module ConClusion.Numeric.Statistics
(
PCA (..),
pca,
normalise,
meanDeviation,
covariance,
DistFn,
lpNorm,
manhattan,
euclidean,
mahalanobis,
Clusters,
DistanceInvalidException (..),
dbscan,
Dendrogram,
JoinStrat (..),
hca,
cutDendroAt,
)
where
import ConClusion.Numeric.Data hiding (normalise)
import Data.Aeson hiding (Array)
import Data.Complex
import qualified Data.HashPSQ as PQ
import qualified Data.IntSet as IntSet
import Data.Massiv.Array as Massiv
import Data.Massiv.Array.Unsafe as Massiv
import qualified Numeric.LinearAlgebra as LA
import RIO hiding (Vector)
import System.IO.Unsafe (unsafePerformIO)
{-# SCC eig #-}
eig ::
( Mutable r1 Ix1 (Complex Double),
Mutable r2 Ix1 (Complex Double),
LA.Field e,
Manifest r3 Ix1 e,
Resize r3 Ix2,
Load r3 Ix2 e,
MonadThrow m
) =>
Matrix r3 e ->
m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
eig :: Matrix r3 e
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
eig Matrix r3 e
covM
| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
n = IndexException
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double)))
-> IndexException
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"eigenvalue problems can only be solved for square matrix"
| Bool
otherwise = (Vector r1 (Complex Double), Matrix r2 (Complex Double))
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall (m :: * -> *) a. Monad m => a -> m a
return ((Vector r1 (Complex Double), Matrix r2 (Complex Double))
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double)))
-> (Matrix e
-> (Vector r1 (Complex Double), Matrix r2 (Complex Double)))
-> Matrix e
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Vector (Complex Double) -> Vector r1 (Complex Double))
-> (Matrix (Complex Double) -> Matrix r2 (Complex Double))
-> (Vector (Complex Double), Matrix (Complex Double))
-> (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Vector (Complex Double) -> Vector r1 (Complex Double)
forall e r. (Element e, Mutable r Int e) => Vector e -> Vector r e
vecH2M Matrix (Complex Double) -> Matrix r2 (Complex Double)
forall r e. (Mutable r Int e, Element e) => Matrix e -> Matrix r e
matH2M ((Vector (Complex Double), Matrix (Complex Double))
-> (Vector r1 (Complex Double), Matrix r2 (Complex Double)))
-> (Matrix e -> (Vector (Complex Double), Matrix (Complex Double)))
-> Matrix e
-> (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix e -> (Vector (Complex Double), Matrix (Complex Double))
forall t.
Field t =>
Matrix t -> (Vector (Complex Double), Matrix (Complex Double))
LA.eig (Matrix e
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double)))
-> Matrix e
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
forall a b. (a -> b) -> a -> b
$ Matrix e
cov
where
Sz (Int
m :. Int
n) = Matrix r3 e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r3 e
covM
cov :: Matrix e
cov = Matrix r3 e -> Matrix e
forall r e.
(Manifest r Int e, Element e, Resize r Ix2, Load r Ix2 e) =>
Matrix r e -> Matrix e
matM2H Matrix r3 e
covM
{-# SCC eigSort #-}
eigSort ::
( Load r2 Ix2 e,
MonadThrow m,
Source r1 Ix1 e,
Source r2 Ix2 e,
Mutable r1 Ix1 e,
Mutable r2 Ix2 e,
Unbox e,
Ord e
) =>
(Vector r1 e, Matrix r2 e) ->
m (Vector r1 e, Matrix r2 e)
eigSort :: (Vector r1 e, Matrix r2 e) -> m (Vector r1 e, Matrix r2 e)
eigSort (Vector r1 e
vec, Matrix r2 e
mat)
| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
n = IndexException -> m (Vector r1 e, Matrix r2 e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Vector r1 e, Matrix r2 e))
-> IndexException -> m (Vector r1 e, Matrix r2 e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"matrix of the eigenvectors is not a square matrix"
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
n' = IndexException -> m (Vector r1 e, Matrix r2 e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Vector r1 e, Matrix r2 e))
-> IndexException -> m (Vector r1 e, Matrix r2 e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"different number of eigenvalues and eigenvectors"
| Bool
otherwise = do
let ixedEigenvalues :: Array D Int (e, Int)
ixedEigenvalues = Vector r1 e -> Array D Int Int -> Array D Int (e, Int)
forall r1 ix e1 r2 e2.
(Source r1 ix e1, Source r2 ix e2) =>
Array r1 ix e1 -> Array r2 ix e2 -> Array D ix (e1, e2)
Massiv.zip Vector r1 e
vec Array D Int Int
ixVec
(Array U Int e
eigenValSortAsc, Array U Int Int
ixSort) = (\Array U Int (e, Int)
a -> (((e, Int) -> e) -> Array U Int (e, Int) -> Array U Int e
forall e ix r e'.
(Unbox e, Source r ix e') =>
(e' -> e) -> Array r ix e' -> Array U ix e
get (e, Int) -> e
forall a b. (a, b) -> a
fst Array U Int (e, Int)
a, ((e, Int) -> Int) -> Array U Int (e, Int) -> Array U Int Int
forall e ix r e'.
(Unbox e, Source r ix e') =>
(e' -> e) -> Array r ix e' -> Array U ix e
get (e, Int) -> Int
forall a b. (a, b) -> b
snd Array U Int (e, Int)
a)) (Array U Int (e, Int) -> (Array U Int e, Array U Int Int))
-> (Array D Int (e, Int) -> Array U Int (e, Int))
-> Array D Int (e, Int)
-> (Array U Int e, Array U Int Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array U Int (e, Int) -> Array U Int (e, Int)
forall r e.
(Mutable r Int e, Ord e) =>
Array r Int e -> Array r Int e
quicksort (Array U Int (e, Int) -> Array U Int (e, Int))
-> (Array D Int (e, Int) -> Array U Int (e, Int))
-> Array D Int (e, Int)
-> Array U Int (e, Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array D Int (e, Int) -> (Array U Int e, Array U Int Int))
-> Array D Int (e, Int) -> (Array U Int e, Array U Int Int)
forall a b. (a -> b) -> a -> b
$ Array D Int (e, Int)
ixedEigenvalues
eigenVecSortAsc :: Array D Ix2 e
eigenVecSortAsc = Sz Ix2 -> (Ix2 -> Ix2) -> Matrix r2 e -> Array D Ix2 e
forall r' ix' e ix.
(Source r' ix' e, Index ix) =>
Sz ix -> (ix -> ix') -> Array r' ix' e -> Array D ix e
backpermute' (Ix2 -> Sz Ix2
forall ix. Index ix => ix -> Sz ix
Sz (Ix2 -> Sz Ix2) -> Ix2 -> Sz Ix2
forall a b. (a -> b) -> a -> b
$ Int
m Int -> Int -> Ix2
:. Int
n) (\(Int
r :. Int
c) -> Int
r Int -> Int -> Ix2
:. (Array U Int Int
ixSort Array U Int Int -> Int -> Int
forall r ix e. Manifest r ix e => Array r ix e -> ix -> e
! Int
c)) Matrix r2 e
mat
eigenValSort :: Array D Int e
eigenValSort = Dim -> Array U Int e -> Array D Int e
forall r ix e. Source r ix e => Dim -> Array r ix e -> Array D ix e
reverse' (Int -> Dim
Dim Int
1) Array U Int e
eigenValSortAsc
eigenVecSort :: Array D Ix2 e
eigenVecSort = Dim -> Array D Ix2 e -> Array D Ix2 e
forall r ix e. Source r ix e => Dim -> Array r ix e -> Array D ix e
reverse' (Int -> Dim
Dim Int
1) Array D Ix2 e
eigenVecSortAsc
(Vector r1 e, Matrix r2 e) -> m (Vector r1 e, Matrix r2 e)
forall (m :: * -> *) a. Monad m => a -> m a
return (Array D Int e -> Vector r1 e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Array D Int e
eigenValSort, Array D Ix2 e -> Matrix r2 e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Array D Ix2 e
eigenVecSort)
where
Sz (Int
m :. Int
n) = Matrix r2 e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r2 e
mat
Sz Int
n' = Vector r1 e -> Sz Int
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Vector r1 e
vec
ixVec :: Array D Int Int
ixVec = Comp -> Sz Int -> (Int -> Int) -> Array D Int Int
forall r ix e.
Construct r ix e =>
Comp -> Sz ix -> (Int -> e) -> Array r ix e
makeArrayLinear @D Comp
Seq (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
n') Int -> Int
forall a. a -> a
id
get :: (e' -> e) -> Array r ix e' -> Array U ix e
get e' -> e
acc = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array D ix e -> Array U ix e)
-> (Array r ix e' -> Array D ix e) -> Array r ix e' -> Array U ix e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e' -> e) -> Array r ix e' -> Array D ix e
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map e' -> e
acc
pqAdjust :: (Ord k, Hashable k, Ord p) => (p -> p) -> k -> PQ.HashPSQ k p v -> PQ.HashPSQ k p v
pqAdjust :: (p -> p) -> k -> HashPSQ k p v -> HashPSQ k p v
pqAdjust p -> p
f k
k HashPSQ k p v
q = (Bool, HashPSQ k p v) -> HashPSQ k p v
forall a b. (a, b) -> b
snd ((Bool, HashPSQ k p v) -> HashPSQ k p v)
-> (Bool, HashPSQ k p v) -> HashPSQ k p v
forall a b. (a -> b) -> a -> b
$ (Maybe (p, v) -> (Bool, Maybe (p, v)))
-> k -> HashPSQ k p v -> (Bool, HashPSQ k p v)
forall k p v b.
(Hashable k, Ord k, Ord p) =>
(Maybe (p, v) -> (b, Maybe (p, v)))
-> k -> HashPSQ k p v -> (b, HashPSQ k p v)
PQ.alter Maybe (p, v) -> (Bool, Maybe (p, v))
f' k
k HashPSQ k p v
q
where
f' :: Maybe (p, v) -> (Bool, Maybe (p, v))
f' = \Maybe (p, v)
op -> case Maybe (p, v)
op of
Maybe (p, v)
Nothing -> (Bool
False, Maybe (p, v)
forall a. Maybe a
Nothing)
Just (p
p, v
v) -> (Bool
False, (p, v) -> Maybe (p, v)
forall a. a -> Maybe a
Just (p -> p
f p
p, v
v))
data PCA = PCA
{
PCA -> Matrix U Double
x :: Matrix U Double,
PCA -> Matrix U Double
x' :: Matrix U Double,
PCA -> Matrix U Double
y :: Matrix U Double,
PCA -> Matrix U Double
a :: Matrix U Double,
PCA -> Double
mse :: Double,
PCA -> Double
remaining :: Double,
PCA -> Vector U Double
allEigenValues :: Vector U Double,
PCA -> Vector U Double
pcaEigenValues :: Vector U Double,
PCA -> Matrix U Double
allEigenVecs :: Matrix U Double,
PCA -> Matrix U Double
pcaEigenVecs :: Matrix U Double
}
{-# SCC transformToPCABasis #-}
transformToPCABasis ::
( Source (R r) Ix2 e,
Extract r Ix2 e,
Mutable r Ix2 e,
Numeric r e,
MonadThrow m
) =>
Int ->
Matrix r e ->
Matrix r e ->
m (Matrix r e, Matrix r e)
transformToPCABasis :: Int -> Matrix r e -> Matrix r e -> m (Matrix r e, Matrix r e)
transformToPCABasis Int
nDim Matrix r e
eigenVecMat Matrix r e
featureMat
| Int
mE Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
nE = IndexException -> m (Matrix r e, Matrix r e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Matrix r e, Matrix r e))
-> IndexException -> m (Matrix r e, Matrix r e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"the matrix of the eigenvectors must be a quadratic matrix"
| Int
nDim Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 = IndexException -> m (Matrix r e, Matrix r e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Matrix r e, Matrix r e))
-> IndexException -> m (Matrix r e, Matrix r e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"the number of dimensions of the PCA is smaller than or zero"
| Int
nDim Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
nE = IndexException -> m (Matrix r e, Matrix r e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Matrix r e, Matrix r e))
-> IndexException -> m (Matrix r e, Matrix r e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"more than the possible amount of dimensions has been selected"
| Int
mE Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
mF = IndexException -> m (Matrix r e, Matrix r e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Matrix r e, Matrix r e))
-> IndexException -> m (Matrix r e, Matrix r e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"eigenvector matrix and feature matrix have mismatching dimensions"
| Bool
otherwise = do
Matrix r e
matA <- Array D Ix2 e -> Matrix r e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 e -> Matrix r e)
-> (Array (R r) Ix2 e -> Array D Ix2 e)
-> Array (R r) Ix2 e
-> Matrix r e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array (R r) Ix2 e -> Array D Ix2 e
forall r e. Source r Ix2 e => Array r Ix2 e -> Array D Ix2 e
transpose (Array (R r) Ix2 e -> Matrix r e)
-> m (Array (R r) Ix2 e) -> m (Matrix r e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Ix2 -> Sz Ix2 -> Matrix r e -> m (Array (R r) Ix2 e)
forall (m :: * -> *) r ix e.
(MonadThrow m, Extract r ix e) =>
ix -> Sz ix -> Array r ix e -> m (Array (R r) ix e)
extractM (Int
0 Int -> Int -> Ix2
:. Int
0) (Ix2 -> Sz Ix2
forall ix. Index ix => ix -> Sz ix
Sz (Ix2 -> Sz Ix2) -> Ix2 -> Sz Ix2
forall a b. (a -> b) -> a -> b
$ Int
mE Int -> Int -> Ix2
:. Int
nDim) Matrix r e
eigenVecMat
Matrix r e
pcaData <- Matrix r e
matA Matrix r e -> Matrix r e -> m (Matrix r e)
forall r e (m :: * -> *).
(Numeric r e, Mutable r Ix2 e, MonadThrow m) =>
Matrix r e -> Matrix r e -> m (Matrix r e)
.><. Matrix r e
featureMat
(Matrix r e, Matrix r e) -> m (Matrix r e, Matrix r e)
forall (m :: * -> *) a. Monad m => a -> m a
return (Matrix r e
pcaData, Matrix r e
matA)
where
Sz (Int
mE :. Int
nE) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
eigenVecMat
Sz (Int
mF :. Int
_nF) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
featureMat
{-# SCC pca #-}
pca ::
( Numeric r Double,
Mutable r Ix2 Double,
Manifest r Ix1 Double,
Source (R r) Ix2 Double,
Extract r Ix2 Double,
MonadThrow m
) =>
Int ->
Matrix r Double ->
m PCA
pca :: Int -> Matrix r Double -> m PCA
pca Int
dim Matrix r Double
x = do
let x' :: Matrix r Double
x' = Matrix r Double -> Matrix r Double
forall e r.
