Cabal-2.0.0.2: A framework for packaging Haskell software

Safe HaskellNone
LanguageHaskell2010

Distribution.Compat.Prelude.Internal

Contents

Description

Warning: This modules' API is not stable. Use at your own risk, or better yet, use base-compat!

This module re-exports the non-exposed Distribution.Compat.Prelude module for reuse by cabal-install's Distribution.Client.Compat.Prelude module.

It is highly discouraged to rely on this module for Setup.hs scripts since its API is not stable.

Synopsis

Prelude

Common type-classes

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Since: 4.9.0.0

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

(a <> b) <> c = a <> (b <> c)

If a is also a Monoid we further require

(<>) = mappend
Instances
Semigroup Ordering

Since: 4.9.0.0

Instance details
Semigroup ()

Since: 4.9.0.0

Instance details

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup Void

Since: 4.9.0.0

Instance details

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup Event

Since: 4.10.0.0

Instance details

Methods

(<>) :: Event -> Event -> Event #

sconcat :: NonEmpty Event -> Event #

stimes :: Integral b => b -> Event -> Event #

Semigroup Lifetime

Since: 4.10.0.0

Instance details
Semigroup All

Since: 4.9.0.0

Instance details

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any

Since: 4.9.0.0

Instance details

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup ShortByteString 
Instance details
Semigroup ByteString 
Instance details
Semigroup ByteString 
Instance details
Semigroup Builder 
Instance details
Semigroup IntSet 
Instance details
Semigroup Doc 
Instance details

Methods

(<>) :: Doc -> Doc -> Doc #

sconcat :: NonEmpty Doc -> Doc #

stimes :: Integral b => b -> Doc -> Doc #

Semigroup CDialect # 
Instance details
Semigroup ExecutableScope # 
Instance details
Semigroup ForeignLibType # 
Instance details
Semigroup ShortText # 
Instance details
Semigroup TestSuiteInterface # 
Instance details
Semigroup BenchmarkInterface # 
Instance details
Semigroup UnqualComponentName # 
Instance details
Semigroup SetupBuildInfo # 
Instance details
Semigroup DependencyMap # 
Instance details
Semigroup BuildInfo # 
Instance details
Semigroup TestSuite # 
Instance details
Semigroup Library # 
Instance details
Semigroup ForeignLib # 
Instance details
Semigroup Executable # 
Instance details
Semigroup Benchmark # 
Instance details
Semigroup Component # 
Instance details
Semigroup BenchmarkFlags # 
Instance details
Semigroup TestFlags # 
Instance details
Semigroup TestShowDetails # 
Instance details
Semigroup ReplFlags # 
Instance details
Semigroup BuildFlags # 
Instance details
Semigroup CleanFlags # 
Instance details
Semigroup HaddockFlags # 
Instance details
Semigroup DoctestFlags # 
Instance details
Semigroup HscolourFlags # 
Instance details
Semigroup RegisterFlags # 
Instance details
Semigroup SDistFlags # 
Instance details
Semigroup InstallFlags # 
Instance details
Semigroup CopyFlags # 
Instance details
Semigroup ConfigFlags # 
Instance details
Semigroup AllowOlder # 
Instance details
Semigroup AllowNewer # 
Instance details
Semigroup RelaxDeps # 
Instance details
Semigroup GlobalFlags # 
Instance details
Semigroup GhcOptions # 
Instance details
Semigroup [a]

Since: 4.9.0.0

Instance details

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (IO a)

Since: 4.10.0.0

Instance details

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Ord a => Semigroup (Min a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Ord a => Semigroup (Max a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Semigroup (First a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid m => Semigroup (WrappedMonoid m)

Since: 4.9.0.0

Instance details
Semigroup a => Semigroup (Option a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup (NonEmpty a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (Identity a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup a => Semigroup (Dual a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Sum a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Semigroup (Product a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Semigroup (First a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup (PutM ()) 
Instance details

Methods

(<>) :: PutM () -> PutM () -> PutM () #

sconcat :: NonEmpty (PutM ()) -> PutM () #

stimes :: Integral b => b -> PutM () -> PutM () #

Semigroup (IntMap a) 
Instance details

Methods

(<>) :: IntMap a -> IntMap a -> IntMap a #

sconcat :: NonEmpty (IntMap a) -> IntMap a #

stimes :: Integral b => b -> IntMap a -> IntMap a #

Semigroup (Seq a) 
Instance details

Methods

(<>) :: Seq a -> Seq a -> Seq a #

sconcat :: NonEmpty (Seq a) -> Seq a #

stimes :: Integral b => b -> Seq a -> Seq a #

Ord a => Semigroup (Set a) 
Instance details

Methods

(<>) :: Set a -> Set a -> Set a #

sconcat :: NonEmpty (Set a) -> Set a #

stimes :: Integral b => b -> Set a -> Set a #

Semigroup (Doc a) 
Instance details

Methods

(<>) :: Doc a -> Doc a -> Doc a #

sconcat :: NonEmpty (Doc a) -> Doc a #

stimes :: Integral b => b -> Doc a -> Doc a #

Semigroup (Last' a) # 
Instance details

Methods

(<>) :: Last' a -> Last' a -> Last' a #

sconcat :: NonEmpty (Last' a) -> Last' a #

stimes :: Integral b => b -> Last' a -> Last' a #

Semigroup (DList a) # 
Instance details

Methods

(<>) :: DList a -> DList a -> DList a #

sconcat :: NonEmpty (DList a) -> DList a #

stimes :: Integral b => b -> DList a -> DList a #

Semigroup (Condition a) # 
Instance details

Methods

(<>) :: Condition a -> Condition a -> Condition a #

sconcat :: NonEmpty (Condition a) -> Condition a #

stimes :: Integral b => b -> Condition a -> Condition a #

Semigroup dir => Semigroup (InstallDirs dir) # 
Instance details

Methods

(<>) :: InstallDirs dir -> InstallDirs dir -> InstallDirs dir #

sconcat :: NonEmpty (InstallDirs dir) -> InstallDirs dir #

stimes :: Integral b => b -> InstallDirs dir -> InstallDirs dir #

Ord a => Semigroup (NubListR a) # 
Instance details

Methods

(<>) :: NubListR a -> NubListR a -> NubListR a #

sconcat :: NonEmpty (NubListR a) -> NubListR a #

stimes :: Integral b => b -> NubListR a -> NubListR a #

Ord a => Semigroup (NubList a) # 
Instance details

Methods

(<>) :: NubList a -> NubList a -> NubList a #

sconcat :: NonEmpty (NubList a) -> NubList a #

stimes :: Integral b => b -> NubList a -> NubList a #

Semigroup (PackageIndex InstalledPackageInfo) # 
Instance details
Semigroup (Flag a) # 
Instance details

Methods

(<>) :: Flag a -> Flag a -> Flag a #

sconcat :: NonEmpty (Flag a) -> Flag a #

stimes :: Integral b => b -> Flag a -> Flag a #

Semigroup b => Semigroup (a -> b)

Since: 4.9.0.0

Instance details

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b #

Semigroup (Either a b)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (a, b)

Since: 4.9.0.0

Instance details

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b0 => b0 -> (a, b) -> (a, b) #

Semigroup (Proxy k s)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Proxy k s -> Proxy k s -> Proxy k s #

sconcat :: NonEmpty (Proxy k s) -> Proxy k s #

stimes :: Integral b => b -> Proxy k s -> Proxy k s #

Ord k => Semigroup (Map k v) 
Instance details

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c)

Since: 4.9.0.0

Instance details

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b0 => b0 -> (a, b, c) -> (a, b, c) #

Semigroup a => Semigroup (Const k a b)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Const k a b -> Const k a b -> Const k a b #

sconcat :: NonEmpty (Const k a b) -> Const k a b #

stimes :: Integral b0 => b0 -> Const k a b -> Const k a b #

Alternative f => Semigroup (Alt * f a)

Since: 4.9.0.0

Instance details

Methods

(<>) :: Alt * f a -> Alt * f a -> Alt * f a #

sconcat :: NonEmpty (Alt * f a) -> Alt * f a #

stimes :: Integral b => b -> Alt * f a -> Alt * f a #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d)

Since: 4.9.0.0

Instance details

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b0 => b0 -> (a, b, c, d) -> (a, b, c, d) #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e)

Since: 4.9.0.0

Instance details

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b0 => b0 -> (a, b, c, d, e) -> (a, b, c, d, e) #

gmappend :: (Generic a, GSemigroup (Rep a)) => a -> a -> a Source #

Generically generate a Semigroup (<>) operation for any type implementing Generic. This operation will append two values by point-wise appending their component fields. It is only defined for product types.

gmappend a (gmappend b c) = gmappend (gmappend a b) c

gmempty :: (Generic a, GMonoid (Rep a)) => a Source #

Generically generate a Monoid mempty for any product-like type implementing Generic.

