.C.Types

Storable CLLong 
Instance details

Defined in Foreign.C.Types

Storable CULLong 
Instance details

Defined in Foreign.C.Types

Storable CBool 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CBool -> Int #

alignment :: CBool -> Int #

peekElemOff :: Ptr CBool -> Int -> IO CBool #

pokeElemOff :: Ptr CBool -> Int -> CBool -> IO () #

peekByteOff :: Ptr b -> Int -> IO CBool #

pokeByteOff :: Ptr b -> Int -> CBool -> IO () #

peek :: Ptr CBool -> IO CBool #

poke :: Ptr CBool -> CBool -> IO () #

Storable CFloat 
Instance details

Defined in Foreign.C.Types

Storable CDouble 
Instance details

Defined in Foreign.C.Types

Storable CPtrdiff 
Instance details

Defined in Foreign.C.Types

Storable CSize 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CSize -> Int #

alignment :: CSize -> Int #

peekElemOff :: Ptr CSize -> Int -> IO CSize #

pokeElemOff :: Ptr CSize -> Int -> CSize -> IO () #

peekByteOff :: Ptr b -> Int -> IO CSize #

pokeByteOff :: Ptr b -> Int -> CSize -> IO () #

peek :: Ptr CSize -> IO CSize #

poke :: Ptr CSize -> CSize -> IO () #

Storable CWchar 
Instance details

Defined in Foreign.C.Types

Storable CSigAtomic 
Instance details

Defined in Foreign.C.Types

Storable CClock 
Instance details

Defined in Foreign.C.Types

Storable CTime 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CTime -> Int #

alignment :: CTime -> Int #

peekElemOff :: Ptr CTime -> Int -> IO CTime #

pokeElemOff :: Ptr CTime -> Int -> CTime -> IO () #

peekByteOff :: Ptr b -> Int -> IO CTime #

pokeByteOff :: Ptr b -> Int -> CTime -> IO () #

peek :: Ptr CTime -> IO CTime #

poke :: Ptr CTime -> CTime -> IO () #

Storable CUSeconds 
Instance details

Defined in Foreign.C.Types

Storable CSUSeconds 
Instance details

Defined in Foreign.C.Types

Storable CIntPtr 
Instance details

Defined in Foreign.C.Types

Storable CUIntPtr 
Instance details

Defined in Foreign.C.Types

Storable CIntMax 
Instance details

Defined in Foreign.C.Types

Storable CUIntMax 
Instance details

Defined in Foreign.C.Types

Storable WordPtr 
Instance details

Defined in Foreign.Ptr

Storable IntPtr 
Instance details

Defined in Foreign.Ptr

Storable Fingerprint

Since: base-4.4.0.0

Instance details

Defined in Foreign.Storable

(Storable a, Integral a) => Storable (Ratio a)

Since: base-4.8.0.0

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ratio a -> Int #

alignment :: Ratio a -> Int #

peekElemOff :: Ptr (Ratio a) -> Int -> IO (Ratio a) #

pokeElemOff :: Ptr (Ratio a) -> Int -> Ratio a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ratio a) #

pokeByteOff :: Ptr b -> Int -> Ratio a -> IO () #

peek :: Ptr (Ratio a) -> IO (Ratio a) #

poke :: Ptr (Ratio a) -> Ratio a -> IO () #

Storable (StablePtr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: StablePtr a -> Int #

alignment :: StablePtr a -> Int #

peekElemOff :: Ptr (StablePtr a) -> Int -> IO (StablePtr a) #

pokeElemOff :: Ptr (StablePtr a) -> Int -> StablePtr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (StablePtr a) #

pokeByteOff :: Ptr b -> Int -> StablePtr a -> IO () #

peek :: Ptr (StablePtr a) -> IO (StablePtr a) #

poke :: Ptr (StablePtr a) -> StablePtr a -> IO () #

Storable (Ptr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ptr a -> Int #

alignment :: Ptr a -> Int #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () #

peek :: Ptr (Ptr a) -> IO (Ptr a) #

poke :: Ptr (Ptr a) -> Ptr a -> IO () #

Storable (FunPtr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: FunPtr a -> Int #

alignment :: FunPtr a -> Int #

peekElemOff :: Ptr (FunPtr a) -> Int -> IO (FunPtr a) #

pokeElemOff :: Ptr (FunPtr a) -> Int -> FunPtr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (FunPtr a) #

pokeByteOff :: Ptr b -> Int -> FunPtr a -> IO () #

peek :: Ptr (FunPtr a) -> IO (FunPtr a) #

poke :: Ptr (FunPtr a) -> FunPtr a -> IO () #

data Ptr a #

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled to or from Haskell values of type a.

The type a will often be an instance of class Storable which provides the marshalling operations. However this is not essential, and you can provide your own operations to access the pointer. For example you might write small foreign functions to get or set the fields of a C struct.

Instances
Eq (Ptr a) 
Instance details

Defined in GHC.Ptr

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Ord (Ptr a) 
Instance details

Defined in GHC.Ptr

Methods

compare :: Ptr a -> Ptr a -> Ordering #

(<) :: Ptr a -> Ptr a -> Bool #

(<=) :: Ptr a -> Ptr a -> Bool #

(>) :: Ptr a -> Ptr a -> Bool #

(>=) :: Ptr a -> Ptr a -> Bool #

max :: Ptr a -> Ptr a -> Ptr a #

min :: Ptr a -> Ptr a -> Ptr a #

Show (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Storable (Ptr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ptr a -> Int #

alignment :: Ptr a -> Int #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () #

peek :: Ptr (Ptr a) -> IO (Ptr a) #

poke :: Ptr (Ptr a) -> Ptr a -> IO () #

Foldable (URec (Ptr ()) :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

toList :: URec (Ptr ()) a -> [a] #

null :: URec (Ptr ()) a -> Bool #

length :: URec (Ptr ()) a -> Int #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool #

maximum :: Ord a => URec (Ptr ()) a -> a #

minimum :: Ord a => URec (Ptr ()) a -> a #

sum :: Num a => URec (Ptr ()) a -> a #

product :: Num a => URec (Ptr ()) a -> a #

Traversable (URec (Ptr ()) :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) #

data ForeignPtr a #

The type ForeignPtr represents references to objects that are maintained in a foreign language, i.e., that are not part of the data structures usually managed by the Haskell storage manager. The essential difference between ForeignPtrs and vanilla memory references of type Ptr a is that the former may be associated with finalizers. A finalizer is a routine that is invoked when the Haskell storage manager detects that - within the Haskell heap and stack - there are no more references left that are pointing to the ForeignPtr. Typically, the finalizer will, then, invoke routines in the foreign language that free the resources bound by the foreign object.

The ForeignPtr is parameterised in the same way as Ptr. The type argument of ForeignPtr should normally be an instance of class Storable.

Instances
Eq (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.ForeignPtr

Methods

(==) :: ForeignPtr a -> ForeignPtr a -> Bool #

(/=) :: ForeignPtr a -> ForeignPtr a -> Bool #

Ord (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.ForeignPtr

Show (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.ForeignPtr

liftIO :: MonadIO m => IO a -> m a #

Lift a computation from the IO monad.