(Ord e, Unbox e, Numeric r e, Fractional e, Source r Ix2 e,
Mutable r Ix2 e) =>
Array r Ix2 e -> Array r Ix2 e
normalise (Matrix r Double -> Matrix r Double)
-> (Matrix r Double -> Matrix r Double)
-> Matrix r Double
-> Matrix r Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix r Double -> Matrix r Double
forall r e.
(Source r Ix2 e, Fractional e, Unbox e, Numeric r e,
Mutable r Ix2 e) =>
Matrix r e -> Matrix r e
meanDeviation (Matrix r Double -> Matrix r Double)
-> Matrix r Double -> Matrix r Double
forall a b. (a -> b) -> a -> b
$ Matrix r Double
x
cov :: Matrix r Double
cov = Matrix r Double -> Matrix r Double
forall r e.
(Numeric r e, Mutable r Ix2 e, Fractional e) =>
Matrix r e -> Matrix r e
covariance Matrix r Double
x'
(Vector U (Complex Double)
eigValsC :: Vector U (Complex Double), Matrix U (Complex Double)
eigVecsC :: Matrix U (Complex Double)) <- Matrix r Double
-> m (Vector U (Complex Double), Matrix U (Complex Double))
forall r1 r2 e r3 (m :: * -> *).
(Mutable r1 Int (Complex Double), Mutable r2 Int (Complex Double),
Field e, Manifest r3 Int e, Resize r3 Ix2, Load r3 Ix2 e,
MonadThrow m) =>
Matrix r3 e
-> m (Vector r1 (Complex Double), Matrix r2 (Complex Double))
eig Matrix r Double
cov
let eigValsR :: Vector U Double
eigValsR = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array D Int Double -> Vector U Double)
-> (Vector U (Complex Double) -> Array D Int Double)
-> Vector U (Complex Double)
-> Vector U Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Complex Double -> Double)
-> Vector U (Complex Double) -> Array D Int Double
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map Complex Double -> Double
forall a. Complex a -> a
realPart (Vector U (Complex Double) -> Vector U Double)
-> Vector U (Complex Double) -> Vector U Double
forall a b. (a -> b) -> a -> b
$ Vector U (Complex Double)
eigValsC
eigVecsR :: Matrix r Double
eigVecsR = Array D Ix2 Double -> Matrix r Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 Double -> Matrix r Double)
-> (Matrix U (Complex Double) -> Array D Ix2 Double)
-> Matrix U (Complex Double)
-> Matrix r Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Complex Double -> Double)
-> Matrix U (Complex Double) -> Array D Ix2 Double
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map Complex Double -> Double
forall a. Complex a -> a
realPart (Matrix U (Complex Double) -> Matrix r Double)
-> Matrix U (Complex Double) -> Matrix r Double
forall a b. (a -> b) -> a -> b
$ Matrix U (Complex Double)
eigVecsC
(Vector U Double
eValS, Matrix r Double
eVecS) <- (Vector U Double, Matrix r Double)
-> m (Vector U Double, Matrix r Double)
forall r2 e (m :: * -> *) r1.
(Load r2 Ix2 e, MonadThrow m, Source r1 Int e, Source r2 Ix2 e,
Mutable r1 Int e, Mutable r2 Ix2 e, Unbox e, Ord e) =>
(Vector r1 e, Matrix r2 e) -> m (Vector r1 e, Matrix r2 e)
eigSort (Vector U Double
eigValsR, Matrix r Double
eigVecsR)
(Matrix r Double
pcaData, Matrix r Double
matA) <- Int
-> Matrix r Double
-> Matrix r Double
-> m (Matrix r Double, Matrix r Double)
forall r e (m :: * -> *).
(Source (R r) Ix2 e, Extract r Ix2 e, Mutable r Ix2 e, Numeric r e,
MonadThrow m) =>
Int -> Matrix r e -> Matrix r e -> m (Matrix r e, Matrix r e)
transformToPCABasis Int
dim Matrix r Double
eVecS Matrix r Double
x'
Matrix r Double
reconstructX <- (Array D Ix2 Double -> Matrix r Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 Double -> Matrix r Double)
-> (Matrix r Double -> Array D Ix2 Double)
-> Matrix r Double
-> Matrix r Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix r Double -> Array D Ix2 Double
forall r e. Source r Ix2 e => Array r Ix2 e -> Array D Ix2 e
transpose (Matrix r Double -> Matrix r Double)
-> Matrix r Double -> Matrix r Double
forall a b. (a -> b) -> a -> b
$ Matrix r Double
matA) Matrix r Double -> Matrix r Double -> m (Matrix r Double)
forall r e (m :: * -> *).
(Numeric r e, Mutable r Ix2 e, MonadThrow m) =>
Matrix r e -> Matrix r e -> m (Matrix r e)
.><. Matrix r Double
pcaData
Double
mse <- (Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Int -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n) (Double -> Double)
-> (Matrix r Double -> Double) -> Matrix r Double -> Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array D Ix2 Double -> Double
forall r ix e. (Source r ix e, Num e) => Array r ix e -> e
Massiv.sum (Array D Ix2 Double -> Double)
-> (Matrix r Double -> Array D Ix2 Double)
-> Matrix r Double
-> Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Double -> Double) -> Matrix r Double -> Array D Ix2 Double
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map (Double -> Double -> Double
forall a. Floating a => a -> a -> a
** Double
2) (Matrix r Double -> Double) -> m (Matrix r Double) -> m Double
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Matrix r Double
x' Matrix r Double -> Matrix r Double -> m (Matrix r Double)
forall r ix e (m :: * -> *).
(Load r ix e, Numeric r e, MonadThrow m) =>
Array r ix e -> Array r ix e -> m (Array r ix e)
.-. Matrix r Double
reconstructX)
Array M Int Double
pcaEigenValues <- Int -> Sz Int -> Vector U Double -> m (Array (R U) Int Double)
forall (m :: * -> *) r ix e.
(MonadThrow m, Extract r ix e) =>
ix -> Sz ix -> Array r ix e -> m (Array (R r) ix e)
extractM Int
0 (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
dim) Vector U Double
eValS
Array (R r) Ix2 Double
pcaEigenVecs <- Ix2 -> Sz Ix2 -> Matrix r Double -> m (Array (R r) Ix2 Double)
forall (m :: * -> *) r ix e.
(MonadThrow m, Extract r ix e) =>
ix -> Sz ix -> Array r ix e -> m (Array (R r) ix e)
extractM (Int
0 Int -> Int -> Ix2
:. Int
0) (Ix2 -> Sz Ix2
forall ix. Index ix => ix -> Sz ix
Sz (Ix2 -> Sz Ix2) -> Ix2 -> Sz Ix2
forall a b. (a -> b) -> a -> b
$ Int
m Int -> Int -> Ix2
:. Int
dim) Matrix r Double
eVecS
let remaining :: Double
remaining = (Array M Int Double -> Double
forall r ix e. (Source r ix e, Num e) => Array r ix e -> e
Massiv.sum Array M Int Double
pcaEigenValues Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Vector U Double -> Double
forall r ix e. (Source r ix e, Num e) => Array r ix e -> e
Massiv.sum Vector U Double
eValS) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
100
PCA -> m PCA
forall (m :: * -> *) a. Monad m => a -> m a
return
PCA :: Matrix U Double
-> Matrix U Double
-> Matrix U Double
-> Matrix U Double
-> Double
-> Double
-> Vector U Double
-> Vector U Double
-> Matrix U Double
-> Matrix U Double
-> PCA
PCA
{ $sel:x:PCA :: Matrix U Double
x = Matrix r Double -> Matrix U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Matrix r Double
x,
$sel:x':PCA :: Matrix U Double
x' = Matrix r Double -> Matrix U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Matrix r Double
x',
$sel:y:PCA :: Matrix U Double
y = Matrix r Double -> Matrix U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Matrix r Double
pcaData,
$sel:a:PCA :: Matrix U Double
a = Matrix r Double -> Matrix U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Matrix r Double
matA,
$sel:mse:PCA :: Double
mse = Double
mse,
$sel:remaining:PCA :: Double
remaining = Double
remaining,
$sel:allEigenValues:PCA :: Vector U Double
allEigenValues = Vector U Double
eValS,
$sel:pcaEigenValues:PCA :: Vector U Double
pcaEigenValues = Array M Int Double -> Vector U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Array M Int Double
pcaEigenValues,
$sel:allEigenVecs:PCA :: Matrix U Double
allEigenVecs = Matrix r Double -> Matrix U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Matrix r Double
eVecS,
$sel:pcaEigenVecs:PCA :: Matrix U Double
pcaEigenVecs = Array (R r) Ix2 Double -> Matrix U Double
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Array (R r) Ix2 Double
pcaEigenVecs
}
where
Sz (Int
m :. Int
n) = Matrix r Double -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r Double
x
{-# SCC meanDeviation #-}
meanDeviation ::
( Source r Ix2 e,
Fractional e,
Unbox e,
Numeric r e,
Mutable r Ix2 e
) =>
Matrix r e ->
Matrix r e
meanDeviation :: Matrix r e -> Matrix r e
meanDeviation Matrix r e
mat = Matrix r e
mat Matrix r e -> Matrix r e -> Matrix r e
forall r ix e.
(Load r ix e, Numeric r e) =>
Array r ix e -> Array r ix e -> Array r ix e
!-! Array D Ix2 e -> Matrix r e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Array D Ix2 e
meanMat
where
Sz (Int
_ :. Int
n) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
Massiv.size Matrix r e
mat
featueMean :: Array D Int e
featueMean = (e -> e -> e) -> e -> Matrix r e -> Array D (Lower Ix2) e
forall ix r e a.
(Index (Lower ix), Source r ix e) =>
(a -> e -> a) -> a -> Array r ix e -> Array D (Lower ix) a
Massiv.foldlInner e -> e -> e
forall a. Num a => a -> a -> a
(+) e
0 Matrix r e
mat Array D Int e -> e -> Array D Int e
forall ix r e.
(Index ix, Numeric r e) =>
Array r ix e -> e -> Array r ix e
.* (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ Int -> e
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
meanMat :: Array D Ix2 e
meanMat = Sz Int -> (e -> Int -> e) -> Array U (Lower Ix2) e -> Array D Ix2 e
forall ix r a b.
(Index ix, Manifest r (Lower ix) a) =>
Sz Int -> (a -> Int -> b) -> Array r (Lower ix) a -> Array D ix b
expandInner (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
n) e -> Int -> e
forall a b. a -> b -> a
const (Array U Int e -> Array D Ix2 e)
-> (Array D Int e -> Array U Int e)
-> Array D Int e
-> Array D Ix2 e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array D Int e -> Array D Ix2 e) -> Array D Int e -> Array D Ix2 e
forall a b. (a -> b) -> a -> b
$ Array D Int e
featueMean
{-# SCC covariance #-}
covariance :: (Numeric r e, Mutable r Ix2 e, Fractional e) => Matrix r e -> Matrix r e
covariance :: Matrix r e -> Matrix r e
covariance Matrix r e
x = (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ (Int -> e
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n e -> e -> e
forall a. Num a => a -> a -> a
- e
1)) e -> Matrix r e -> Matrix r e
forall ix r e.
(Index ix, Numeric r e) =>
e -> Array r ix e -> Array r ix e
*. (Matrix r e
x Matrix r e -> Matrix r e -> Matrix r e
forall r e.
(Numeric r e, Mutable r Ix2 e) =>
Matrix r e -> Matrix r e -> Matrix r e
!><! (Array D Ix2 e -> Matrix r e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 e -> Matrix r e)
-> (Matrix r e -> Array D Ix2 e) -> Matrix r e -> Matrix r e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix r e -> Array D Ix2 e
forall r e. Source r Ix2 e => Array r Ix2 e -> Array D Ix2 e
transpose (Matrix r e -> Matrix r e) -> Matrix r e -> Matrix r e
forall a b. (a -> b) -> a -> b
$ Matrix r e
x))
where
Sz (Int
_ :. Int
n) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
x
normalise ::
( Ord e,
Unbox e,
Numeric r e,
Fractional e,
Source r Ix2 e,
Mutable r Ix2 e
) =>
Array r Ix2 e ->
Array r Ix2 e
normalise :: Array r Ix2 e -> Array r Ix2 e
normalise Array r Ix2 e
mat =
let absMat :: Array D Ix2 e
absMat = (e -> e) -> Array r Ix2 e -> Array D Ix2 e
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map e -> e
forall a. Num a => a -> a
abs Array r Ix2 e
mat
maxPerRow :: Array U Int e
maxPerRow = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array D Int e -> Array U Int e)
-> (Array D Ix2 e -> Array D Int e)
-> Array D Ix2 e
-> Array U Int e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e -> e -> e) -> e -> Array D Ix2 e -> Array D (Lower Ix2) e
forall ix r e a.
(Index (Lower ix), Source r ix e) =>
(a -> e -> a) -> a -> Array r ix e -> Array D (Lower ix) a
foldlInner e -> e -> e
forall a. Ord a => a -> a -> a
max e
0 (Array D Ix2 e -> Array U Int e) -> Array D Ix2 e -> Array U Int e
forall a b. (a -> b) -> a -> b
$ Array D Ix2 e
absMat
divMat :: Array r Ix2 e
divMat = Array D Ix2 e -> Array r Ix2 e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 e -> Array r Ix2 e)
-> (Array U Int e -> Array D Ix2 e)
-> Array U Int e
-> Array r Ix2 e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e -> e) -> Array D Ix2 e -> Array D Ix2 e
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/) (Array D Ix2 e -> Array D Ix2 e)
-> (Array U Int e -> Array D Ix2 e)
-> Array U Int e
-> Array D Ix2 e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sz Int -> (e -> Int -> e) -> Array U (Lower Ix2) e -> Array D Ix2 e
forall ix r a b.
(Index ix, Manifest r (Lower ix) a) =>
Sz Int -> (a -> Int -> b) -> Array r (Lower ix) a -> Array D ix b
expandInner @Ix2 (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
n) e -> Int -> e
forall a b. a -> b -> a
const (Array U Int e -> Array r Ix2 e) -> Array U Int e -> Array r Ix2 e
forall a b. (a -> b) -> a -> b
$ Array U Int e
maxPerRow
in Array r Ix2 e
divMat Array r Ix2 e -> Array r Ix2 e -> Array r Ix2 e
forall r ix e.