It is only defined for product types.

gmappend gmempty a = a = gmappend a gmempty

class Typeable k (a :: k) #

The class Typeable allows a concrete representation of a type to be calculated.

Minimal complete definition

typeRep#

class Typeable * a => Data a #

The Data class comprehends a fundamental primitive gfoldl for folding over constructor applications, say terms. This primitive can be instantiated in several ways to map over the immediate subterms of a term; see the gmap combinators later in this class. Indeed, a generic programmer does not necessarily need to use the ingenious gfoldl primitive but rather the intuitive gmap combinators. The gfoldl primitive is completed by means to query top-level constructors, to turn constructor representations into proper terms, and to list all possible datatype constructors. This completion allows us to serve generic programming scenarios like read, show, equality, term generation.

The combinators gmapT, gmapQ, gmapM, etc are all provided with default definitions in terms of gfoldl, leaving open the opportunity to provide datatype-specific definitions. (The inclusion of the gmap combinators as members of class Data allows the programmer or the compiler to derive specialised, and maybe more efficient code per datatype. Note: gfoldl is more higher-order than the gmap combinators. This is subject to ongoing benchmarking experiments. It might turn out that the gmap combinators will be moved out of the class Data.)

Conceptually, the definition of the gmap combinators in terms of the primitive gfoldl requires the identification of the gfoldl function arguments. Technically, we also need to identify the type constructor c for the construction of the result type from the folded term type.

In the definition of gmapQx combinators, we use phantom type constructors for the c in the type of gfoldl because the result type of a query does not involve the (polymorphic) type of the term argument. In the definition of gmapQl we simply use the plain constant type constructor because gfoldl is left-associative anyway and so it is readily suited to fold a left-associative binary operation over the immediate subterms. In the definition of gmapQr, extra effort is needed. We use a higher-order accumulation trick to mediate between left-associative constructor application vs. right-associative binary operation (e.g., (:)). When the query is meant to compute a value of type r, then the result type withing generic folding is r -> r. So the result of folding is a function to which we finally pass the right unit.

With the -XDeriveDataTypeable option, GHC can generate instances of the Data class automatically. For example, given the declaration

data T a b = C1 a b | C2 deriving (Typeable, Data)

GHC will generate an instance that is equivalent to

instance (Data a, Data b) => Data (T a b) where
    gfoldl k z (C1 a b) = z C1 `k` a `k` b
    gfoldl k z C2       = z C2

    gunfold k z c = case constrIndex c of
                        1 -> k (k (z C1))
                        2 -> z C2

    toConstr (C1 _ _) = con_C1
    toConstr C2       = con_C2

    dataTypeOf _ = ty_T

con_C1 = mkConstr ty_T "C1" [] Prefix
con_C2 = mkConstr ty_T "C2" [] Prefix
ty_T   = mkDataType "Module.T" [con_C1, con_C2]

This is suitable for datatypes that are exported transparently.

Minimal complete definition

gunfold, toConstr, dataTypeOf

Instances
Data Bool

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool #

toConstr :: Bool -> Constr #

dataTypeOf :: Bool -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Bool) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) #

gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

Data Char

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char #

toConstr :: Char -> Constr #

dataTypeOf :: Char -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Char) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

Data Double

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Data Float

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Data Int

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int #

toConstr :: Int -> Constr #

dataTypeOf :: Int -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

Data Int8

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 #

toConstr :: Int8 -> Constr #

dataTypeOf :: Int8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) #

gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

Data Int16

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 #

toConstr :: Int16 -> Constr #

dataTypeOf :: Int16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) #

gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

Data Int32

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 #

toConstr :: Int32 -> Constr #

dataTypeOf :: Int32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) #

gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

Data Int64

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 #

toConstr :: Int64 -> Constr #

dataTypeOf :: Int64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) #

gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

Data Integer

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Data Natural

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural #

toConstr :: Natural -> Constr #

dataTypeOf :: Natural -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Natural) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) #

gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

Data Ordering

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering #

toConstr :: Ordering -> Constr #

dataTypeOf :: Ordering -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) #

gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

Data Word

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Data Word8

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 #

toConstr :: Word8 -> Constr #

dataTypeOf :: Word8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) #

gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

Data Word16

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 #

toConstr :: Word16 -> Constr #

dataTypeOf :: Word16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) #

gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

Data Word32

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 #

toConstr :: Word32 -> Constr #

dataTypeOf :: Word32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) #

gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

Data Word64

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 #

toConstr :: Word64 -> Constr #

dataTypeOf :: Word64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) #

gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

Data ()

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () #

toConstr :: () -> Constr #

dataTypeOf :: () -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ()) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) #

gmapT :: (forall b. Data b => b -> b) -> () -> () #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r #

gmapQ :: (forall d. Data d => d -> u) -> () -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () #

Data Void 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void #

toConstr :: Void -> Constr #

dataTypeOf :: Void -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Void) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) #

gmapT :: (forall b. Data b => b -> b) -> Void -> Void #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r #

gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void #

Data SpecConstrAnnotation 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation #

toConstr :: SpecConstrAnnotation -> Constr #

dataTypeOf :: SpecConstrAnnotation -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) #

gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r #

gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation #

Data Version

Since: 4.7.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version #

toConstr :: Version -> Constr #

dataTypeOf :: Version -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Version) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) #

gmapT :: (forall b. Data b => b -> b) -> Version -> Version #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r #

gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version #

Data All

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All #

toConstr :: All -> Constr #

dataTypeOf :: All -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c All) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) #

gmapT :: (forall b. Data b => b -> b) -> All -> All #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQ :: (forall d. Data d => d -> u) -> All -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

Data Any

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any #

toConstr :: Any -> Constr #

dataTypeOf :: Any -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Any) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) #

gmapT :: (forall b. Data b => b -> b) -> Any -> Any #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

Data Fixity

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity #

toConstr :: Fixity -> Constr #

dataTypeOf :: Fixity -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) #

gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r #

gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity #

Data Associativity

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity #

toConstr :: Associativity -> Constr #

dataTypeOf :: Associativity -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) #

gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r #

gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity #

Data SourceUnpackedness

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness #

toConstr :: SourceUnpackedness -> Constr #

dataTypeOf :: SourceUnpackedness -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) #

gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r #

gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness #

Data SourceStrictness

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness #

toConstr :: SourceStrictness -> Constr #

dataTypeOf :: SourceStrictness -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) #

gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r #

gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness #

Data DecidedStrictness

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness #

toConstr :: DecidedStrictness -> Constr #

dataTypeOf :: DecidedStrictness -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) #

gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r #

gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness #

Data ShortByteString 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString #

toConstr :: ShortByteString -> Constr #

dataTypeOf :: ShortByteString -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) #

gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r #

gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString #

Data ByteString 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString #

toConstr :: ByteString -> Constr #

dataTypeOf :: ByteString -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) #

gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r #

gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString #

Data ByteString 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString #

toConstr :: ByteString -> Constr #

dataTypeOf :: ByteString -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) #

gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r #

gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString #

Data IntSet 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet #

toConstr :: IntSet -> Constr #

dataTypeOf :: IntSet -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) #

gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r #

gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet #

Data ZonedTime 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime #

toConstr :: ZonedTime -> Constr #

dataTypeOf :: ZonedTime -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) #

gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime #

Data LocalTime 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime #

toConstr :: LocalTime -> Constr #

dataTypeOf :: LocalTime -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) #

gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime #

Data TimeOfDay 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeOfDay -> c TimeOfDay #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeOfDay #

toConstr :: TimeOfDay -> Constr #

dataTypeOf :: TimeOfDay -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c TimeOfDay) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeOfDay) #

gmapT :: (forall b. Data b => b -> b) -> TimeOfDay -> TimeOfDay #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r #

gmapQ :: (forall d. Data d => d -> u) -> TimeOfDay -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeOfDay -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay #

Data TimeZone 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeZone -> c TimeZone #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeZone #

toConstr :: TimeZone -> Constr #

dataTypeOf :: TimeZone -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c TimeZone) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeZone) #

gmapT :: (forall b. Data b => b -> b) -> TimeZone -> TimeZone #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r #

gmapQ :: (forall d. Data d => d -> u) -> TimeZone -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeZone -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone #

Data UniversalTime 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UniversalTime -> c UniversalTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UniversalTime #

toConstr :: UniversalTime -> Constr #

dataTypeOf :: UniversalTime -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c UniversalTime) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UniversalTime) #

gmapT :: (forall b. Data b => b -> b) -> UniversalTime -> UniversalTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> UniversalTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UniversalTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime #

Data UTCTime 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime #

toConstr :: UTCTime -> Constr #

dataTypeOf :: UTCTime -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) #

gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

Data NominalDiffTime 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NominalDiffTime -> c NominalDiffTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NominalDiffTime #

toConstr :: NominalDiffTime -> Constr #

dataTypeOf :: NominalDiffTime -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c NominalDiffTime) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NominalDiffTime) #

gmapT :: (forall b. Data b => b -> b) -> NominalDiffTime -> NominalDiffTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> NominalDiffTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NominalDiffTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime #

Data Day 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day #

toConstr :: Day -> Constr #

dataTypeOf :: Day -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Day) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) #

gmapT :: (forall b. Data b => b -> b) -> Day -> Day #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r #

gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day #

Data Platform # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Platform -> c Platform #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Platform #

toConstr :: Platform -> Constr #

dataTypeOf :: Platform -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Platform) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Platform) #

gmapT :: (forall b. Data b => b -> b) -> Platform -> Platform #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Platform -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Platform -> r #

gmapQ :: (forall d. Data d => d -> u) -> Platform -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Platform -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Platform -> m Platform #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Platform -> m Platform #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Platform -> m Platform #

Data Arch # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Arch -> c Arch #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Arch #

toConstr :: Arch -> Constr #

dataTypeOf :: Arch -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Arch) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Arch) #

gmapT :: (forall b. Data b => b -> b) -> Arch -> Arch #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arch -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arch -> r #

gmapQ :: (forall d. Data d => d -> u) -> Arch -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Arch -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arch -> m Arch #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arch -> m Arch #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arch -> m Arch #

Data OS # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OS -> c OS #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OS #

toConstr :: OS -> Constr #

dataTypeOf :: OS -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c OS) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OS) #

gmapT :: (forall b. Data b => b -> b) -> OS -> OS #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OS -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OS -> r #

gmapQ :: (forall d. Data d => d -> u) -> OS -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> OS -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> OS -> m OS #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OS -> m OS #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OS -> m OS #

Data BuildType # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BuildType -> c BuildType #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BuildType #

toConstr :: BuildType -> Constr #

dataTypeOf :: BuildType -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c BuildType) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BuildType) #

gmapT :: (forall b. Data b => b -> b) -> BuildType -> BuildType #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BuildType -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BuildType -> r #

gmapQ :: (forall d. Data d => d -> u) -> BuildType -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> BuildType -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType #

Data ExecutableScope # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExecutableScope -> c ExecutableScope #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ExecutableScope #

toConstr :: ExecutableScope -> Constr #

dataTypeOf :: ExecutableScope -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ExecutableScope) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ExecutableScope) #

gmapT :: (forall b. Data b => b -> b) -> ExecutableScope -> ExecutableScope #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExecutableScope -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExecutableScope -> r #

gmapQ :: (forall d. Data d => d -> u) -> ExecutableScope -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ExecutableScope -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope #

Data ForeignLibOption # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLibOption -> c ForeignLibOption #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLibOption #

toConstr :: ForeignLibOption -> Constr #

dataTypeOf :: ForeignLibOption -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLibOption) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLibOption) #

gmapT :: (forall b. Data b => b -> b) -> ForeignLibOption -> ForeignLibOption #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibOption -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibOption -> r #

gmapQ :: (forall d. Data d => d -> u) -> ForeignLibOption -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLibOption -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption #

Data ForeignLibType # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLibType -> c ForeignLibType #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLibType #

toConstr :: ForeignLibType -> Constr #

dataTypeOf :: ForeignLibType -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLibType) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLibType) #

gmapT :: (forall b. Data b => b -> b) -> ForeignLibType -> ForeignLibType #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibType -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibType -> r #

gmapQ :: (forall d. Data d => d -> u) -> ForeignLibType -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLibType -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType #

Data RepoType # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RepoType -> c RepoType #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RepoType #

toConstr :: RepoType -> Constr #

dataTypeOf :: RepoType -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c RepoType) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RepoType) #

gmapT :: (forall b. Data b => b -> b) -> RepoType -> RepoType #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RepoType -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RepoType -> r #

gmapQ :: (forall d. Data d => d -> u) -> RepoType -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> RepoType -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType #

Data RepoKind # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RepoKind -> c RepoKind #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RepoKind #

toConstr :: RepoKind -> Constr #

dataTypeOf :: RepoKind -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c RepoKind) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RepoKind) #

gmapT :: (forall b. Data b => b -> b) -> RepoKind -> RepoKind #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RepoKind -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RepoKind -> r #

gmapQ :: (forall d. Data d => d -> u) -> RepoKind -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> RepoKind -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind #

Data SourceRepo # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceRepo -> c SourceRepo #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceRepo #

toConstr :: SourceRepo -> Constr #

dataTypeOf :: SourceRepo -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SourceRepo) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceRepo) #

gmapT :: (forall b. Data b => b -> b) -> SourceRepo -> SourceRepo #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceRepo -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceRepo -> r #

gmapQ :: (forall d. Data d => d -> u) -> SourceRepo -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceRepo -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo #

Data ShortText # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortText -> c ShortText #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortText #

toConstr :: ShortText -> Constr #

dataTypeOf :: ShortText -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ShortText) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortText) #

gmapT :: (forall b. Data b => b -> b) -> ShortText -> ShortText #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortText -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortText -> r #

gmapQ :: (forall d. Data d => d -> u) -> ShortText -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortText -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText #

Data PkgconfigName # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigName -> c PkgconfigName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigName #

toConstr :: PkgconfigName -> Constr #

dataTypeOf :: PkgconfigName -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigName) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigName) #

gmapT :: (forall b. Data b => b -> b) -> PkgconfigName -> PkgconfigName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigName -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigName -> r #

gmapQ :: (forall d. Data d => d -> u) -> PkgconfigName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName #

Data ComponentId # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ComponentId -> c ComponentId #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ComponentId #

toConstr :: ComponentId -> Constr #

dataTypeOf :: ComponentId -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ComponentId) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ComponentId) #

gmapT :: (forall b. Data b => b -> b) -> ComponentId -> ComponentId #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ComponentId -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ComponentId -> r #

gmapQ :: (forall d. Data d => d -> u) -> ComponentId -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ComponentId -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId #

Data ModuleName # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleName -> c ModuleName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleName #

toConstr :: ModuleName -> Constr #

dataTypeOf :: ModuleName -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ModuleName) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleName) #

gmapT :: (forall b. Data b => b -> b) -> ModuleName -> ModuleName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName -> r #

gmapQ :: (forall d. Data d => d -> u) -> ModuleName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName #

Data ModuleRenaming # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleRenaming -> c ModuleRenaming #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleRenaming #

toConstr :: ModuleRenaming -> Constr #

dataTypeOf :: ModuleRenaming -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ModuleRenaming) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleRenaming) #

gmapT :: (forall b. Data b => b -> b) -> ModuleRenaming -> ModuleRenaming #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleRenaming -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleRenaming -> r #

gmapQ :: (forall d. Data d => d -> u) -> ModuleRenaming -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleRenaming -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming #

Data IncludeRenaming # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IncludeRenaming -> c IncludeRenaming #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IncludeRenaming #

toConstr :: IncludeRenaming -> Constr #

dataTypeOf :: IncludeRenaming -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c IncludeRenaming) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IncludeRenaming) #

gmapT :: (forall b. Data b => b -> b) -> IncludeRenaming -> IncludeRenaming #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IncludeRenaming -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IncludeRenaming -> r #

gmapQ :: (forall d. Data d => d -> u) -> IncludeRenaming -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> IncludeRenaming -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming #

Data VersionRange # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VersionRange -> c VersionRange #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c VersionRange #

toConstr :: VersionRange -> Constr #

dataTypeOf :: VersionRange -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c VersionRange) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c VersionRange) #

gmapT :: (forall b. Data b => b -> b) -> VersionRange -> VersionRange #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VersionRange -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VersionRange -> r #

gmapQ :: (forall d. Data d => d -> u) -> VersionRange -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> VersionRange -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange #

Data Version # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version #

toConstr :: Version -> Constr #

dataTypeOf :: Version -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Version) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) #

gmapT :: (forall b. Data b => b -> b) -> Version -> Version #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r #

gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version #

Data TestType # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestType -> c TestType #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestType #

toConstr :: TestType -> Constr #

dataTypeOf :: TestType -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c TestType) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestType) #

gmapT :: (forall b. Data b => b -> b) -> TestType -> TestType #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestType -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestType -> r #

gmapQ :: (forall d. Data d => d -> u) -> TestType -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> TestType -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestType -> m TestType #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestType -> m TestType #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestType -> m TestType #

Data TestSuiteInterface # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestSuiteInterface -> c TestSuiteInterface #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestSuiteInterface #

toConstr :: TestSuiteInterface -> Constr #

dataTypeOf :: TestSuiteInterface -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c TestSuiteInterface) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestSuiteInterface) #

gmapT :: (forall b. Data b => b -> b) -> TestSuiteInterface -> TestSuiteInterface #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestSuiteInterface -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestSuiteInterface -> r #

gmapQ :: (forall d. Data d => d -> u) -> TestSuiteInterface -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> TestSuiteInterface -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface #

Data PkgconfigDependency # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigDependency -> c PkgconfigDependency #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigDependency #

toConstr :: PkgconfigDependency -> Constr #

dataTypeOf :: PkgconfigDependency -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigDependency) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigDependency) #

gmapT :: (forall b. Data b => b -> b) -> PkgconfigDependency -> PkgconfigDependency #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigDependency -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigDependency -> r #

gmapQ :: (forall d. Data d => d -> u) -> PkgconfigDependency -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigDependency -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency #

Data BenchmarkType # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BenchmarkType -> c BenchmarkType #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BenchmarkType #

toConstr :: BenchmarkType -> Constr #

dataTypeOf :: BenchmarkType -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c BenchmarkType) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BenchmarkType) #

gmapT :: (forall b. Data b => b -> b) -> BenchmarkType -> BenchmarkType #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkType -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkType -> r #

gmapQ :: (forall d. Data d => d -> u) -> BenchmarkType -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> BenchmarkType -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType #

Data BenchmarkInterface # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BenchmarkInterface -> c BenchmarkInterface #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BenchmarkInterface #

toConstr :: BenchmarkInterface -> Constr #

dataTypeOf :: BenchmarkInterface -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c BenchmarkInterface) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BenchmarkInterface) #

gmapT :: (forall b. Data b => b -> b) -> BenchmarkInterface -> BenchmarkInterface #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkInterface -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkInterface -> r #

gmapQ :: (forall d. Data d => d -> u) -> BenchmarkInterface -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> BenchmarkInterface -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface #

Data License # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> License -> c License #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c License #

toConstr :: License -> Constr #

dataTypeOf :: License -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c License) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c License) #

gmapT :: (forall b. Data b => b -> b) -> License -> License #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> License -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> License -> r #

gmapQ :: (forall d. Data d => d -> u) -> License -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> License -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> License -> m License #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License #

Data KnownExtension # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> KnownExtension -> c KnownExtension #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c KnownExtension #

toConstr :: KnownExtension -> Constr #

dataTypeOf :: KnownExtension -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c KnownExtension) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c KnownExtension) #

gmapT :: (forall b. Data b => b -> b) -> KnownExtension -> KnownExtension #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r #

gmapQ :: (forall d. Data d => d -> u) -> KnownExtension -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> KnownExtension -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension #

Data Extension # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Extension -> c Extension #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Extension #

toConstr :: Extension -> Constr #

dataTypeOf :: Extension -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Extension) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Extension) #

gmapT :: (forall b. Data b => b -> b) -> Extension -> Extension #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Extension -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Extension -> r #

gmapQ :: (forall d. Data d => d -> u) -> Extension -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Extension -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Extension -> m Extension #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Extension -> m Extension #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Extension -> m Extension #

Data Language # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Language -> c Language #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Language #

toConstr :: Language -> Constr #

dataTypeOf :: Language -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Language) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Language) #

gmapT :: (forall b. Data b => b -> b) -> Language -> Language #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r #

gmapQ :: (forall d. Data d => d -> u) -> Language -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Language -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Language -> m Language #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language #

Data CompilerFlavor # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CompilerFlavor -> c CompilerFlavor #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CompilerFlavor #

toConstr :: CompilerFlavor -> Constr #

dataTypeOf :: CompilerFlavor -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c CompilerFlavor) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CompilerFlavor) #

gmapT :: (forall b. Data b => b -> b) -> CompilerFlavor -> CompilerFlavor #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CompilerFlavor -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CompilerFlavor -> r #

gmapQ :: (forall d. Data d => d -> u) -> CompilerFlavor -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> CompilerFlavor -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor #

Data PackageName # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageName -> c PackageName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageName #

toConstr :: PackageName -> Constr #

dataTypeOf :: PackageName -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PackageName) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageName) #

gmapT :: (forall b. Data b => b -> b) -> PackageName -> PackageName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageName -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageName -> r #

gmapQ :: (forall d. Data d => d -> u) -> PackageName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName #

Data UnqualComponentName # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnqualComponentName -> c UnqualComponentName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnqualComponentName #

toConstr :: UnqualComponentName -> Constr #

dataTypeOf :: UnqualComponentName -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c UnqualComponentName) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnqualComponentName) #

gmapT :: (forall b. Data b => b -> b) -> UnqualComponentName -> UnqualComponentName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnqualComponentName -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnqualComponentName -> r #

gmapQ :: (forall d. Data d => d -> u) -> UnqualComponentName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UnqualComponentName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName #

Data PackageIdentifier # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageIdentifier -> c PackageIdentifier #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageIdentifier #

toConstr :: PackageIdentifier -> Constr #

dataTypeOf :: PackageIdentifier -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PackageIdentifier) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageIdentifier) #

gmapT :: (forall b. Data b => b -> b) -> PackageIdentifier -> PackageIdentifier #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageIdentifier -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageIdentifier -> r #

gmapQ :: (forall d. Data d => d -> u) -> PackageIdentifier -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageIdentifier -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier #

Data DefUnitId # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DefUnitId -> c DefUnitId #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DefUnitId #

toConstr :: DefUnitId -> Constr #

dataTypeOf :: DefUnitId -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c DefUnitId) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DefUnitId) #

gmapT :: (forall b. Data b => b -> b) -> DefUnitId -> DefUnitId #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DefUnitId -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DefUnitId -> r #

gmapQ :: (forall d. Data d => d -> u) -> DefUnitId -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> DefUnitId -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId #

Data UnitId # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnitId -> c UnitId #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnitId #

toConstr :: UnitId -> Constr #

dataTypeOf :: UnitId -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c UnitId) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnitId) #

gmapT :: (forall b. Data b => b -> b) -> UnitId -> UnitId #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnitId -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnitId -> r #

gmapQ :: (forall d. Data d => d -> u) -> UnitId -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UnitId -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId #

Data Module # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module #

toConstr :: Module -> Constr #

dataTypeOf :: Module -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Module) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) #

gmapT :: (forall b. Data b => b -> b) -> Module -> Module #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r #

gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module #

Data OpenModule # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OpenModule -> c OpenModule #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OpenModule #

toConstr :: OpenModule -> Constr #

dataTypeOf :: OpenModule -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c OpenModule) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OpenModule) #

gmapT :: (forall b. Data b => b -> b) -> OpenModule -> OpenModule #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OpenModule -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OpenModule -> r #

gmapQ :: (forall d. Data d => d -> u) -> OpenModule -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> OpenModule -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule #

Data OpenUnitId # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OpenUnitId -> c OpenUnitId #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OpenUnitId #

toConstr :: OpenUnitId -> Constr #

dataTypeOf :: OpenUnitId -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c OpenUnitId) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OpenUnitId) #

gmapT :: (forall b. Data b => b -> b) -> OpenUnitId -> OpenUnitId #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OpenUnitId -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OpenUnitId -> r #

gmapQ :: (forall d. Data d => d -> u) -> OpenUnitId -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> OpenUnitId -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId #

Data ModuleReexport # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleReexport -> c ModuleReexport #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleReexport #

toConstr :: ModuleReexport -> Constr #

dataTypeOf :: ModuleReexport -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ModuleReexport) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleReexport) #

gmapT :: (forall b. Data b => b -> b) -> ModuleReexport -> ModuleReexport #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleReexport -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleReexport -> r #

gmapQ :: (forall d. Data d => d -> u) -> ModuleReexport -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleReexport -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport #

Data Mixin # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Mixin -> c Mixin #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Mixin #

toConstr :: Mixin -> Constr #

dataTypeOf :: Mixin -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Mixin) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Mixin) #

gmapT :: (forall b. Data b => b -> b) -> Mixin -> Mixin #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Mixin -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Mixin -> r #

gmapQ :: (forall d. Data d => d -> u) -> Mixin -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Mixin -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin #

Data ExeDependency # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExeDependency -> c ExeDependency #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ExeDependency #

toConstr :: ExeDependency -> Constr #

dataTypeOf :: ExeDependency -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ExeDependency) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ExeDependency) #

gmapT :: (forall b. Data b => b -> b) -> ExeDependency -> ExeDependency #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExeDependency -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExeDependency -> r #

gmapQ :: (forall d. Data d => d -> u) -> ExeDependency -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ExeDependency -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency #

Data Dependency # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dependency -> c Dependency #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dependency #

toConstr :: Dependency -> Constr #

dataTypeOf :: Dependency -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Dependency) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dependency) #

gmapT :: (forall b. Data b => b -> b) -> Dependency -> Dependency #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dependency -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dependency -> r #

gmapQ :: (forall d. Data d => d -> u) -> Dependency -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Dependency -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency #

Data SetupBuildInfo # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SetupBuildInfo -> c SetupBuildInfo #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SetupBuildInfo #

toConstr :: SetupBuildInfo -> Constr #

dataTypeOf :: SetupBuildInfo -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SetupBuildInfo) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SetupBuildInfo) #

gmapT :: (forall b. Data b => b -> b) -> SetupBuildInfo -> SetupBuildInfo #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SetupBuildInfo -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SetupBuildInfo -> r #

gmapQ :: (forall d. Data d => d -> u) -> SetupBuildInfo -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SetupBuildInfo -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo #

Data MungedPackageName # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MungedPackageName -> c MungedPackageName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MungedPackageName #

toConstr :: MungedPackageName -> Constr #

dataTypeOf :: MungedPackageName -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c MungedPackageName) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MungedPackageName) #

gmapT :: (forall b. Data b => b -> b) -> MungedPackageName -> MungedPackageName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageName -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageName -> r #

gmapQ :: (forall d. Data d => d -> u) -> MungedPackageName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> MungedPackageName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName #

Data MungedPackageId # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MungedPackageId -> c MungedPackageId #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MungedPackageId #

toConstr :: MungedPackageId -> Constr #

dataTypeOf :: MungedPackageId -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c MungedPackageId) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MungedPackageId) #

gmapT :: (forall b. Data b => b -> b) -> MungedPackageId -> MungedPackageId #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageId -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageId -> r #

gmapQ :: (forall d. Data d => d -> u) -> MungedPackageId -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> MungedPackageId -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId #

Data LegacyExeDependency # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LegacyExeDependency -> c LegacyExeDependency #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LegacyExeDependency #

toConstr :: LegacyExeDependency -> Constr #

dataTypeOf :: LegacyExeDependency -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c LegacyExeDependency) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LegacyExeDependency) #

gmapT :: (forall b. Data b => b -> b) -> LegacyExeDependency -> LegacyExeDependency #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LegacyExeDependency -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LegacyExeDependency -> r #

gmapQ :: (forall d. Data d => d -> u) -> LegacyExeDependency -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LegacyExeDependency -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency #

Data BuildInfo # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BuildInfo -> c BuildInfo #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BuildInfo #

toConstr :: BuildInfo -> Constr #

dataTypeOf :: BuildInfo -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c BuildInfo) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BuildInfo) #

gmapT :: (forall b. Data b => b -> b) -> BuildInfo -> BuildInfo #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BuildInfo -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BuildInfo -> r #

gmapQ :: (forall d. Data d => d -> u) -> BuildInfo -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> BuildInfo -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo #

Data TestSuite # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestSuite -> c TestSuite #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestSuite #

toConstr :: TestSuite -> Constr #

dataTypeOf :: TestSuite -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c TestSuite) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestSuite) #

gmapT :: (forall b. Data b => b -> b) -> TestSuite -> TestSuite #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestSuite -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestSuite -> r #

gmapQ :: (forall d. Data d => d -> u) -> TestSuite -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> TestSuite -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite #

Data Library # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Library -> c Library #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Library #

toConstr :: Library -> Constr #

dataTypeOf :: Library -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Library) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Library) #

gmapT :: (forall b. Data b => b -> b) -> Library -> Library #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Library -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Library -> r #

gmapQ :: (forall d. Data d => d -> u) -> Library -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Library -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Library -> m Library #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Library -> m Library #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Library -> m Library #

Data LibVersionInfo # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibVersionInfo -> c LibVersionInfo #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibVersionInfo #

toConstr :: LibVersionInfo -> Constr #

dataTypeOf :: LibVersionInfo -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c LibVersionInfo) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibVersionInfo) #

gmapT :: (forall b. Data b => b -> b) -> LibVersionInfo -> LibVersionInfo #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibVersionInfo -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibVersionInfo -> r #

gmapQ :: (forall d. Data d => d -> u) -> LibVersionInfo -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LibVersionInfo -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo #

Data ForeignLib # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLib -> c ForeignLib #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLib #

toConstr :: ForeignLib -> Constr #

dataTypeOf :: ForeignLib -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLib) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLib) #

gmapT :: (forall b. Data b => b -> b) -> ForeignLib -> ForeignLib #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLib -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLib -> r #

gmapQ :: (forall d. Data d => d -> u) -> ForeignLib -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLib -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib #

Data Executable # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Executable -> c Executable #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Executable #

toConstr :: Executable -> Constr #

dataTypeOf :: Executable -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Executable) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Executable) #

gmapT :: (forall b. Data b => b -> b) -> Executable -> Executable #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Executable -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Executable -> r #

gmapQ :: (forall d. Data d => d -> u) -> Executable -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Executable -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Executable -> m Executable #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Executable -> m Executable #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Executable -> m Executable #

Data Benchmark # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Benchmark -> c Benchmark #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Benchmark #

toConstr :: Benchmark -> Constr #

dataTypeOf :: Benchmark -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Benchmark) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Benchmark) #

gmapT :: (forall b. Data b => b -> b) -> Benchmark -> Benchmark #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Benchmark -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Benchmark -> r #

gmapQ :: (forall d. Data d => d -> u) -> Benchmark -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Benchmark -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark #

Data PackageDescription # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageDescription -> c PackageDescription #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageDescription #

toConstr :: PackageDescription -> Constr #

dataTypeOf :: PackageDescription -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PackageDescription) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageDescription) #

gmapT :: (forall b. Data b => b -> b) -> PackageDescription -> PackageDescription #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageDescription -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageDescription -> r #

gmapQ :: (forall d. Data d => d -> u) -> PackageDescription -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageDescription -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription #

Data ConfVar # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConfVar -> c ConfVar #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConfVar #

toConstr :: ConfVar -> Constr #

dataTypeOf :: ConfVar -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ConfVar) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConfVar) #

gmapT :: (forall b. Data b => b -> b) -> ConfVar -> ConfVar #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConfVar -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConfVar -> r #

gmapQ :: (forall d. Data d => d -> u) -> ConfVar -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ConfVar -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar #

Data FlagName # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FlagName -> c FlagName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FlagName #

toConstr :: FlagName -> Constr #

dataTypeOf :: FlagName -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c FlagName) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FlagName) #

gmapT :: (forall b. Data b => b -> b) -> FlagName -> FlagName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FlagName -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FlagName -> r #

gmapQ :: (forall d. Data d => d -> u) -> FlagName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> FlagName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName #

Data Flag # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Flag -> c Flag #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Flag #

toConstr :: Flag -> Constr #

dataTypeOf :: Flag -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Flag) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Flag) #

gmapT :: (forall b. Data b => b -> b) -> Flag -> Flag #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Flag -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Flag -> r #

gmapQ :: (forall d. Data d => d -> u) -> Flag -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Flag -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Flag -> m Flag #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Flag -> m Flag #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Flag -> m Flag #

Data GenericPackageDescription # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GenericPackageDescription -> c GenericPackageDescription #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c GenericPackageDescription #

toConstr :: GenericPackageDescription -> Constr #

dataTypeOf :: GenericPackageDescription -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c GenericPackageDescription) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c GenericPackageDescription) #

gmapT :: (forall b. Data b => b -> b) -> GenericPackageDescription -> GenericPackageDescription #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GenericPackageDescription -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GenericPackageDescription -> r #

gmapQ :: (forall d. Data d => d -> u) -> GenericPackageDescription -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> GenericPackageDescription -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription #

Data a => Data [a]

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] #

toConstr :: [a] -> Constr #

dataTypeOf :: [a] -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c [a]) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) #

gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r #

gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] #

Data a => Data (Maybe a)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) #

toConstr :: Maybe a -> Constr #

dataTypeOf :: Maybe a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) #

gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

(Data a, Integral a) => Data (Ratio a)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) #

toConstr :: Ratio a -> Constr #

dataTypeOf :: Ratio a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) #

gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

Data a => Data (Ptr a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) #

toConstr :: Ptr a -> Constr #

dataTypeOf :: Ptr a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) #

gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

Data p => Data (Par1 p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) #

toConstr :: Par1 p -> Constr #

dataTypeOf :: Par1 p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) #

gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r #

gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) #

Data a => Data (ForeignPtr a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) #

toConstr :: ForeignPtr a -> Constr #

dataTypeOf :: ForeignPtr a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) #

gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) #

Data a => Data (Complex a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) #

toConstr :: Complex a -> Constr #

dataTypeOf :: Complex a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) #

gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

Typeable * a => Data (Fixed a)

Since: 4.1.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixed a -> c (Fixed a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fixed a) #

toConstr :: Fixed a -> Constr #

dataTypeOf :: Fixed a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Fixed a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fixed a)) #

gmapT :: (forall b. Data b => b -> b) -> Fixed a -> Fixed a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Fixed a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixed a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) #

Data a => Data (Min a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) #

toConstr :: Min a -> Constr #

dataTypeOf :: Min a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) #

gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

Data a => Data (Max a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) #

toConstr :: Max a -> Constr #

dataTypeOf :: Max a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) #

gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

Data a => Data (First a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Data a => Data (Last a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Data m => Data (WrappedMonoid m) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

Data a => Data (Option a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) #

toConstr :: Option a -> Constr #

dataTypeOf :: Option a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) #

gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

Data a => Data (NonEmpty a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) #

toConstr :: NonEmpty a -> Constr #

dataTypeOf :: NonEmpty a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) #

gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

Data a => Data (Identity a)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) #

toConstr :: Identity a -> Constr #

dataTypeOf :: Identity a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) #

gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

Data a => Data (Dual a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) #

toConstr :: Dual a -> Constr #

dataTypeOf :: Dual a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) #

gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

Data a => Data (Sum a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) #

toConstr :: Sum a -> Constr #

dataTypeOf :: Sum a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) #

gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

Data a => Data (Product a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) #

toConstr :: Product a -> Constr #

dataTypeOf :: Product a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) #

gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

Data a => Data (First a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Data a => Data (Last a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Data a => Data (IntMap a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) #

toConstr :: IntMap a -> Constr #

dataTypeOf :: IntMap a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) #

gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r #

gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) #

Data vertex => Data (SCC vertex) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SCC vertex -> c (SCC vertex) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SCC vertex) #

toConstr :: SCC vertex -> Constr #

dataTypeOf :: SCC vertex -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (SCC vertex)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SCC vertex)) #

gmapT :: (forall b. Data b => b -> b) -> SCC vertex -> SCC vertex #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r #

gmapQ :: (forall d. Data d => d -> u) -> SCC vertex -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SCC vertex -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) #

Data a => Data (Tree a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) #

toConstr :: Tree a -> Constr #

dataTypeOf :: Tree a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) #

gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) #

Data a => Data (Seq a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) #

toConstr :: Seq a -> Constr #

dataTypeOf :: Seq a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) #

gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) #

Data a => Data (ViewL a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) #

toConstr :: ViewL a -> Constr #

dataTypeOf :: ViewL a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) #

gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) #

Data a => Data (ViewR a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) #

toConstr :: ViewR a -> Constr #

dataTypeOf :: ViewR a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) #

gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) #

(Data a, Ord a) => Data (Set a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) #

toConstr :: Set a -> Constr #

dataTypeOf :: Set a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) #

gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) #

Data c => Data (Condition c) # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> Condition c -> c0 (Condition c) #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (Condition c) #

toConstr :: Condition c -> Constr #

dataTypeOf :: Condition c -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (Condition c)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (Condition c)) #

gmapT :: (forall b. Data b => b -> b) -> Condition c -> Condition c #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Condition c -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Condition c -> r #

gmapQ :: (forall d. Data d => d -> u) -> Condition c -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Condition c -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) #

(Data a, Data b) => Data (Either a b)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) #

toConstr :: Either a b -> Constr #

dataTypeOf :: Either a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

Data p => Data (V1 * p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 * p -> c (V1 * p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 * p) #

toConstr :: V1 * p -> Constr #

dataTypeOf :: V1 * p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (V1 * p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 * p)) #

gmapT :: (forall b. Data b => b -> b) -> V1 * p -> V1 * p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 * p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 * p -> r #

gmapQ :: (forall d. Data d => d -> u) -> V1 * p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 * p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 * p -> m (V1 * p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 * p -> m (V1 * p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 * p -> m (V1 * p) #

Data p => Data (U1 * p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 * p -> c (U1 * p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 * p) #

toConstr :: U1 * p -> Constr #

dataTypeOf :: U1 * p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (U1 * p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 * p)) #

gmapT :: (forall b. Data b => b -> b) -> U1 * p -> U1 * p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 * p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 * p -> r #

gmapQ :: (forall d. Data d => d -> u) -> U1 * p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 * p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 * p -> m (U1 * p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 * p -> m (U1 * p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 * p -> m (U1 * p) #

(Data a, Data b) => Data (a, b)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) #

toConstr :: (a, b) -> Constr #

dataTypeOf :: (a, b) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r #

gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) #

(Data a, Data b, Ix a) => Data (Array a b)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) #

toConstr :: Array a b -> Constr #

dataTypeOf :: Array a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

(Data b, Data a) => Data (Arg a b) 
Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) #

toConstr :: Arg a b -> Constr #

dataTypeOf :: Arg a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

Data t => Data (Proxy * t)

Since: 4.7.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy * t -> c (Proxy * t) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy * t) #

toConstr :: Proxy * t -> Constr #

dataTypeOf :: Proxy * t -> DataType #

dataCast1 :: Typeable (* -> *) t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy * t)) #

dataCast2 :: Typeable (* -> * -> *) t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy * t)) #

gmapT :: (forall b. Data b => b -> b) -> Proxy * t -> Proxy * t #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy * t -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy * t -> r #

gmapQ :: (forall d. Data d => d -> u) -> Proxy * t -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy * t -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy * t -> m (Proxy * t) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy * t -> m (Proxy * t) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy * t -> m (Proxy * t) #