(Load r ix e, Numeric r e) =>
Array r ix e -> Array r ix e -> Array r ix e
!*! Array r Ix2 e
mat
where
Sz (Int
_ :. Int
n) = Array r Ix2 e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Array r Ix2 e
mat
type DistFn r e = Matrix r e -> Matrix r e
buildDistMat ::
(Mutable r Ix2 e) =>
(e -> e -> a) ->
(a -> a -> a) ->
a ->
Matrix r e ->
Matrix D a
buildDistMat :: (e -> e -> a) -> (a -> a -> a) -> a -> Matrix r e -> Matrix D a
buildDistMat e -> e -> a
zipFn a -> a -> a
foldFn a
acc Matrix r e
mat =
let a :: Array D Ix3 e
a = Array D Ix3 e -> Array D Ix3 e
forall ix r' e.
(Index (Lower ix), Source r' ix e) =>
Array r' ix e -> Array D ix e
transposeOuter (Array D Ix3 e -> Array D Ix3 e)
-> (Matrix r e -> Array D Ix3 e) -> Matrix r e -> Array D Ix3 e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sz Int -> (e -> Int -> e) -> Array r (Lower Ix3) e -> Array D Ix3 e
forall ix r a b.
(Index ix, Manifest r (Lower ix) a) =>
Sz Int -> (a -> Int -> b) -> Array r (Lower ix) a -> Array D ix b
expandOuter @Ix3 (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
n) e -> Int -> e
forall a b. a -> b -> a
const (Matrix r e -> Array D Ix3 e) -> Matrix r e -> Array D Ix3 e
forall a b. (a -> b) -> a -> b
$ Matrix r e
mat
b :: Array D Ix3 e
b = Array D Ix3 e -> Array D Ix3 e
forall ix r' e.
(Index (Lower ix), Source r' ix e) =>
Array r' ix e -> Array D ix e
transposeInner Array D Ix3 e
a
ab :: Array D Ix3 a
ab = (e -> e -> a) -> Array D Ix3 e -> Array D Ix3 e -> Array D Ix3 a
forall r1 ix e1 r2 e2 e.
(Source r1 ix e1, Source r2 ix e2) =>
(e1 -> e2 -> e) -> Array r1 ix e1 -> Array r2 ix e2 -> Array D ix e
Massiv.zipWith e -> e -> a
zipFn Array D Ix3 e
a Array D Ix3 e
b
d :: Array D (Lower Ix3) a
d = (a -> a -> a) -> a -> Array D Ix3 a -> Array D (Lower Ix3) a
forall ix r e a.
(Index (Lower ix), Source r ix e) =>
(a -> e -> a) -> a -> Array r ix e -> Array D (Lower ix) a
foldlInner a -> a -> a
foldFn a
acc Array D Ix3 a
ab
in Array D (Lower Ix3) a
Matrix D a
d
where
Sz (Int
_ :. Int
n) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
mat
{-# SCC lpNorm #-}
lpNorm :: (Mutable r Ix2 e, Floating e) => Int -> DistFn r e
lpNorm :: Int -> DistFn r e
lpNorm Int
p = Array D Ix2 e -> Array r Ix2 e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 e -> Array r Ix2 e)
-> (Array r Ix2 e -> Array D Ix2 e) -> DistFn r e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e -> e -> e)
-> (e -> e -> e) -> e -> Array r Ix2 e -> Array D Ix2 e
forall r e a.
Mutable r Ix2 e =>
(e -> e -> a) -> (a -> a -> a) -> a -> Matrix r e -> Matrix D a
buildDistMat e -> e -> e
zipFn e -> e -> e
foldFn e
0
where
zipFn :: e -> e -> e
zipFn e
a e
b = (e -> Int -> e
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
p) (e -> e) -> (e -> e) -> e -> e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> e
forall a. Num a => a -> a
abs (e -> e) -> e -> e
forall a b. (a -> b) -> a -> b
$ e
a e -> e -> e
forall a. Num a => a -> a -> a
- e
b
foldFn :: e -> e -> e
foldFn e
a e
b = (e -> e -> e
forall a. Floating a => a -> a -> a
** (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ Int -> e
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
p)) (e -> e) -> e -> e
forall a b. (a -> b) -> a -> b
$ e
a e -> e -> e
forall a. Num a => a -> a -> a
+ e
b
{-# SCC manhattan #-}
manhattan :: (Mutable r Ix2 e, Floating e) => DistFn r e
manhattan :: DistFn r e
manhattan = Int -> DistFn r e
forall r e. (Mutable r Ix2 e, Floating e) => Int -> DistFn r e
lpNorm Int
1
{-# SCC euclidean #-}
euclidean :: (Mutable r Ix2 e, Floating e) => DistFn r e
euclidean :: DistFn r e
euclidean = Int -> DistFn r e
forall r e. (Mutable r Ix2 e, Floating e) => Int -> DistFn r e
lpNorm Int
2
{-# SCC mahalanobis #-}
mahalanobis :: (Unbox e, Numeric r e, Mutable r Ix2 e, Mutable r Ix1 e, LA.Field e) => DistFn r e
mahalanobis :: DistFn r e
mahalanobis Matrix r e
points =
let a :: Array D Ix3 e
a = Array D Ix3 e -> Array D Ix3 e
forall ix r' e.
(Index (Lower ix), Source r' ix e) =>
Array r' ix e -> Array D ix e
transposeOuter (Array D Ix3 e -> Array D Ix3 e)
-> (Matrix r e -> Array D Ix3 e) -> Matrix r e -> Array D Ix3 e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sz Int -> (e -> Int -> e) -> Array r (Lower Ix3) e -> Array D Ix3 e
forall ix r a b.
(Index ix, Manifest r (Lower ix) a) =>
Sz Int -> (a -> Int -> b) -> Array r (Lower ix) a -> Array D ix b
expandOuter @Ix3 (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
n) e -> Int -> e
forall a b. a -> b -> a
const (Matrix r e -> Array D Ix3 e) -> Matrix r e -> Array D Ix3 e
forall a b. (a -> b) -> a -> b
$ Matrix r e
points
b :: Array D Ix3 e
b = Array D Ix3 e -> Array D Ix3 e
forall ix r' e.
(Index (Lower ix), Source r' ix e) =>
Array r' ix e -> Array D ix e
transposeInner Array D Ix3 e
a
abDiff :: Array U Ix3 e
abDiff = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array D Ix3 e -> Array U Ix3 e) -> Array D Ix3 e -> Array U Ix3 e
forall a b. (a -> b) -> a -> b
$ Array D Ix3 e
a Array D Ix3 e -> Array D Ix3 e -> Array D Ix3 e
forall r ix e.
(Load r ix e, Numeric r e) =>
Array r ix e -> Array r ix e -> Array r ix e
!-! Array D Ix3 e
b
ixArray :: Array U Ix2 Ix2
ixArray = Comp -> Sz Ix2 -> (Ix2 -> Ix2) -> Array U Ix2 Ix2
forall r ix e.
Construct r ix e =>
Comp -> Sz ix -> (ix -> e) -> Array r ix e
makeArray @U @Ix2 @Ix2 Comp
Par (Ix2 -> Sz Ix2
forall ix. Index ix => ix -> Sz ix
Sz (Ix2 -> Sz Ix2) -> Ix2 -> Sz Ix2
forall a b. (a -> b) -> a -> b
$ Int
n Int -> Int -> Ix2
:. Int
n) Ix2 -> Ix2
forall a. a -> a
id
distMat :: Array D Ix2 e
distMat =
(Ix2 -> e) -> Array U Ix2 Ix2 -> Array D Ix2 e
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map
( \(Int
x :. Int
y) ->
let ab :: Array U Int e
ab = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array M Int e -> Array U Int e) -> Array M Int e -> Array U Int e
forall a b. (a -> b) -> a -> b
$ Array U Ix3 e
abDiff Array U Ix3 e -> Int -> Elt U Ix3 e
forall r ix e.
OuterSlice r ix e =>
Array r ix e -> Int -> Elt r ix e
!> Int
x Array M Ix2 e -> Int -> Elt M Ix2 e
forall r ix e.
OuterSlice r ix e =>
Array r ix e -> Int -> Elt r ix e
!> Int
y
in Array U Int e
ab Array U Int e -> Matrix U e -> Array U Int e
forall r e.
(Numeric r e, Mutable r Int e, Mutable r Ix2 e) =>
Vector r e -> Matrix r e -> Vector r e
><! Matrix U e
covInv Array U Int e -> Array U Int e -> e
forall r e.
(Numeric r e, Source r Int e) =>
Vector r e -> Vector r e -> e
!.! Array U Int e
ab
)
Array U Ix2 Ix2
ixArray
in Array D Ix2 e -> Matrix r e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Ix2 e -> Matrix r e)
-> (Array D Ix2 e -> Array D Ix2 e) -> Array D Ix2 e -> Matrix r e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e -> e) -> Array D Ix2 e -> Array D Ix2 e
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map e -> e
forall a. Floating a => a -> a
sqrt (Array D Ix2 e -> Matrix r e) -> Array D Ix2 e -> Matrix r e
forall a b. (a -> b) -> a -> b
$ Array D Ix2 e
distMat
where
Sz (Int
_ :. Int
n) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
points
cov :: Matrix r e
cov = DistFn r e
forall r e.
(Numeric r e, Mutable r Ix2 e, Fractional e) =>
Matrix r e -> Matrix r e
covariance DistFn r e -> DistFn r e -> DistFn r e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DistFn r e
forall r e.
(Source r Ix2 e, Fractional e, Unbox e, Numeric r e,
Mutable r Ix2 e) =>
Matrix r e -> Matrix r e
meanDeviation DistFn r e -> DistFn r e
forall a b. (a -> b) -> a -> b
$ Matrix r e
points
covInv :: Matrix U e
covInv = Matrix e -> Matrix U e
forall r e. (Mutable r Int e, Element e) => Matrix e -> Matrix r e
matH2M (Matrix e -> Matrix U e)
-> (Matrix r e -> Matrix e) -> Matrix r e -> Matrix U e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix e -> Matrix e
forall t. Field t => Matrix t -> Matrix t
LA.inv (Matrix e -> Matrix e)
-> (Matrix r e -> Matrix e) -> Matrix r e -> Matrix e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix r e -> Matrix e
forall r e.
(Manifest r Int e, Element e, Resize r Ix2, Load r Ix2 e) =>
Matrix r e -> Matrix e
matM2H (Matrix r e -> Matrix U e) -> Matrix r e -> Matrix U e
forall a b. (a -> b) -> a -> b
$ Matrix r e
cov
newtype DistanceInvalidException e = DistanceInvalidException e deriving (Int -> DistanceInvalidException e -> ShowS
[DistanceInvalidException e] -> ShowS
DistanceInvalidException e -> String
(Int -> DistanceInvalidException e -> ShowS)
-> (DistanceInvalidException e -> String)
-> ([DistanceInvalidException e] -> ShowS)
-> Show (DistanceInvalidException e)
forall e. Show e => Int -> DistanceInvalidException e -> ShowS
forall e. Show e => [DistanceInvalidException e] -> ShowS
forall e. Show e => DistanceInvalidException e -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [DistanceInvalidException e] -> ShowS
$cshowList :: forall e. Show e => [DistanceInvalidException e] -> ShowS
show :: DistanceInvalidException e -> String
$cshow :: forall e. Show e => DistanceInvalidException e -> String
showsPrec :: Int -> DistanceInvalidException e -> ShowS
$cshowsPrec :: forall e. Show e => Int -> DistanceInvalidException e -> ShowS
Show, DistanceInvalidException e -> DistanceInvalidException e -> Bool
(DistanceInvalidException e -> DistanceInvalidException e -> Bool)
-> (DistanceInvalidException e
-> DistanceInvalidException e -> Bool)
-> Eq (DistanceInvalidException e)
forall e.
Eq e =>
DistanceInvalidException e -> DistanceInvalidException e -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DistanceInvalidException e -> DistanceInvalidException e -> Bool
$c/= :: forall e.
Eq e =>
DistanceInvalidException e -> DistanceInvalidException e -> Bool
== :: DistanceInvalidException e -> DistanceInvalidException e -> Bool
$c== :: forall e.
Eq e =>
DistanceInvalidException e -> DistanceInvalidException e -> Bool
Eq)
instance (Typeable e, Show e) => Exception (DistanceInvalidException e)
type Clusters = Vector B IntSet
{-# SCC dbscan #-}
dbscan ::
( MonadThrow m,
Ord e,
Num e,
Typeable e,
Show e,
Source r Ix2 e
) =>
DistFn r e ->
Int ->
e ->
Matrix r e ->
m Clusters
dbscan :: DistFn r e -> Int -> e -> Matrix r e -> m Clusters
dbscan DistFn r e
distFn Int
nPoints e
epsilon Matrix r e
points
| Matrix r e -> Bool
forall r ix e. Load r ix e => Array r ix e -> Bool
isEmpty Matrix r e
points = SizeException -> m Clusters
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (SizeException -> m Clusters) -> SizeException -> m Clusters
forall a b. (a -> b) -> a -> b
$ Sz Int -> SizeException
forall ix. Index ix => Sz ix -> SizeException
SizeEmptyException (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
0 :: Sz1)
| Int
nPoints Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
1 = SizeException -> m Clusters
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (SizeException -> m Clusters) -> SizeException -> m Clusters
forall a b. (a -> b) -> a -> b
$ Sz Int -> SizeException
forall ix. Index ix => Sz ix -> SizeException
SizeNegativeException (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
nPoints)
| e
epsilon e -> e -> Bool
forall a. Ord a => a -> a -> Bool
<= e
0 = DistanceInvalidException e -> m Clusters
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (DistanceInvalidException e -> m Clusters)
-> DistanceInvalidException e -> m Clusters
forall a b. (a -> b) -> a -> b
$ e -> DistanceInvalidException e
forall e. e -> DistanceInvalidException e
DistanceInvalidException e
epsilon
| Bool
otherwise =
let pointNeighbours :: Array D (Lower Ix2) IntSet
pointNeighbours = (Ix2 -> IntSet -> e -> IntSet)
-> IntSet -> Matrix r e -> Array D (Lower Ix2) IntSet
forall ix r e a.
(Index (Lower ix), Source r ix e) =>
(ix -> a -> e -> a) -> a -> Array r ix e -> Array D (Lower ix) a
ifoldlInner Ix2 -> IntSet -> e -> IntSet
collectNeighbours IntSet
forall a. Monoid a => a
mempty Matrix r e
distMat
allClusters :: Clusters
allClusters = Clusters -> Clusters
joinOverlapping (Clusters -> Clusters)
-> (Array D Int IntSet -> Clusters)
-> Array D Int IntSet
-> Clusters
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall ix e r'.
(Mutable B ix e, Load r' ix e) =>
Array r' ix e -> Array B ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @B (Array D Int IntSet -> Clusters) -> Array D Int IntSet -> Clusters
forall a b. (a -> b) -> a -> b
$ Array D Int IntSet
Array D (Lower Ix2) IntSet
pointNeighbours
largeClusters :: Vector DS IntSet
largeClusters = (IntSet -> Bool) -> Clusters -> Vector DS IntSet
forall r ix e.
Stream r ix e =>
(e -> Bool) -> Array r ix e -> Vector DS e
sfilter (\IntSet
s -> IntSet -> Int
IntSet.size IntSet
s Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
nPoints) Clusters
allClusters
in Clusters -> m Clusters
forall (m :: * -> *) a. Monad m => a -> m a
return (Clusters -> m Clusters) -> Clusters -> m Clusters
forall a b. (a -> b) -> a -> b
$ Vector DS IntSet -> Clusters
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute Vector DS IntSet
largeClusters
where
distMat :: Matrix r e
distMat = DistFn r e
distFn Matrix r e
points
{-# SCC collectNeighbours #-}
collectNeighbours :: Ix2 -> IntSet -> e -> IntSet
collectNeighbours (Int
_ :. Int
n) IntSet
acc e
d = if e
d e -> e -> Bool
forall a. Ord a => a -> a -> Bool
<= e
epsilon then Int -> IntSet -> IntSet
IntSet.insert Int
n IntSet
acc else IntSet
acc
compareSets :: (IntSet -> IntSet -> Bool) -> Vector B IntSet -> Matrix D Bool
compareSets :: (IntSet -> IntSet -> Bool) -> Clusters -> Matrix D Bool
compareSets IntSet -> IntSet -> Bool
fn Clusters
clVec =
let a :: Array D Ix2 IntSet
a = Sz Int
-> (IntSet -> Int -> IntSet)
-> Array B (Lower Ix2) IntSet
-> Array D Ix2 IntSet
forall ix r a b.
(Index ix, Manifest r (Lower ix) a) =>
Sz Int -> (a -> Int -> b) -> Array r (Lower ix) a -> Array D ix b
expandOuter @Ix2 Sz Int
sz IntSet -> Int -> IntSet
forall a b. a -> b -> a
const Clusters
Array B (Lower Ix2) IntSet
clVec
b :: Array D Ix2 IntSet
b = Array D Ix2 IntSet -> Array D Ix2 IntSet
forall r e. Source r Ix2 e => Array r Ix2 e -> Array D Ix2 e
transpose Array D Ix2 IntSet
a
compareMat :: Matrix D Bool
compareMat = (IntSet -> IntSet -> Bool)
-> Array D Ix2 IntSet -> Array D Ix2 IntSet -> Matrix D Bool
forall r1 ix e1 r2 e2 e.
(Source r1 ix e1, Source r2 ix e2) =>
(e1 -> e2 -> e) -> Array r1 ix e1 -> Array r2 ix e2 -> Array D ix e
Massiv.zipWith IntSet -> IntSet -> Bool
fn Array D Ix2 IntSet
a Array D Ix2 IntSet
b
in Matrix D Bool
compareMat
where
sz :: Sz Int
sz = Clusters -> Sz Int
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Clusters
clVec
overlap :: Vector B IntSet -> Matrix D Bool
overlap :: Clusters -> Matrix D Bool
overlap = (IntSet -> IntSet -> Bool) -> Clusters -> Matrix D Bool
compareSets (\IntSet
a IntSet
b -> Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ IntSet -> IntSet -> Bool
IntSet.disjoint IntSet
a IntSet
b)
anyOtherOverlap :: Vector B IntSet -> Bool
anyOtherOverlap :: Clusters -> Bool
anyOtherOverlap = (Bool -> Bool) -> Matrix D Bool -> Bool
forall r ix e. Source r ix e => (e -> Bool) -> Array r ix e -> Bool
Massiv.any (Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
True) (Matrix D Bool -> Bool)
-> (Clusters -> Matrix D Bool) -> Clusters -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Ix2 -> Bool -> Bool) -> Matrix D Bool -> Matrix D Bool
forall r ix e' e.
Source r ix e' =>
(ix -> e' -> e) -> Array r ix e' -> Array D ix e
imap (\(Int
m :. Int
n) Bool
v -> if Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
n then Bool
False else Bool
v) (Matrix D Bool -> Matrix D Bool)
-> (Clusters -> Matrix D Bool) -> Clusters -> Matrix D Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Clusters -> Matrix D Bool
overlap
same :: Vector B IntSet -> Matrix D Bool
same :: Clusters -> Matrix D Bool
same = (IntSet -> IntSet -> Bool) -> Clusters -> Matrix D Bool
compareSets IntSet -> IntSet -> Bool
forall a. Eq a => a -> a -> Bool
(==)
{-# SCC joinOverlapping #-}
joinOverlapping :: Vector B IntSet -> Vector B IntSet
joinOverlapping :: Clusters -> Clusters
joinOverlapping Clusters
clVec =
let
ovlpMat :: Array U Ix2 Bool
ovlpMat = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Matrix D Bool -> Array U Ix2 Bool)
-> (Clusters -> Matrix D Bool) -> Clusters -> Array U Ix2 Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Clusters -> Matrix D Bool
overlap (Clusters -> Array U Ix2 Bool) -> Clusters -> Array U Ix2 Bool
forall a b. (a -> b) -> a -> b
$ Clusters
clVec
anyOvlp :: Bool
anyOvlp = Clusters -> Bool
anyOtherOverlap Clusters
clVec
joined :: Array D (Lower Ix2) IntSet
joined =
(Ix2 -> IntSet -> Bool -> IntSet)
-> IntSet -> Array U Ix2 Bool -> Array D (Lower Ix2) IntSet
forall ix r e a.
(Index (Lower ix), Source r ix e) =>
(ix -> a -> e -> a) -> a -> Array r ix e -> Array D (Lower ix) a
ifoldlInner
(\(Int
_ :. Int
n) IntSet
acc Bool
ovlp -> if Bool
ovlp then (Clusters
clVec Clusters -> Int -> IntSet
forall r ix e. Manifest r ix e => Array r ix e -> ix -> e
! Int
n) IntSet -> IntSet -> IntSet
forall a. Semigroup a => a -> a -> a
<> IntSet
acc else IntSet
acc)
IntSet
forall a. Monoid a => a
mempty
Array U Ix2 Bool
ovlpMat
sameMat :: Array U Ix2 Bool
sameMat =
forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U
(Matrix D Bool -> Array U Ix2 Bool)
-> (Array D Int IntSet -> Matrix D Bool)
-> Array D Int IntSet
-> Array U Ix2 Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Ix2 -> Bool -> Bool) -> Matrix D Bool -> Matrix D Bool
forall r ix e' e.
Source r ix e' =>
(ix -> e' -> e) -> Array r ix e' -> Array D ix e
imap (\(Int
m :. Int
n) Bool
v -> if Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n then Bool
False else Bool
v)
(Matrix D Bool -> Matrix D Bool)
-> (Array D Int IntSet -> Matrix D Bool)
-> Array D Int IntSet
-> Matrix D Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Clusters -> Matrix D Bool
same
(Clusters -> Matrix D Bool)
-> (Array D Int IntSet -> Clusters)
-> Array D Int IntSet
-> Matrix D Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall ix e r'.
(Mutable B ix e, Load r' ix e) =>
Array r' ix e -> Array B ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @B
(Array D Int IntSet -> Array U Ix2 Bool)
-> Array D Int IntSet -> Array U Ix2 Bool
forall a b. (a -> b) -> a -> b
$ Array D Int IntSet
Array D (Lower Ix2) IntSet
joined
nonRed :: Clusters
nonRed =
forall ix e r'.
(Mutable B ix e, Load r' ix e) =>
Array r' ix e -> Array B ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @B
(Vector DS IntSet -> Clusters)
-> (Array D Int IntSet -> Vector DS IntSet)
-> Array D Int IntSet
-> Clusters
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> IntSet -> Bool) -> Array D Int IntSet -> Vector DS IntSet
forall r ix a.
Stream r ix a =>
(ix -> a -> Bool) -> Array r ix a -> Vector DS a
sifilter
( \Int
ix IntSet
_ ->
let sameAsAnyOther :: Bool
sameAsAnyOther = (Bool -> Bool) -> Array M Int Bool -> Bool
forall r ix e. Source r ix e => (e -> Bool) -> Array r ix e -> Bool
Massiv.any (Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
True) (Array M Int Bool -> Bool) -> Array M Int Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Array U Ix2 Bool
sameMat Array U Ix2 Bool -> Int -> Elt U Ix2 Bool
forall r ix e.
OuterSlice r ix e =>
Array r ix e -> Int -> Elt r ix e
!> Int
ix
in Bool -> Bool
not Bool
sameAsAnyOther
)
(Array D Int IntSet -> Clusters) -> Array D Int IntSet -> Clusters
forall a b. (a -> b) -> a -> b
$ Array D Int IntSet
Array D (Lower Ix2) IntSet
joined
in if Bool
anyOvlp then Clusters -> Clusters
joinOverlapping Clusters
nonRed else Clusters
clVec
data DendroNode e = DendroNode
{ DendroNode e -> e
distance :: e,
DendroNode e -> IntSet
cluster :: IntSet
}
deriving (DendroNode e -> DendroNode e -> Bool
(DendroNode e -> DendroNode e -> Bool)
-> (DendroNode e -> DendroNode e -> Bool) -> Eq (DendroNode e)
forall e. Eq e => DendroNode e -> DendroNode e -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DendroNode e -> DendroNode e -> Bool
$c/= :: forall e. Eq e => DendroNode e -> DendroNode e -> Bool
== :: DendroNode e -> DendroNode e -> Bool
$c== :: forall e. Eq e => DendroNode e -> DendroNode e -> Bool
Eq, Int -> DendroNode e -> ShowS
[DendroNode e] -> ShowS
DendroNode e -> String
(Int -> DendroNode e -> ShowS)
-> (DendroNode e -> String)
-> ([DendroNode e] -> ShowS)
-> Show (DendroNode e)
forall e. Show e => Int -> DendroNode e -> ShowS
forall e. Show e => [DendroNode e] -> ShowS
forall e. Show e => DendroNode e -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [DendroNode e] -> ShowS
$cshowList :: forall e. Show e => [DendroNode e] -> ShowS
show :: DendroNode e -> String
$cshow :: forall e. Show e => DendroNode e -> String
showsPrec :: Int -> DendroNode e -> ShowS
$cshowsPrec :: forall e. Show e => Int -> DendroNode e -> ShowS
Show, (forall x. DendroNode e -> Rep (DendroNode e) x)
-> (forall x. Rep (DendroNode e) x -> DendroNode e)
-> Generic (DendroNode e)
forall x. Rep (DendroNode e) x -> DendroNode e
forall x. DendroNode e -> Rep (DendroNode e) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall e x. Rep (DendroNode e) x -> DendroNode e
forall e x. DendroNode e -> Rep (DendroNode e) x
$cto :: forall e x. Rep (DendroNode e) x -> DendroNode e
$cfrom :: forall e x. DendroNode e -> Rep (DendroNode e) x
Generic)
instance (FromJSON e) => FromJSON (DendroNode e)
instance (ToJSON e) => ToJSON (DendroNode e)
newtype Dendrogram e = Dendrogram {Dendrogram e -> BinTree (DendroNode e)
unDendro :: BinTree (DendroNode e)}
deriving (Int -> Dendrogram e -> ShowS
[Dendrogram e] -> ShowS
Dendrogram e -> String
(Int -> Dendrogram e -> ShowS)
-> (Dendrogram e -> String)
-> ([Dendrogram e] -> ShowS)
-> Show (Dendrogram e)
forall e. Show e => Int -> Dendrogram e -> ShowS
forall e. Show e => [Dendrogram e] -> ShowS
forall e. Show e => Dendrogram e -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Dendrogram e] -> ShowS
$cshowList :: forall e. Show e => [Dendrogram e] -> ShowS
show :: Dendrogram e -> String
$cshow :: forall e. Show e => Dendrogram e -> String
showsPrec :: Int -> Dendrogram e -> ShowS
$cshowsPrec :: forall e. Show e => Int -> Dendrogram e -> ShowS
Show, Dendrogram e -> Dendrogram e -> Bool
(Dendrogram e -> Dendrogram e -> Bool)
-> (Dendrogram e -> Dendrogram e -> Bool) -> Eq (Dendrogram e)
forall e. Eq e => Dendrogram e -> Dendrogram e -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Dendrogram e -> Dendrogram e -> Bool
$c/= :: forall e. Eq e => Dendrogram e -> Dendrogram e -> Bool
== :: Dendrogram e -> Dendrogram e -> Bool
$c== :: forall e. Eq e => Dendrogram e -> Dendrogram e -> Bool
Eq, (forall x. Dendrogram e -> Rep (Dendrogram e) x)
-> (forall x. Rep (Dendrogram e) x -> Dendrogram e)
-> Generic (Dendrogram e)
forall x. Rep (Dendrogram e) x -> Dendrogram e
forall x. Dendrogram e -> Rep (Dendrogram e) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall e x. Rep (Dendrogram e) x -> Dendrogram e
forall e x. Dendrogram e -> Rep (Dendrogram e) x
$cto :: forall e x. Rep (Dendrogram e) x -> Dendrogram e
$cfrom :: forall e x. Dendrogram e -> Rep (Dendrogram e) x
Generic)
instance ToJSON e => ToJSON (Dendrogram e)
instance FromJSON e => FromJSON (Dendrogram e)
type DendroAcc e = Vector B (Dendrogram e)
type DendroAccM m e = MArray (PrimState m) B Ix1 (Dendrogram e)
cutDendroAt :: Ord e => Dendrogram e -> e -> Clusters
cutDendroAt :: Dendrogram e -> e -> Clusters
cutDendroAt Dendrogram e
dendro e
dist =
let nodes :: Vector DL (DendroNode e)
nodes = (DendroNode e -> Bool)
-> BinTree (DendroNode e) -> Vector DL (DendroNode e)
forall a. (a -> Bool) -> BinTree a -> Vector DL a
takeLeafyBranchesWhile (\DendroNode {e
distance :: e
$sel:distance:DendroNode :: forall e. DendroNode e -> e
distance} -> e
distance e -> e -> Bool
forall a. Ord a => a -> a -> Bool
>= e
dist) (BinTree (DendroNode e) -> Vector DL (DendroNode e))
-> (Dendrogram e -> BinTree (DendroNode e))
-> Dendrogram e
-> Vector DL (DendroNode e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dendrogram e -> BinTree (DendroNode e)
forall e. Dendrogram e -> BinTree (DendroNode e)
unDendro (Dendrogram e -> Vector DL (DendroNode e))
-> Dendrogram e -> Vector DL (DendroNode e)
forall a b. (a -> b) -> a -> b
$ Dendrogram e
dendro
clusters :: Clusters
clusters = forall ix e r'.