(Data k, Data a, Ord k) => Data (Map k a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) #

toConstr :: Map k a -> Constr #

dataTypeOf :: Map k a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) #

gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

(Data (f p), Typeable (* -> *) f, Data p) => Data (Rec1 * f p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 * f p -> c (Rec1 * f p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 * f p) #

toConstr :: Rec1 * f p -> Constr #

dataTypeOf :: Rec1 * f p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 * f p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 * f p)) #

gmapT :: (forall b. Data b => b -> b) -> Rec1 * f p -> Rec1 * f p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 * f p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 * f p -> r #

gmapQ :: (forall d. Data d => d -> u) -> Rec1 * f p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 * f p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 * f p -> m (Rec1 * f p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 * f p -> m (Rec1 * f p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 * f p -> m (Rec1 * f p) #

(Data a, Data b, Data c) => Data (a, b, c)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) #

gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) #

toConstr :: (a, b, c) -> Constr #

dataTypeOf :: (a, b, c) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r #

gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) #

(Typeable * k3, Data a, Typeable k3 b) => Data (Const k3 a b)

Since: 4.10.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const k3 a b -> c (Const k3 a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const k3 a b) #

toConstr :: Const k3 a b -> Constr #

dataTypeOf :: Const k3 a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Const k3 a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const k3 a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const k3 a b -> Const k3 a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const k3 a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const k3 a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Const k3 a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Const k3 a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const k3 a b -> m (Const k3 a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const k3 a b -> m (Const k3 a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const k3 a b -> m (Const k3 a b) #

(Data (f a), Data a, Typeable (* -> *) f) => Data (Alt * f a)

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt * f a -> c (Alt * f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt * f a) #

toConstr :: Alt * f a -> Constr #

dataTypeOf :: Alt * f a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Alt * f a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt * f a)) #

gmapT :: (forall b. Data b => b -> b) -> Alt * f a -> Alt * f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt * f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt * f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Alt * f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt * f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt * f a -> m (Alt * f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt * f a -> m (Alt * f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt * f a -> m (Alt * f a) #

(Coercible * a b, Data a, Data b) => Data (Coercion * a b)

Since: 4.7.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion * a b -> c (Coercion * a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion * a b) #

toConstr :: Coercion * a b -> Constr #

dataTypeOf :: Coercion * a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion * a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion * a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion * a b -> Coercion * a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion * a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion * a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Coercion * a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion * a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion * a b -> m (Coercion * a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion * a b -> m (Coercion * a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion * a b -> m (Coercion * a b) #

((~) * a b, Data a) => Data ((:~:) * a b)

Since: 4.7.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (* :~: a) b -> c ((* :~: a) b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((* :~: a) b) #

toConstr :: (* :~: a) b -> Constr #

dataTypeOf :: (* :~: a) b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((* :~: a) b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((* :~: a) b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (* :~: a) b -> (* :~: a) b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (* :~: a) b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (* :~: a) b -> r #

gmapQ :: (forall d. Data d => d -> u) -> (* :~: a) b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (* :~: a) b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

(Data a, Data c, Data v) => Data (CondBranch v c a) # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondBranch v c a -> c0 (CondBranch v c a) #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondBranch v c a) #

toConstr :: CondBranch v c a -> Constr #

dataTypeOf :: CondBranch v c a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondBranch v c a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondBranch v c a)) #

gmapT :: (forall b. Data b => b -> b) -> CondBranch v c a -> CondBranch v c a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r #

gmapQ :: (forall d. Data d => d -> u) -> CondBranch v c a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) #

(Data a, Data c, Data v) => Data (CondTree v c a) # 
Instance details

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondTree v c a -> c0 (CondTree v c a) #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondTree v c a) #

toConstr :: CondTree v c a -> Constr #

dataTypeOf :: CondTree v c a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondTree v c a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondTree v c a)) #

gmapT :: (forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r #

gmapQ :: (forall d. Data d => d -> u) -> CondTree v c a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) #

(Typeable * i, Data p, Data c) => Data (K1 * i c p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 * i c p -> c0 (K1 * i c p) #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 * i c p) #

toConstr :: K1 * i c p -> Constr #

dataTypeOf :: K1 * i c p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 * i c p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 * i c p)) #

gmapT :: (forall b. Data b => b -> b) -> K1 * i c p -> K1 * i c p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 * i c p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 * i c p -> r #

gmapQ :: (forall d. Data d => d -> u) -> K1 * i c p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 * i c p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 * i c p -> m (K1 * i c p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 * i c p -> m (K1 * i c p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 * i c p -> m (K1 * i c p) #

(Typeable (* -> *) f, Typeable (* -> *) g, Data p, Data (f p), Data (g p)) => Data ((:+:) * f g p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (* :+: f) g p -> c ((* :+: f) g p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((* :+: f) g p) #

toConstr :: (* :+: f) g p -> Constr #

dataTypeOf :: (* :+: f) g p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((* :+: f) g p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((* :+: f) g p)) #

gmapT :: (forall b. Data b => b -> b) -> (* :+: f) g p -> (* :+: f) g p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (* :+: f) g p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (* :+: f) g p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (* :+: f) g p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (* :+: f) g p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (* :+: f) g p -> m ((* :+: f) g p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :+: f) g p -> m ((* :+: f) g p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :+: f) g p -> m ((* :+: f) g p) #

(Typeable (* -> *) f, Typeable (* -> *) g, Data p, Data (f p), Data (g p)) => Data ((:*:) * f g p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (* :*: f) g p -> c ((* :*: f) g p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((* :*: f) g p) #

toConstr :: (* :*: f) g p -> Constr #

dataTypeOf :: (* :*: f) g p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((* :*: f) g p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((* :*: f) g p)) #

gmapT :: (forall b. Data b => b -> b) -> (* :*: f) g p -> (* :*: f) g p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (* :*: f) g p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (* :*: f) g p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (* :*: f) g p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (* :*: f) g p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (* :*: f) g p -> m ((* :*: f) g p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :*: f) g p -> m ((* :*: f) g p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :*: f) g p -> m ((* :*: f) g p) #

(Data a, Data b, Data c, Data d) => Data (a, b, c, d)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) #

gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) #

toConstr :: (a, b, c, d) -> Constr #

dataTypeOf :: (a, b, c, d) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) #

gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r #

gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] #

gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u #

gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) #

gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) #

gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) #

(Data (g a), Data (f a), Typeable * k, Typeable (k -> *) g, Typeable (k -> *) f, Typeable k a) => Data (Product k f g a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product k f g a -> c (Product k f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product k f g a) #

toConstr :: Product k f g a -> Constr #

dataTypeOf :: Product k f g a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Product k f g a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product k f g a)) #

gmapT :: (forall b. Data b => b -> b) -> Product k f g a -> Product k f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product k f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product k f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Product k f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Product k f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product k f g a -> m (Product k f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product k f g a -> m (Product k f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product k f g a -> m (Product k f g a) #

(Data (g a), Data (f a), Typeable * k, Typeable (k -> *) g, Typeable (k -> *) f, Typeable k a) => Data (Sum k f g a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum k f g a -> c (Sum k f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum k f g a) #

toConstr :: Sum k f g a -> Constr #

dataTypeOf :: Sum k f g a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Sum k f g a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum k f g a)) #

gmapT :: (forall b. Data b => b -> b) -> Sum k f g a -> Sum k f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum k f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum k f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Sum k f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum k f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum k f g a -> m (Sum k f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum k f g a -> m (Sum k f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum k f g a -> m (Sum k f g a) #

(Typeable * i2, Typeable * j2, Typeable i2 a, Typeable j2 b, (~~) i2 j2 a b) => Data ((:~~:) i2 j2 a b)

Since: 4.10.0.0

Instance details

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (i2 :~~: j2) a b -> c ((i2 :~~: j2) a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((i2 :~~: j2) a b) #

toConstr :: (i2 :~~: j2) a b -> Constr #

dataTypeOf :: (i2 :~~: j2) a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((i2 :~~: j2) a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((i2 :~~: j2) a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (i2 :~~: j2) a b -> (i2 :~~: j2) a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (i2 :~~: j2) a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (i2 :~~: j2) a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> (i2 :~~: j2) a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (i2 :~~: j2) a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (i2 :~~: j2) a b -> m ((i2 :~~: j2) a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (i2 :~~: j2) a b -> m ((i2 :~~: j2) a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (i2 :~~: j2) a b -> m ((i2 :~~: j2) a b) #