(Mutable B ix e, Load r' ix e) =>
Array r' ix e -> Array B ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @B (Array D Int IntSet -> Clusters)
-> (Vector DL (DendroNode e) -> Array D Int IntSet)
-> Vector DL (DendroNode e)
-> Clusters
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (DendroNode e -> IntSet)
-> Array B Int (DendroNode e) -> Array D Int IntSet
forall r ix e' e.
Source r ix e' =>
(e' -> e) -> Array r ix e' -> Array D ix e
Massiv.map DendroNode e -> IntSet
forall e. DendroNode e -> IntSet
cluster (Array B Int (DendroNode e) -> Array D Int IntSet)
-> (Vector DL (DendroNode e) -> Array B Int (DendroNode e))
-> Vector DL (DendroNode e)
-> Array D Int IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall ix e r'.
(Mutable B ix e, Load r' ix e) =>
Array r' ix e -> Array B ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @B (Vector DL (DendroNode e) -> Clusters)
-> Vector DL (DendroNode e) -> Clusters
forall a b. (a -> b) -> a -> b
$ Vector DL (DendroNode e)
nodes
in Clusters
clusters
data JoinStrat e
= SingleLinkage
| CompleteLinkage
| Median
| UPGMA
| WPGMA
| Centroid
| Ward
| LWFB e
| LW e e e e
deriving (JoinStrat e -> JoinStrat e -> Bool
(JoinStrat e -> JoinStrat e -> Bool)
-> (JoinStrat e -> JoinStrat e -> Bool) -> Eq (JoinStrat e)
forall e. Eq e => JoinStrat e -> JoinStrat e -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: JoinStrat e -> JoinStrat e -> Bool
$c/= :: forall e. Eq e => JoinStrat e -> JoinStrat e -> Bool
== :: JoinStrat e -> JoinStrat e -> Bool
$c== :: forall e. Eq e => JoinStrat e -> JoinStrat e -> Bool
Eq, Int -> JoinStrat e -> ShowS
[JoinStrat e] -> ShowS
JoinStrat e -> String
(Int -> JoinStrat e -> ShowS)
-> (JoinStrat e -> String)
-> ([JoinStrat e] -> ShowS)
-> Show (JoinStrat e)
forall e. Show e => Int -> JoinStrat e -> ShowS
forall e. Show e => [JoinStrat e] -> ShowS
forall e. Show e => JoinStrat e -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [JoinStrat e] -> ShowS
$cshowList :: forall e. Show e => [JoinStrat e] -> ShowS
show :: JoinStrat e -> String
$cshow :: forall e. Show e => JoinStrat e -> String
showsPrec :: Int -> JoinStrat e -> ShowS
$cshowsPrec :: forall e. Show e => Int -> JoinStrat e -> ShowS
Show)
{-# SCC lanceWilliams #-}
lanceWilliams ::
Fractional e =>
JoinStrat e ->
Int ->
Int ->
Int ->
e ->
e ->
e ->
e
lanceWilliams :: JoinStrat e -> Int -> Int -> Int -> e -> e -> e -> e
lanceWilliams JoinStrat e
js Int
nA Int
nB Int
nC e
dAB e
dAC e
dBC = e
alpha1 e -> e -> e
forall a. Num a => a -> a -> a
* e
dAC e -> e -> e
forall a. Num a => a -> a -> a
+ e
alpha2 e -> e -> e
forall a. Num a => a -> a -> a
* e
dBC e -> e -> e
forall a. Num a => a -> a -> a
+ e
beta e -> e -> e
forall a. Num a => a -> a -> a
* e
dAB e -> e -> e
forall a. Num a => a -> a -> a
+ e
gamma e -> e -> e
forall a. Num a => a -> a -> a
* e -> e
forall a. Num a => a -> a
abs (e
dAC e -> e -> e
forall a. Num a => a -> a -> a
- e
dBC)
where
nA' :: e
nA' = Int -> e
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
nA
nB' :: e
nB' = Int -> e
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
nB
nC' :: e
nC' = Int -> e
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
nC
(e
alpha1, e
alpha2, e
beta, e
gamma) = case JoinStrat e
js of
JoinStrat e
SingleLinkage -> (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
0, - e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2)
JoinStrat e
CompleteLinkage -> (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
0, e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2)
JoinStrat e
Median -> (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, - e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
4, e
0)
JoinStrat e
UPGMA -> (e
nA' e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB'), e
nB' e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB'), e
0, e
0)
JoinStrat e
WPGMA -> (e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
1 e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
0, e
0)
JoinStrat e
Centroid -> (e
nA' e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB'), e
nB' e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB'), - (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
* e
nB') e -> e -> e
forall a. Fractional a => a -> a -> a
/ ((e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB') e -> Int -> e
forall a b. (Num a, Integral b) => a -> b -> a
^ (Int
2 :: Int)), e
0)
JoinStrat e
Ward -> ((e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nC') e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nC'), (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nC') e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nC'), - (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nC') e -> e -> e
forall a. Fractional a => a -> a -> a
/ (e
nA' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nB' e -> e -> e
forall a. Num a => a -> a -> a
+ e
nC'), e
0)
LWFB e
b -> ((e
1 e -> e -> e
forall a. Num a => a -> a -> a
- e
b) e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, (e
1 e -> e -> e
forall a. Num a => a -> a -> a
- e
b) e -> e -> e
forall a. Fractional a => a -> a -> a
/ e
2, e
b, e
0)
LW e
a e
b e
c e
d -> (e
a, e
b, e
c, e
d)
type Neighbourlist r e = Vector r (e, Ix1)
type DistanceMatrix r e = Matrix r e
{-# SCC hca #-}
hca ::
( MonadThrow m,
Mutable r Ix1 e,
Mutable r Ix2 e,
Mutable r Ix1 (e, Ix1),
Manifest (R r) Ix1 e,
OuterSlice r Ix2 e,
Ord e,
Unbox e,
Fractional e
) =>
DistFn r e ->
JoinStrat e ->
Matrix r e ->
m (Dendrogram e)
hca :: DistFn r e -> JoinStrat e -> Matrix r e -> m (Dendrogram e)
hca DistFn r e
distFn JoinStrat e
joinStrat Matrix r e
points
| Matrix r e -> Bool
forall r ix e. Load r ix e => Array r ix e -> Bool
Massiv.isEmpty Matrix r e
points = SizeException -> m (Dendrogram e)
forall a e. Exception e => e -> a
throw (SizeException -> m (Dendrogram e))
-> SizeException -> m (Dendrogram e)
forall a b. (a -> b) -> a -> b
$ Sz Int -> SizeException
forall ix. Index ix => Sz ix -> SizeException
SizeEmptyException (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
nPoints)
| Bool
otherwise = do
let
distMat :: Matrix r e
distMat = DistFn r e
distFn Matrix r e
points
Vector r (e, Int)
nNghbr <- Matrix r e -> m (Vector r (e, Int))
forall (m :: * -> *) r e.
(MonadThrow m, Mutable r Int e, Mutable r Int (e, Int),
OuterSlice r Ix2 e, Source (R r) Int e, Ord e, Unbox e) =>
Matrix r e -> m (Vector r (e, Int))
nearestNeighbours Matrix r e
distMat
let
pq :: HashPSQ Int e Int
pq = [(Int, e, Int)] -> HashPSQ Int e Int
forall k p v.
(Hashable k, Ord k, Ord p) =>
[(k, p, v)] -> HashPSQ k p v
PQ.fromList ([(Int, e, Int)] -> HashPSQ Int e Int)
-> (Vector r (e, Int) -> [(Int, e, Int)])
-> Vector r (e, Int)
-> HashPSQ Int e Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array D Int (Int, e, Int) -> [(Int, e, Int)]
forall r ix e. Source r ix e => Array r ix e -> [e]
Massiv.toList (Array D Int (Int, e, Int) -> [(Int, e, Int)])
-> (Vector r (e, Int) -> Array D Int (Int, e, Int))
-> Vector r (e, Int)
-> [(Int, e, Int)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> (e, Int) -> (Int, e, Int))
-> Vector r (e, Int) -> Array D Int (Int, e, Int)
forall r ix e' e.
Source r ix e' =>
(ix -> e' -> e) -> Array r ix e' -> Array D ix e
Massiv.imap (\Int
k (e
d, Int
n) -> (Int
k, e
d, Int
n)) (Vector r (e, Int) -> HashPSQ Int e Int)
-> Vector r (e, Int) -> HashPSQ Int e Int
forall a b. (a -> b) -> a -> b
$ Vector r (e, Int)
nNghbr
s :: IntSet
s = [Int] -> IntSet
IntSet.fromDistinctAscList [Int
0 .. Int
nPoints Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1]
dendroAcc :: Array B Int (Dendrogram e)
dendroAcc =
Comp
-> Sz Int -> (Int -> Dendrogram e) -> Array B Int (Dendrogram e)
forall r ix e.
Construct r ix e =>
Comp -> Sz ix -> (ix -> e) -> Array r ix e
makeArray @B @Ix1
Comp
Par
(Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
nPoints)
(\Int
p -> BinTree (DendroNode e) -> Dendrogram e
forall e. BinTree (DendroNode e) -> Dendrogram e
Dendrogram (BinTree (DendroNode e) -> Dendrogram e)
-> (DendroNode e -> BinTree (DendroNode e))
-> DendroNode e
-> Dendrogram e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DendroNode e -> BinTree (DendroNode e)
forall e. e -> BinTree e
Leaf (DendroNode e -> Dendrogram e) -> DendroNode e -> Dendrogram e
forall a b. (a -> b) -> a -> b
$ DendroNode :: forall e. e -> IntSet -> DendroNode e
DendroNode {$sel:distance:DendroNode :: e
distance = e
0, $sel:cluster:DendroNode :: IntSet
cluster = Int -> IntSet
IntSet.singleton Int
p})
MArray RealWorld r Ix2 e
distMatM <- MArray RealWorld r Ix2 e -> m (MArray RealWorld r Ix2 e)
forall (m :: * -> *) a. Monad m => a -> m a
return (MArray RealWorld r Ix2 e -> m (MArray RealWorld r Ix2 e))
-> (Matrix r e -> MArray RealWorld r Ix2 e)
-> Matrix r e
-> m (MArray RealWorld r Ix2 e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO (MArray RealWorld r Ix2 e) -> MArray RealWorld r Ix2 e
forall a. IO a -> a
unsafePerformIO (IO (MArray RealWorld r Ix2 e) -> MArray RealWorld r Ix2 e)
-> (Matrix r e -> IO (MArray RealWorld r Ix2 e))
-> Matrix r e
-> MArray RealWorld r Ix2 e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix r e -> IO (MArray RealWorld r Ix2 e)
forall r ix e (m :: * -> *).
(Mutable r ix e, MonadIO m) =>
Array r ix e -> m (MArray RealWorld r ix e)
thaw (Matrix r e -> m (MArray RealWorld r Ix2 e))
-> Matrix r e -> m (MArray RealWorld r Ix2 e)
forall a b. (a -> b) -> a -> b
$ Matrix r e
distMat
MArray RealWorld r Int (e, Int)
nNghbrM <- MArray RealWorld r Int (e, Int)
-> m (MArray RealWorld r Int (e, Int))
forall (m :: * -> *) a. Monad m => a -> m a
return (MArray RealWorld r Int (e, Int)
-> m (MArray RealWorld r Int (e, Int)))
-> (Vector r (e, Int) -> MArray RealWorld r Int (e, Int))
-> Vector r (e, Int)
-> m (MArray RealWorld r Int (e, Int))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO (MArray RealWorld r Int (e, Int))
-> MArray RealWorld r Int (e, Int)
forall a. IO a -> a
unsafePerformIO (IO (MArray RealWorld r Int (e, Int))
-> MArray RealWorld r Int (e, Int))
-> (Vector r (e, Int) -> IO (MArray RealWorld r Int (e, Int)))
-> Vector r (e, Int)
-> MArray RealWorld r Int (e, Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vector r (e, Int) -> IO (MArray RealWorld r Int (e, Int))
forall r ix e (m :: * -> *).
(Mutable r ix e, MonadIO m) =>
Array r ix e -> m (MArray RealWorld r ix e)
thaw (Vector r (e, Int) -> m (MArray RealWorld r Int (e, Int)))
-> Vector r (e, Int) -> m (MArray RealWorld r Int (e, Int))
forall a b. (a -> b) -> a -> b
$ Vector r (e, Int)
nNghbr
MArray RealWorld B Int (Dendrogram e)
dendroAccM <- MArray RealWorld B Int (Dendrogram e)
-> m (MArray RealWorld B Int (Dendrogram e))
forall (m :: * -> *) a. Monad m => a -> m a
return (MArray RealWorld B Int (Dendrogram e)
-> m (MArray RealWorld B Int (Dendrogram e)))
-> (Array B Int (Dendrogram e)
-> MArray RealWorld B Int (Dendrogram e))
-> Array B Int (Dendrogram e)
-> m (MArray RealWorld B Int (Dendrogram e))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO (MArray RealWorld B Int (Dendrogram e))
-> MArray RealWorld B Int (Dendrogram e)
forall a. IO a -> a
unsafePerformIO (IO (MArray RealWorld B Int (Dendrogram e))
-> MArray RealWorld B Int (Dendrogram e))
-> (Array B Int (Dendrogram e)
-> IO (MArray RealWorld B Int (Dendrogram e)))
-> Array B Int (Dendrogram e)
-> MArray RealWorld B Int (Dendrogram e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array B Int (Dendrogram e)
-> IO (MArray RealWorld B Int (Dendrogram e))
forall r ix e (m :: * -> *).
(Mutable r ix e, MonadIO m) =>
Array r ix e -> m (MArray RealWorld r ix e)
thaw (Array B Int (Dendrogram e)
-> m (MArray RealWorld B Int (Dendrogram e)))
-> Array B Int (Dendrogram e)
-> m (MArray RealWorld B Int (Dendrogram e))
forall a b. (a -> b) -> a -> b
$ Array B Int (Dendrogram e)
dendroAcc
Dendrogram e -> m (Dendrogram e)
forall (m :: * -> *) a. Monad m => a -> m a
return (Dendrogram e -> m (Dendrogram e))
-> (IO (Dendrogram e) -> Dendrogram e)
-> IO (Dendrogram e)
-> m (Dendrogram e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO (Dendrogram e) -> Dendrogram e
forall a. IO a -> a
unsafePerformIO (IO (Dendrogram e) -> m (Dendrogram e))
-> IO (Dendrogram e) -> m (Dendrogram e)
forall a b. (a -> b) -> a -> b
$ JoinStrat e
-> MArray (PrimState IO) r Ix2 e
-> MArray (PrimState IO) r Int (e, Int)
-> HashPSQ Int e Int
-> IntSet
-> DendroAccM IO e
-> IO (Dendrogram e)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m,
PrimState m ~ RealWorld, Mutable r Ix2 e, OuterSlice r Ix2 e,
Manifest (R r) Int e, Mutable r Int (e, Int), Fractional e,
Ord e) =>
JoinStrat e
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> IntSet
-> DendroAccM m e
-> m (Dendrogram e)
agglomerate JoinStrat e
joinStrat MArray RealWorld r Ix2 e
MArray (PrimState IO) r Ix2 e
distMatM MArray RealWorld r Int (e, Int)
MArray (PrimState IO) r Int (e, Int)
nNghbrM HashPSQ Int e Int
pq IntSet
s MArray RealWorld B Int (Dendrogram e)
DendroAccM IO e
dendroAccM
where
Sz (Int
_mFeatures :. Int
nPoints) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
points
{-# SCC agglomerate #-}
agglomerate ::
( MonadThrow m,
PrimMonad m,
MonadUnliftIO m,
PrimState m ~ RealWorld,
Mutable r Ix2 e,
OuterSlice r Ix2 e,
Manifest (R r) Ix1 e,
Mutable r Ix1 (e, Ix1),
Fractional e,
Ord e
) =>
JoinStrat e ->
MArray (PrimState m) r Ix2 e ->
MArray (PrimState m) r Ix1 (e, Ix1) ->
PQ.HashPSQ Ix1 e Ix1 ->
IntSet ->
DendroAccM m e ->
m (Dendrogram e)
agglomerate :: JoinStrat e
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> IntSet
-> DendroAccM m e
-> m (Dendrogram e)
agglomerate JoinStrat e
joinStrat MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq IntSet
s DendroAccM m e
dendroAcc
| IntSet -> Bool
IntSet.null IntSet
s = IndexException -> m (Dendrogram e)
forall a e. Exception e => e -> a
throw (IndexException -> m (Dendrogram e))
-> IndexException -> m (Dendrogram e)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"No clusters left. This must never happen."
| Bool
otherwise = do
(Int, Int, e)
candidates <- MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int -> m (Int, Int, e)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, Mutable r Int (e, Int), Ord e) =>
MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int -> m (Int, Int, e)
getJoinCandidates MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq
(Int
a, Int
b, e
delta, MArray RealWorld r Int (e, Int)
nNghbrU1, HashPSQ Int e Int
pqU1) <- (Int, Int, e)
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (Int, Int, e, MArray (PrimState m) r Int (e, Int),
HashPSQ Int e Int)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m,
PrimState m ~ RealWorld, OuterSlice r Ix2 e, Manifest (R r) Int e,
Mutable r Int (e, Int), Mutable r Ix2 e, Ord e) =>
(Int, Int, e)
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (Int, Int, e, MArray (PrimState m) r Int (e, Int),
HashPSQ Int e Int)
recalculateNghbr (Int, Int, e)
candidates IntSet
s MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq
(IntSet
newS, HashPSQ Int e Int
pqU2, MArray RealWorld B Int (Dendrogram e)
newAcc) <- Int
-> Int
-> e
-> IntSet
-> HashPSQ Int e Int
-> DendroAccM m e
-> m (IntSet, HashPSQ Int e Int, DendroAccM m e)
forall (m :: * -> *) e.
(MonadThrow m, PrimMonad m, Ord e) =>
Int
-> Int
-> e
-> IntSet
-> HashPSQ Int e Int
-> DendroAccM m e
-> m (IntSet, HashPSQ Int e Int, DendroAccM m e)
joinClusters Int
a Int
b e
delta IntSet
s HashPSQ Int e Int
pqU1 DendroAccM m e
dendroAcc
MArray RealWorld r Ix2 e
newDistMat <- JoinStrat e
-> Int
-> Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> DendroAccM m e
-> m (MArray (PrimState m) r Ix2 e)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m, Mutable r Ix2 e,
Fractional e) =>
JoinStrat e
-> Int
-> Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> DendroAccM m e
-> m (MArray (PrimState m) r Ix2 e)
updateDistMat JoinStrat e
joinStrat Int
a Int
b IntSet
newS MArray (PrimState m) r Ix2 e
distMat MArray RealWorld B Int (Dendrogram e)
DendroAccM m e
newAcc
MArray RealWorld r Int (e, Int)
nNghbrU2 <- Int
-> Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> m (MArray (PrimState m) r Int (e, Int))
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m,
Mutable r Int (e, Int), Mutable r Ix2 e) =>
Int
-> Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> m (MArray (PrimState m) r Int (e, Int))
redirectNeighbours Int
a Int
b IntSet
newS MArray RealWorld r Ix2 e
MArray (PrimState m) r Ix2 e
newDistMat MArray RealWorld r Int (e, Int)
MArray (PrimState m) r Int (e, Int)
nNghbrU1
(MArray RealWorld r Int (e, Int)
nNghbrU3, HashPSQ Int e Int
pqU3) <- Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
forall (m :: * -> *) r e.
(MonadThrow m, MonadUnliftIO m, PrimMonad m, Mutable r Ix2 e,
Mutable r Int (e, Int), Ord e) =>
Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
updateWithNewBDists Int
b IntSet
newS MArray RealWorld r Ix2 e
MArray (PrimState m) r Ix2 e
newDistMat MArray RealWorld r Int (e, Int)
MArray (PrimState m) r Int (e, Int)
nNghbrU2 HashPSQ Int e Int
pqU2
(MArray RealWorld r Int (e, Int)
newNNghbr, HashPSQ Int e Int
newPQ) <- Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m,
Mutable r Int (e, Int), Mutable r Ix2 e, Ord e) =>
Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
updateBNeighbour Int
b IntSet
s MArray RealWorld r Ix2 e
MArray (PrimState m) r Ix2 e
newDistMat MArray RealWorld r Int (e, Int)
MArray (PrimState m) r Int (e, Int)
nNghbrU3 HashPSQ Int e Int
pqU3
if IntSet -> Int
IntSet.size IntSet
newS Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
then MArray RealWorld B Int (Dendrogram e)
DendroAccM m e
newAcc DendroAccM m e -> Int -> m (Dendrogram e)
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` Int
b
else JoinStrat e
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> IntSet
-> DendroAccM m e
-> m (Dendrogram e)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m,
PrimState m ~ RealWorld, Mutable r Ix2 e, OuterSlice r Ix2 e,
Manifest (R r) Int e, Mutable r Int (e, Int), Fractional e,
Ord e) =>
JoinStrat e
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> IntSet
-> DendroAccM m e
-> m (Dendrogram e)
agglomerate JoinStrat e
joinStrat MArray RealWorld r Ix2 e
MArray (PrimState m) r Ix2 e
newDistMat MArray RealWorld r Int (e, Int)
MArray (PrimState m) r Int (e, Int)
newNNghbr HashPSQ Int e Int
newPQ IntSet
newS MArray RealWorld B Int (Dendrogram e)
DendroAccM m e
newAcc
{-# SCC getJoinCandidates #-}
getJoinCandidates ::
( MonadThrow m,
PrimMonad m,
Mutable r Ix1 (e, Ix1),
Ord e
) =>
MArray (PrimState m) r Ix1 (e, Ix1) ->
PQ.HashPSQ Ix1 e Ix1 ->
m (Ix1, Ix1, e)
getJoinCandidates :: MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int -> m (Int, Int, e)
getJoinCandidates MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq = do
(Int
a, e
d, Int
_) <- case HashPSQ Int e Int -> Maybe (Int, e, Int)
forall k p v.
(Hashable k, Ord k, Ord p) =>
HashPSQ k p v -> Maybe (k, p, v)
PQ.findMin HashPSQ Int e Int
pq of
Maybe (Int, e, Int)
Nothing -> IndexException -> m (Int, e, Int)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Int, e, Int))
-> IndexException -> m (Int, e, Int)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"Empty priority queue"
Just (Int, e, Int)
v -> (Int, e, Int) -> m (Int, e, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int, e, Int)
v
(e
_, Int
b) <- MArray (PrimState m) r Int (e, Int)
nNghbr MArray (PrimState m) r Int (e, Int) -> Int -> m (e, Int)
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` Int
a
(Int, Int, e) -> m (Int, Int, e)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
a, Int
b, e
d)
{-# SCC recalculateNghbr #-}
recalculateNghbr ::
( MonadThrow m,
PrimMonad m,
MonadUnliftIO m,
PrimState m ~ RealWorld,
OuterSlice r Ix2 e,
Manifest (R r) Ix1 e,
Mutable r Ix1 (e, Ix1),
Mutable r Ix2 e,
Ord e
) =>
(Ix1, Ix1, e) ->
IntSet ->
MArray (PrimState m) r Ix2 e ->
MArray (PrimState m) r Ix1 (e, Ix1) ->
PQ.HashPSQ Ix1 e Ix1 ->
m (Ix1, Ix1, e, MArray (PrimState m) r Ix1 (e, Ix1), PQ.HashPSQ Ix1 e Ix1)
recalculateNghbr :: (Int, Int, e)
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (Int, Int, e, MArray (PrimState m) r Int (e, Int),
HashPSQ Int e Int)
recalculateNghbr (Int
cA, Int
cB, e
d) IntSet
s MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq = do
e
dAB <- MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Ix2 e -> Ix2 -> m e
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` (Int
cA Int -> Int -> Ix2
:. Int
cB)
if e
d e -> e -> Bool
forall a. Eq a => a -> a -> Bool
== e
dAB
then (Int, Int, e, MArray RealWorld r Int (e, Int), HashPSQ Int e Int)
-> m (Int, Int, e, MArray RealWorld r Int (e, Int),
HashPSQ Int e Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
cA, Int
cB, e
d, MArray RealWorld r Int (e, Int)
MArray (PrimState m) r Int (e, Int)
nNghbr, HashPSQ Int e Int
pq)
else do
Array r Int (e, Int)
dmRowA <- Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> m (MArray (PrimState m) r Int (e, Int))
forall (m :: * -> *) r e.
(PrimMonad m, MonadThrow m, MonadUnliftIO m, Mutable r Ix2 e,
Mutable r Int (e, Int)) =>
Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> m (MArray (PrimState m) r Int (e, Int))
searchRow Int
cA IntSet
s MArray (PrimState m) r Ix2 e
distMat m (MArray RealWorld r Int (e, Int))
-> (MArray RealWorld r Int (e, Int) -> m (Array r Int (e, Int)))
-> m (Array r Int (e, Int))
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Comp
-> MArray (PrimState m) r Int (e, Int) -> m (Array r Int (e, Int))
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m) =>
Comp -> MArray (PrimState m) r ix e -> m (Array r ix e)
unsafeFreeze Comp
Par
newNeighbourA :: (e, Int)
newNeighbourA@(e
minDistA, Int
_) <- Array r Int (e, Int) -> m (e, Int)
forall (m :: * -> *) r ix e.
(MonadThrow m, Source r ix e, Ord e) =>
Array r ix e -> m e
minimumM Array r Int (e, Int)
dmRowA
MArray (PrimState m) r Int (e, Int) -> Int -> (e, Int) -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> e -> m ()
writeM MArray (PrimState m) r Int (e, Int)
nNghbr Int
cA (e, Int)
newNeighbourA
let newPQ :: HashPSQ Int e Int
newPQ = (e -> e) -> Int -> HashPSQ Int e Int -> HashPSQ Int e Int
forall k p v.
(Ord k, Hashable k, Ord p) =>
(p -> p) -> k -> HashPSQ k p v -> HashPSQ k p v
pqAdjust (e -> e -> e
forall a b. a -> b -> a
const e
minDistA) Int
cA HashPSQ Int e Int
pq
(Int
a, e
newD, Int
_) <- case HashPSQ Int e Int -> Maybe (Int, e, Int)
forall k p v.
(Hashable k, Ord k, Ord p) =>
HashPSQ k p v -> Maybe (k, p, v)
PQ.findMin HashPSQ Int e Int
newPQ of
Maybe (Int, e, Int)
Nothing -> IndexException -> m (Int, e, Int)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Int, e, Int))
-> IndexException -> m (Int, e, Int)
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"Empty priority queue"
Just (Int, e, Int)
v -> (Int, e, Int) -> m (Int, e, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int, e, Int)
v
(e
_, Int
b) <- MArray (PrimState m) r Int (e, Int)
nNghbr MArray (PrimState m) r Int (e, Int) -> Int -> m (e, Int)
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` Int
a
(Int, Int, e)
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (Int, Int, e, MArray (PrimState m) r Int (e, Int),
HashPSQ Int e Int)
forall (m :: * -> *) r e.
(MonadThrow m, PrimMonad m, MonadUnliftIO m,
PrimState m ~ RealWorld, OuterSlice r Ix2 e, Manifest (R r) Int e,
Mutable r Int (e, Int), Mutable r Ix2 e, Ord e) =>
(Int, Int, e)
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (Int, Int, e, MArray (PrimState m) r Int (e, Int),
HashPSQ Int e Int)
recalculateNghbr (Int
a, Int
b, e
newD) IntSet
s MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
newPQ
{-# SCC joinClusters #-}
joinClusters ::
( MonadThrow m,
PrimMonad m,
Ord e
) =>
Ix1 ->
Ix1 ->
e ->
IntSet ->
PQ.HashPSQ Ix1 e Ix1 ->
DendroAccM m e ->
m (IntSet, PQ.HashPSQ Ix1 e Ix1, DendroAccM m e)
joinClusters :: Int
-> Int
-> e
-> IntSet
-> HashPSQ Int e Int
-> DendroAccM m e
-> m (IntSet, HashPSQ Int e Int, DendroAccM m e)
joinClusters Int
a Int
b e
d IntSet
s HashPSQ Int e Int
pq DendroAccM m e
acc = do
Dendrogram e
clA <- DendroAccM m e
acc DendroAccM m e -> Int -> m (Dendrogram e)
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` Int
a
let newPQ :: HashPSQ Int e Int
newPQ = HashPSQ Int e Int -> HashPSQ Int e Int
forall k p v.
(Hashable k, Ord k, Ord p) =>
HashPSQ k p v -> HashPSQ k p v
PQ.deleteMin HashPSQ Int e Int
pq
DendroAccM m e -> (Dendrogram e -> m (Dendrogram e)) -> Int -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> (e -> m e) -> ix -> m ()
modifyM_
DendroAccM m e
acc
( \Dendrogram e
clB ->
Dendrogram e -> m (Dendrogram e)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Dendrogram e -> m (Dendrogram e))
-> (BinTree (DendroNode e) -> Dendrogram e)
-> BinTree (DendroNode e)
-> m (Dendrogram e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BinTree (DendroNode e) -> Dendrogram e
forall e. BinTree (DendroNode e) -> Dendrogram e
Dendrogram
(BinTree (DendroNode e) -> m (Dendrogram e))
-> BinTree (DendroNode e) -> m (Dendrogram e)
forall a b. (a -> b) -> a -> b
$ DendroNode e
-> BinTree (DendroNode e)
-> BinTree (DendroNode e)
-> BinTree (DendroNode e)
forall e. e -> BinTree e -> BinTree e -> BinTree e
Node
( DendroNode :: forall e. e -> IntSet -> DendroNode e
DendroNode
{ $sel:distance:DendroNode :: e
distance = e
d,
$sel:cluster:DendroNode :: IntSet
cluster = (DendroNode e -> IntSet
forall e. DendroNode e -> IntSet
cluster (DendroNode e -> IntSet)
-> (Dendrogram e -> DendroNode e) -> Dendrogram e -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BinTree (DendroNode e) -> DendroNode e
forall e. BinTree e -> e
root (BinTree (DendroNode e) -> DendroNode e)
-> (Dendrogram e -> BinTree (DendroNode e))
-> Dendrogram e
-> DendroNode e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dendrogram e -> BinTree (DendroNode e)
forall e. Dendrogram e -> BinTree (DendroNode e)
unDendro (Dendrogram e -> IntSet) -> Dendrogram e -> IntSet
forall a b. (a -> b) -> a -> b
$ Dendrogram e
clA) IntSet -> IntSet -> IntSet
forall a. Semigroup a => a -> a -> a
<> (DendroNode e -> IntSet
forall e. DendroNode e -> IntSet
cluster (DendroNode e -> IntSet)
-> (Dendrogram e -> DendroNode e) -> Dendrogram e -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BinTree (DendroNode e) -> DendroNode e
forall e. BinTree e -> e
root (BinTree (DendroNode e) -> DendroNode e)
-> (Dendrogram e -> BinTree (DendroNode e))
-> Dendrogram e
-> DendroNode e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dendrogram e -> BinTree (DendroNode e)
forall e. Dendrogram e -> BinTree (DendroNode e)
unDendro (Dendrogram e -> IntSet) -> Dendrogram e -> IntSet
forall a b. (a -> b) -> a -> b
$ Dendrogram e
clB)
}
)
(Dendrogram e -> BinTree (DendroNode e)
forall e. Dendrogram e -> BinTree (DendroNode e)
unDendro Dendrogram e
clA)
(Dendrogram e -> BinTree (DendroNode e)
forall e. Dendrogram e -> BinTree (DendroNode e)
unDendro Dendrogram e
clB)
)
Int
b
let newS :: IntSet
newS = Int -> IntSet -> IntSet
IntSet.delete Int
a IntSet
s
(IntSet, HashPSQ Int e Int, DendroAccM m e)
-> m (IntSet, HashPSQ Int e Int, DendroAccM m e)
forall (m :: * -> *) a. Monad m => a -> m a
return (IntSet
newS, HashPSQ Int e Int
newPQ, DendroAccM m e
acc)
{-# SCC updateDistMat #-}
updateDistMat ::
( MonadThrow m,
PrimMonad m,
MonadUnliftIO m,
Mutable r Ix2 e,
Fractional e
) =>
JoinStrat e ->
Ix1 ->
Ix1 ->
IntSet ->
MArray (PrimState m) r Ix2 e ->
DendroAccM m e ->
m (MArray (PrimState m) r Ix2 e)
updateDistMat :: JoinStrat e
-> Int
-> Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> DendroAccM m e
-> m (MArray (PrimState m) r Ix2 e)
updateDistMat JoinStrat e
js Int
a Int
b IntSet
s MArray (PrimState m) r Ix2 e
distMat DendroAccM m e
dendroAcc
| Int
nDM Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
nDM = SizeException -> m (MArray (PrimState m) r Ix2 e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (SizeException -> m (MArray (PrimState m) r Ix2 e))
-> SizeException -> m (MArray (PrimState m) r Ix2 e)
forall a b. (a -> b) -> a -> b
$ Sz Int -> Sz Int -> SizeException
forall ix. Index ix => Sz ix -> Sz ix -> SizeException
SizeMismatchException (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
nDM) (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
nCl)
| Int
mDM Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
nDM = SizeException -> m (MArray (PrimState m) r Ix2 e)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (SizeException -> m (MArray (PrimState m) r Ix2 e))
-> SizeException -> m (MArray (PrimState m) r Ix2 e)
forall a b. (a -> b) -> a -> b
$ Sz Int -> Sz Int -> SizeException
forall ix. Index ix => Sz ix -> Sz ix -> SizeException
SizeMismatchException (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
mDM) (Int -> Sz Int
forall ix. Index ix => ix -> Sz ix
Sz Int
nDM)
| Bool
otherwise = do
e
dAB <- MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Ix2 e -> Ix2 -> m e
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` (Int
a Int -> Int -> Ix2
:. Int
b)
Int
nA <- Int -> m Int
clSize Int
a
Int
nB <- Int -> m Int
clSize Int
b
Array U Int Int -> (Int -> m ()) -> m ()
forall r ix e (m :: * -> *) a.
(Source r ix e, MonadUnliftIO m) =>
Array r ix e -> (e -> m a) -> m ()
forIO_ Array U Int Int
ixV ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
ix -> do
e
dAX <- MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Ix2 e -> Ix2 -> m e
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` (Int
a Int -> Int -> Ix2
:. Int
ix)
Int
nX <- Int -> m Int
clSize Int
ix
MArray (PrimState m) r Ix2 e -> (e -> m e) -> Ix2 -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> (e -> m e) -> ix -> m ()
modifyM_ MArray (PrimState m) r Ix2 e
distMat (\e
dBX -> e -> m e
forall (m :: * -> *) a. Monad m => a -> m a
return (e -> m e) -> e -> m e
forall a b. (a -> b) -> a -> b
$ JoinStrat e -> Int -> Int -> Int -> e -> e -> e -> e
forall e.
Fractional e =>
JoinStrat e -> Int -> Int -> Int -> e -> e -> e -> e
lanceWilliams JoinStrat e
js Int
nA Int
nB Int
nX e
dAB e
dAX e
dBX) (Int
ix Int -> Int -> Ix2
:. Int
b)
MArray (PrimState m) r Ix2 e -> (e -> m e) -> Ix2 -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> (e -> m e) -> ix -> m ()
modifyM_ MArray (PrimState m) r Ix2 e
distMat (\e
dBX -> e -> m e
forall (m :: * -> *) a. Monad m => a -> m a
return (e -> m e) -> e -> m e
forall a b. (a -> b) -> a -> b
$ JoinStrat e -> Int -> Int -> Int -> e -> e -> e -> e
forall e.
Fractional e =>
JoinStrat e -> Int -> Int -> Int -> e -> e -> e -> e
lanceWilliams JoinStrat e
js Int
nA Int
nB Int
nX e
dAB e
dAX e
dBX) (Int
b Int -> Int -> Ix2
:. Int
ix)
MArray (PrimState m) r Ix2 e -> m (MArray (PrimState m) r Ix2 e)
forall (m :: * -> *) a. Monad m => a -> m a
return MArray (PrimState m) r Ix2 e
distMat
where
Sz (Int
mDM :. Int
nDM) = MArray (PrimState m) r Ix2 e -> Sz Ix2
forall r ix e s. Mutable r ix e => MArray s r ix e -> Sz ix
msize MArray (PrimState m) r Ix2 e
distMat
Sz Int
nCl = DendroAccM m e -> Sz Int
forall r ix e s. Mutable r ix e => MArray s r ix e -> Sz ix
msize DendroAccM m e
dendroAcc
ixV :: Array U Int Int
ixV = Comp -> [Int] -> Array U Int Int
forall r e. Mutable r Int e => Comp -> [e] -> Array r Int e
Massiv.fromList @U Comp
Par ([Int] -> Array U Int Int)
-> (IntSet -> [Int]) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> [Int]
IntSet.toAscList (IntSet -> [Int]) -> (IntSet -> IntSet) -> IntSet -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> IntSet -> IntSet
IntSet.delete Int
b (IntSet -> Array U Int Int) -> IntSet -> Array U Int Int
forall a b. (a -> b) -> a -> b
$ IntSet
s
clSize :: Int -> m Int
clSize Int
i = IntSet -> Int
IntSet.size (IntSet -> Int) -> (Dendrogram e -> IntSet) -> Dendrogram e -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DendroNode e -> IntSet
forall e. DendroNode e -> IntSet
cluster (DendroNode e -> IntSet)
-> (Dendrogram e -> DendroNode e) -> Dendrogram e -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BinTree (DendroNode e) -> DendroNode e
forall e. BinTree e -> e
root (BinTree (DendroNode e) -> DendroNode e)
-> (Dendrogram e -> BinTree (DendroNode e))
-> Dendrogram e
-> DendroNode e
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dendrogram e -> BinTree (DendroNode e)
forall e. Dendrogram e -> BinTree (DendroNode e)
unDendro (Dendrogram e -> Int) -> m (Dendrogram e) -> m Int
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DendroAccM m e
dendroAcc DendroAccM m e -> Int -> m (Dendrogram e)
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` Int
i
{-# SCC redirectNeighbours #-}
redirectNeighbours ::
( MonadThrow m,
PrimMonad m,
MonadUnliftIO m,
Mutable r Ix1 (e, Ix1),
Mutable r Ix2 e
) =>
Ix1 ->
Ix1 ->
IntSet ->
MArray (PrimState m) r Ix2 e ->
MArray (PrimState m) r Ix1 (e, Ix1) ->
m (MArray (PrimState m) r Ix1 (e, Ix1))
redirectNeighbours :: Int
-> Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> m (MArray (PrimState m) r Int (e, Int))
redirectNeighbours Int
a Int
b IntSet
s MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr = do
Array U Int Int -> (Int -> m ()) -> m ()
forall r ix e (m :: * -> *) a.
(Source r ix e, MonadUnliftIO m) =>
Array r ix e -> (e -> m a) -> m ()
forIO_ Array U Int Int
ixV ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
ix ->
MArray (PrimState m) r Int (e, Int)
-> ((e, Int) -> m (e, Int)) -> Int -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> (e -> m e) -> ix -> m ()
modifyM_
MArray (PrimState m) r Int (e, Int)
nNghbr
( \old :: (e, Int)
old@(e
_, Int
nghbrX) ->
if Int
nghbrX Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
a
then MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Ix2 e -> Ix2 -> m e
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` (Int
ix Int -> Int -> Ix2
:. Int
b) m e -> (e -> m (e, Int)) -> m (e, Int)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \e
dXB -> (e, Int) -> m (e, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (e
dXB, Int
b)
else (e, Int) -> m (e, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (e, Int)
old
)
Int
ix
MArray (PrimState m) r Int (e, Int)
-> m (MArray (PrimState m) r Int (e, Int))
forall (m :: * -> *) a. Monad m => a -> m a
return MArray (PrimState m) r Int (e, Int)
nNghbr
where
ixV :: Array U Int Int
ixV = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array DS Int Int -> Array U Int Int)
-> (IntSet -> Array DS Int Int) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Bool) -> Array U Int Int -> Array DS Int Int
forall r ix e.
Stream r ix e =>
(e -> Bool) -> Array r ix e -> Vector DS e
sfilter (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
a) (Array U Int Int -> Array DS Int Int)
-> (IntSet -> Array U Int Int) -> IntSet -> Array DS Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Comp -> [Int] -> Array U Int Int
forall r e. Mutable r Int e => Comp -> [e] -> Array r Int e
Massiv.fromList @U Comp
Par ([Int] -> Array U Int Int)
-> (IntSet -> [Int]) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> [Int]
IntSet.toAscList (IntSet -> Array U Int Int) -> IntSet -> Array U Int Int
forall a b. (a -> b) -> a -> b
$ IntSet
s
{-# SCC updateWithNewBDists #-}
updateWithNewBDists ::
( MonadThrow m,
MonadUnliftIO m,
PrimMonad m,
Mutable r Ix2 e,
Mutable r Ix1 (e, Ix1),
Ord e
) =>
Ix1 ->
IntSet ->
MArray (PrimState m) r Ix2 e ->
MArray (PrimState m) r Ix1 (e, Ix1) ->
PQ.HashPSQ Ix1 e Ix1 ->
m (MArray (PrimState m) r Ix1 (e, Ix1), PQ.HashPSQ Ix1 e Ix1)
updateWithNewBDists :: Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
updateWithNewBDists Int
b IntSet
s MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq = do
TVar (HashPSQ Int e Int)
pqT <- HashPSQ Int e Int -> m (TVar (HashPSQ Int e Int))
forall (m :: * -> *) a. MonadIO m => a -> m (TVar a)
newTVarIO HashPSQ Int e Int
pq
Array U Int Int -> (Int -> m ()) -> m ()
forall r ix e (m :: * -> *) a.
(Source r ix e, MonadUnliftIO m) =>
Array r ix e -> (e -> m a) -> m ()
forIO_ Array U Int Int
ixV ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
ix -> do
e
dBX <- MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Ix2 e -> Ix2 -> m e
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` (Int
ix Int -> Int -> Ix2
:. Int
b)
HashPSQ Int e Int
currentPQ <- TVar (HashPSQ Int e Int) -> m (HashPSQ Int e Int)
forall (m :: * -> *) a. MonadIO m => TVar a -> m a
readTVarIO TVar (HashPSQ Int e Int)
pqT
e
minDistX <- case Int -> HashPSQ Int e Int -> Maybe (e, Int)
forall k p v.
(Ord k, Hashable k, Ord p) =>
k -> HashPSQ k p v -> Maybe (p, v)
PQ.lookup Int
ix HashPSQ Int e Int
currentPQ of
Maybe (e, Int)
Nothing -> IndexException -> m e
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m e) -> IndexException -> m e
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"Empty priority queue."
Just (e
p, Int
_v) -> e -> m e
forall (m :: * -> *) a. Monad m => a -> m a
return e
p
if e
dBX e -> e -> Bool
forall a. Ord a => a -> a -> Bool
< e
minDistX
then do
MArray (PrimState m) r Int (e, Int) -> Int -> (e, Int) -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> e -> m ()
writeM MArray (PrimState m) r Int (e, Int)
nNghbr Int
ix (e
dBX, Int
b)
STM () -> m ()
forall (m :: * -> *) a. MonadIO m => STM a -> m a
atomically (STM () -> m ())
-> (HashPSQ Int e Int -> STM ()) -> HashPSQ Int e Int -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TVar (HashPSQ Int e Int) -> HashPSQ Int e Int -> STM ()
forall a. TVar a -> a -> STM ()
writeTVar TVar (HashPSQ Int e Int)
pqT (HashPSQ Int e Int -> STM ())
-> (HashPSQ Int e Int -> HashPSQ Int e Int)
-> HashPSQ Int e Int
-> STM ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e -> e) -> Int -> HashPSQ Int e Int -> HashPSQ Int e Int
forall k p v.
(Ord k, Hashable k, Ord p) =>
(p -> p) -> k -> HashPSQ k p v -> HashPSQ k p v
pqAdjust (e -> e -> e
forall a b. a -> b -> a
const e
dBX) Int
ix (HashPSQ Int e Int -> m ()) -> HashPSQ Int e Int -> m ()
forall a b. (a -> b) -> a -> b
$ HashPSQ Int e Int
currentPQ
else STM () -> m ()
forall (m :: * -> *) a. MonadIO m => STM a -> m a
atomically (STM () -> m ())
-> (HashPSQ Int e Int -> STM ()) -> HashPSQ Int e Int -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TVar (HashPSQ Int e Int) -> HashPSQ Int e Int -> STM ()
forall a. TVar a -> a -> STM ()
writeTVar TVar (HashPSQ Int e Int)
pqT (HashPSQ Int e Int -> m ()) -> HashPSQ Int e Int -> m ()
forall a b. (a -> b) -> a -> b
$ HashPSQ Int e Int
currentPQ
HashPSQ Int e Int
newPQ <- TVar (HashPSQ Int e Int) -> m (HashPSQ Int e Int)
forall (m :: * -> *) a. MonadIO m => TVar a -> m a
readTVarIO TVar (HashPSQ Int e Int)
pqT
(MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (MArray (PrimState m) r Int (e, Int)
nNghbr, HashPSQ Int e Int
newPQ)
where
ixV :: Array U Int Int
ixV = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array DS Int Int -> Array U Int Int)
-> (IntSet -> Array DS Int Int) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Bool) -> Array U Int Int -> Array DS Int Int
forall r ix e.
Stream r ix e =>
(e -> Bool) -> Array r ix e -> Vector DS e
Massiv.sfilter (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
b) (Array U Int Int -> Array DS Int Int)
-> (IntSet -> Array U Int Int) -> IntSet -> Array DS Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Comp -> [Int] -> Array U Int Int
forall r e. Mutable r Int e => Comp -> [e] -> Array r Int e
Massiv.fromList @U Comp
Par ([Int] -> Array U Int Int)
-> (IntSet -> [Int]) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> [Int]
IntSet.toAscList (IntSet -> Array U Int Int) -> IntSet -> Array U Int Int
forall a b. (a -> b) -> a -> b
$ IntSet
s
{-# SCC updateBNeighbour #-}
updateBNeighbour ::
( MonadThrow m,
PrimMonad m,
MonadUnliftIO m,
Mutable r Ix1 (e, Ix1),
Mutable r Ix2 e,
Ord e
) =>
Ix1 ->
IntSet ->
MArray (PrimState m) r Ix2 e ->
MArray (PrimState m) r Ix1 (e, Ix1) ->
PQ.HashPSQ Ix1 e Ix1 ->
m (MArray (PrimState m) r Ix1 (e, Ix1), PQ.HashPSQ Ix1 e Ix1)
updateBNeighbour :: Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> MArray (PrimState m) r Int (e, Int)
-> HashPSQ Int e Int
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
updateBNeighbour Int
b IntSet
s MArray (PrimState m) r Ix2 e
distMat MArray (PrimState m) r Int (e, Int)
nNghbr HashPSQ Int e Int
pq =
if Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
nNeighbours
then (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (MArray (PrimState m) r Int (e, Int)
nNghbr, HashPSQ Int e Int
pq)
else do
Array r Int (e, Int)
rowAB <- Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> m (MArray (PrimState m) r Int (e, Int))
forall (m :: * -> *) r e.
(PrimMonad m, MonadThrow m, MonadUnliftIO m, Mutable r Ix2 e,
Mutable r Int (e, Int)) =>
Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> m (MArray (PrimState m) r Int (e, Int))
searchRow Int
b IntSet
s MArray (PrimState m) r Ix2 e
distMat m (MArray (PrimState m) r Int (e, Int))
-> (MArray (PrimState m) r Int (e, Int)
-> m (Array r Int (e, Int)))
-> m (Array r Int (e, Int))
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Comp
-> MArray (PrimState m) r Int (e, Int) -> m (Array r Int (e, Int))
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m) =>
Comp -> MArray (PrimState m) r ix e -> m (Array r ix e)
unsafeFreeze Comp
Par
newNeighbourB :: (e, Int)
newNeighbourB@(e
distB, Int
neighbourB) <- Array r Int (e, Int) -> m (e, Int)
forall (m :: * -> *) r ix e.
(MonadThrow m, Source r ix e, Ord e) =>
Array r ix e -> m e
minimumM Array r Int (e, Int)
rowAB
MArray (PrimState m) r Int (e, Int) -> Int -> (e, Int) -> m ()
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> e -> m ()
writeM MArray (PrimState m) r Int (e, Int)
nNghbr Int
b (e, Int)
newNeighbourB
let newPQ :: HashPSQ Int e Int
newPQ = (e -> e) -> Int -> HashPSQ Int e Int -> HashPSQ Int e Int
forall k p v.
(Ord k, Hashable k, Ord p) =>
(p -> p) -> k -> HashPSQ k p v -> HashPSQ k p v
pqAdjust (e -> e -> e
forall a b. a -> b -> a
const e
distB) Int
neighbourB HashPSQ Int e Int
pq
(MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
-> m (MArray (PrimState m) r Int (e, Int), HashPSQ Int e Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (MArray (PrimState m) r Int (e, Int)
nNghbr, HashPSQ Int e Int
newPQ)
where
Sz Int
nNeighbours = MArray (PrimState m) r Int (e, Int) -> Sz Int
forall r ix e s. Mutable r ix e => MArray s r ix e -> Sz ix
msize MArray (PrimState m) r Int (e, Int)
nNghbr
{-# SCC nearestNeighbours #-}
nearestNeighbours ::
( MonadThrow m,
Mutable r Ix1 e,
Mutable r Ix1 (e, Ix1),
OuterSlice r Ix2 e,
Source (R r) Ix1 e,
Ord e,
Unbox e
) =>
Matrix r e ->
m (Vector r (e, Ix1))
nearestNeighbours :: Matrix r e -> m (Vector r (e, Int))
nearestNeighbours Matrix r e
distMat
| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
n = IndexException -> m (Vector r (e, Int))
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Vector r (e, Int)))
-> IndexException -> m (Vector r (e, Int))
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"Distance matrix is not square"
| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = IndexException -> m (Vector r (e, Int))
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (IndexException -> m (Vector r (e, Int)))
-> IndexException -> m (Vector r (e, Int))
forall a b. (a -> b) -> a -> b
$ String -> IndexException
IndexException String
"Distance matrix is empty"
| Bool
otherwise =
let rows :: Array B Int (Array (R r) Int e)
rows = forall ix e r'.
(Mutable B ix e, Load r' ix e) =>
Array r' ix e -> Array B ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @B (Array D Int (Array (R r) Int e)
-> Array B Int (Array (R r) Int e))
-> (Matrix r e -> Array D Int (Array (R r) Int e))
-> Matrix r e
-> Array B Int (Array (R r) Int e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Matrix r e -> Array D Int (Array (R r) Int e)
forall r ix e.
OuterSlice r ix e =>
Array r ix e -> Array D Int (Elt r ix e)
outerSlices (Matrix r e -> Array B Int (Array (R r) Int e))
-> Matrix r e -> Array B Int (Array (R r) Int e)
forall a b. (a -> b) -> a -> b
$ Matrix r e
distMat
minDistIx :: Array D Int (e, Int)
minDistIx =
(Int -> Array (R r) Int e -> (e, Int))
-> Array B Int (Array (R r) Int e) -> Array D Int (e, Int)
forall r ix e' e.
Source r ix e' =>
(ix -> e' -> e) -> Array r ix e' -> Array D ix e
Massiv.imap (\Int
i Array (R r) Int e
v -> IO (e, Int) -> (e, Int)
forall a. IO a -> a
unsafePerformIO (IO (e, Int) -> (e, Int))
-> (Array (R r) Int e -> IO (e, Int))
-> Array (R r) Int e
-> (e, Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Vector U e -> IO (e, Int)
forall r e (m :: * -> *).
(Manifest r Int e, MonadThrow m, Ord e) =>
Int -> Vector r e -> m (e, Int)
minDistAtVec Int
i (Vector U e -> IO (e, Int))
-> (Array (R r) Int e -> Vector U e)
-> Array (R r) Int e
-> IO (e, Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array (R r) Int e -> (e, Int)) -> Array (R r) Int e -> (e, Int)
forall a b. (a -> b) -> a -> b
$ Array (R r) Int e
v) (Array B Int (Array (R r) Int e) -> Array D Int (e, Int))
-> (Array B Int (Array (R r) Int e)
-> Array B Int (Array (R r) Int e))
-> Array B Int (Array (R r) Int e)
-> Array D Int (e, Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array B Int (Array (R r) Int e) -> Array B Int (Array (R r) Int e)
forall r e. Source r Int e => Vector r e -> Vector r e
init (Array B Int (Array (R r) Int e) -> Array D Int (e, Int))
-> Array B Int (Array (R r) Int e) -> Array D Int (e, Int)
forall a b. (a -> b) -> a -> b
$ Array B Int (Array (R r) Int e)
rows
in Vector r (e, Int) -> m (Vector r (e, Int))
forall (m :: * -> *) a. Monad m => a -> m a
return (Vector r (e, Int) -> m (Vector r (e, Int)))
-> (Array D Int (e, Int) -> Vector r (e, Int))
-> Array D Int (e, Int)
-> m (Vector r (e, Int))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array D Int (e, Int) -> Vector r (e, Int)
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute (Array D Int (e, Int) -> m (Vector r (e, Int)))
-> Array D Int (e, Int) -> m (Vector r (e, Int))
forall a b. (a -> b) -> a -> b
$ Array D Int (e, Int)
minDistIx
where
Sz (Int
m :. Int
n) = Matrix r e -> Sz Ix2
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Matrix r e
distMat
searchRow ::
( PrimMonad m,
MonadThrow m,
MonadUnliftIO m,
Mutable r Ix2 e,
Mutable r Ix1 (e, Ix1)
) =>
Ix1 ->
IntSet ->
MArray (PrimState m) r Ix2 e ->
m (MArray (PrimState m) r Ix1 (e, Ix1))
searchRow :: Int
-> IntSet
-> MArray (PrimState m) r Ix2 e
-> m (MArray (PrimState m) r Int (e, Int))
searchRow Int
x IntSet
s MArray (PrimState m) r Ix2 e
dm =
Comp
-> Sz Int
-> (Int -> m (e, Int))
-> m (MArray (PrimState m) r Int (e, Int))
forall r ix e (m :: * -> *).
(PrimMonad m, MonadUnliftIO m, Mutable r ix e) =>
Comp -> Sz ix -> (ix -> m e) -> m (MArray (PrimState m) r ix e)
makeMArray Comp
Par (Array U Int Int -> Sz Int
forall r ix e. Load r ix e => Array r ix e -> Sz ix
size Array U Int Int
ixV) ((Int -> m (e, Int)) -> m (MArray (PrimState m) r Int (e, Int)))
-> (Int -> m (e, Int)) -> m (MArray (PrimState m) r Int (e, Int))
forall a b. (a -> b) -> a -> b
$ \Int
ix -> do
Int
dmIx <- Array U Int Int
ixV Array U Int Int -> Int -> m Int
forall r ix e (m :: * -> *).
(Manifest r ix e, MonadThrow m) =>
Array r ix e -> ix -> m e
!? Int
ix
(e, Int)
val <- (MArray (PrimState m) r Ix2 e
dm MArray (PrimState m) r Ix2 e -> Ix2 -> m e
forall r ix e (m :: * -> *).
(Mutable r ix e, PrimMonad m, MonadThrow m) =>
MArray (PrimState m) r ix e -> ix -> m e
`readM` (Int
x Int -> Int -> Ix2
:. Int
dmIx)) m e -> (e -> m (e, Int)) -> m (e, Int)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \e
dist -> (e, Int) -> m (e, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (e
dist, Int
dmIx)
(e, Int) -> m (e, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (e, Int)
val
where
ixV :: Vector U Ix1
ixV :: Array U Int Int
ixV = forall ix e r'.
(Mutable U ix e, Load r' ix e) =>
Array r' ix e -> Array U ix e
forall r ix e r'.
(Mutable r ix e, Load r' ix e) =>
Array r' ix e -> Array r ix e
compute @U (Array DS Int Int -> Array U Int Int)
-> (IntSet -> Array DS Int Int) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Bool) -> Array U Int Int -> Array DS Int Int
forall r ix e.
Stream r ix e =>
(e -> Bool) -> Array r ix e -> Vector DS e
sfilter (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
x) (Array U Int Int -> Array DS Int Int)
-> (IntSet -> Array U Int Int) -> IntSet -> Array DS Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Comp -> [Int] -> Array U Int Int
forall r e. Mutable r Int e => Comp -> [e] -> Array r Int e
Massiv.fromList @U Comp
Par ([Int] -> Array U Int Int)
-> (IntSet -> [Int]) -> IntSet -> Array U Int Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> [Int]
IntSet.toAscList (IntSet -> Array U Int Int) -> IntSet -> Array U Int Int
forall a b. (a -> b) -> a -> b
$ IntSet
s