(Data p, Data (f p), Typeable Meta c, Typeable * i, Typeable (* -> *) f) => Data (M1 * i c f p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 * i c f p -> c0 (M1 * i c f p) #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 * i c f p) #

toConstr :: M1 * i c f p -> Constr #

dataTypeOf :: M1 * i c f p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 * i c f p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 * i c f p)) #

gmapT :: (forall b. Data b => b -> b) -> M1 * i c f p -> M1 * i c f p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 * i c f p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 * i c f p -> r #

gmapQ :: (forall d. Data d => d -> u) -> M1 * i c f p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 * i c f p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 * i c f p -> m (M1 * i c f p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 * i c f p -> m (M1 * i c f p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 * i c f p -> m (M1 * i c f p) #

(Typeable (* -> *) f, Typeable (* -> *) g, Data p, Data (f (g p))) => Data ((:.:) * * f g p)

Since: 4.9.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (* :.: *) f g p -> c ((* :.: *) f g p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((* :.: *) f g p) #

toConstr :: (* :.: *) f g p -> Constr #

dataTypeOf :: (* :.: *) f g p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((* :.: *) f g p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((* :.: *) f g p)) #

gmapT :: (forall b. Data b => b -> b) -> (* :.: *) f g p -> (* :.: *) f g p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (* :.: *) f g p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (* :.: *) f g p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (* :.: *) f g p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (* :.: *) f g p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (* :.: *) f g p -> m ((* :.: *) f g p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :.: *) f g p -> m ((* :.: *) f g p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :.: *) f g p -> m ((* :.: *) f g p) #

(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) #

gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) #

toConstr :: (a, b, c, d, e) -> Constr #

dataTypeOf :: (a, b, c, d, e) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) #

gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r #

gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] #

gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u #

gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) #

gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) #

gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) #

(Data (f (g a)), Typeable * k2, Typeable * k1, Typeable (k2 -> k1) g, Typeable (k1 -> *) f, Typeable k2 a) => Data (Compose k1 k2 f g a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose k1 k2 f g a -> c (Compose k1 k2 f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose k1 k2 f g a) #

toConstr :: Compose k1 k2 f g a -> Constr #

dataTypeOf :: Compose k1 k2 f g a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Compose k1 k2 f g a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose k1 k2 f g a)) #

gmapT :: (forall b. Data b => b -> b) -> Compose k1 k2 f g a -> Compose k1 k2 f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose k1 k2 f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose k1 k2 f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Compose k1 k2 f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose k1 k2 f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose k1 k2 f g a -> m (Compose k1 k2 f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose k1 k2 f g a -> m (Compose k1 k2 f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose k1 k2 f g a -> m (Compose k1 k2 f g a) #

(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) #

gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) #

toConstr :: (a, b, c, d, e, f) -> Constr #

dataTypeOf :: (a, b, c, d, e, f) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r #

gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] #

gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u #

gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) #

gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) #

gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) #

(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g)

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) #

gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) #

toConstr :: (a, b, c, d, e, f, g) -> Constr #

dataTypeOf :: (a, b, c, d, e, f, g) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r #

gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] #

gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u #

gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) #

gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) #

gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) #

class Generic a #

Representable types of kind *. This class is derivable in GHC with the DeriveGeneric flag on.

Minimal complete definition

from, to

Instances
Generic Bool 
Instance details

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Generic Ordering 
Instance details

Associated Types

type Rep Ordering :: * -> * #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Generic () 
Instance details

Associated Types

type Rep () :: * -> * #

Methods

from :: () -> Rep () x #

to :: Rep () x -> () #

Generic Void 
Instance details

Associated Types

type Rep Void :: * -> * #

Methods

from :: Void -> Rep Void x #

to :: Rep Void x -> Void #

Generic Version 
Instance details

Associated Types

type Rep Version :: * -> * #

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic ExitCode 
Instance details

Associated Types

type Rep ExitCode :: * -> * #

Methods

from :: ExitCode -> Rep ExitCode x #

to :: Rep ExitCode x -> ExitCode #

Generic All 
Instance details

Associated Types

type Rep All :: * -> * #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Generic Any 
Instance details

Associated Types

type Rep Any :: * -> * #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Generic Fixity 
Instance details

Associated Types

type Rep Fixity :: * -> * #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic Associativity 
Instance details

Associated Types

type Rep Associativity :: * -> * #

Generic SourceUnpackedness 
Instance details

Associated Types

type Rep SourceUnpackedness :: * -> * #

Generic SourceStrictness 
Instance details

Associated Types

type Rep SourceStrictness :: * -> * #

Generic DecidedStrictness 
Instance details

Associated Types

type Rep DecidedStrictness :: * -> * #

Generic Doc 
Instance details

Associated Types

type Rep Doc :: * -> * #

Methods

from :: Doc -> Rep Doc x #

to :: Rep Doc x -> Doc #

Generic TextDetails 
Instance details

Associated Types

type Rep TextDetails :: * -> * #

Generic Style 
Instance details

Associated Types

type Rep Style :: * -> * #

Methods

from :: Style -> Rep Style x #

to :: Rep Style x -> Style #

Generic Mode 
Instance details

Associated Types

type Rep Mode :: * -> * #

Methods

from :: Mode -> Rep Mode x #

to :: Rep Mode x -> Mode #

Generic Platform # 
Instance details

Associated Types

type Rep Platform :: * -> * #

Methods

from :: Platform -> Rep Platform x #

to :: Rep Platform x -> Platform #

Generic Arch # 
Instance details

Associated Types

type Rep Arch :: * -> * #

Methods

from :: Arch -> Rep Arch x #

to :: Rep Arch x -> Arch #

Generic OS # 
Instance details

Associated Types

type Rep OS :: * -> * #

Methods

from :: OS -> Rep OS x #

to :: Rep OS x -> OS #

Generic BuildType # 
Instance details

Associated Types

type Rep BuildType :: * -> * #

Generic ExecutableScope # 
Instance details

Associated Types

type Rep ExecutableScope :: * -> * #

Generic ForeignLibOption # 
Instance details

Associated Types

type Rep ForeignLibOption :: * -> * #

Generic ForeignLibType # 
Instance details

Associated Types

type Rep ForeignLibType :: * -> * #

Generic RepoType # 
Instance details

Associated Types

type Rep RepoType :: * -> * #

Methods

from :: RepoType -> Rep RepoType x #

to :: Rep RepoType x -> RepoType #

Generic RepoKind # 
Instance details

Associated Types

type Rep RepoKind :: * -> * #

Methods

from :: RepoKind -> Rep RepoKind x #

to :: Rep RepoKind x -> RepoKind #

Generic SourceRepo # 
Instance details

Associated Types

type Rep SourceRepo :: * -> * #

Generic ShortText # 
Instance details

Associated Types

type Rep ShortText :: * -> * #

Generic PkgconfigName # 
Instance details

Associated Types

type Rep PkgconfigName :: * -> * #

Generic ComponentId # 
Instance details

Associated Types

type Rep ComponentId :: * -> * #

Generic AbiHash # 
Instance details

Associated Types

type Rep AbiHash :: * -> * #

Methods

from :: AbiHash -> Rep AbiHash x #

to :: Rep AbiHash x -> AbiHash #

Generic ModuleName # 
Instance details

Associated Types

type Rep ModuleName :: * -> * #

Generic ModuleRenaming # 
Instance details

Associated Types

type Rep ModuleRenaming :: * -> * #

Generic IncludeRenaming # 
Instance details

Associated Types

type Rep IncludeRenaming :: * -> * #

Generic Verbosity # 
Instance details

Associated Types

type Rep Verbosity :: * -> * #

Generic VersionRange # 
Instance details

Associated Types

type Rep VersionRange :: * -> * #

Generic Version # 
Instance details

Associated Types

type Rep Version :: * -> * #

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic TestType # 
Instance details

Associated Types

type Rep TestType :: * -> * #

Methods

from :: TestType -> Rep TestType x #

to :: Rep TestType x -> TestType #

Generic TestSuiteInterface # 
Instance details

Associated Types

type Rep TestSuiteInterface :: * -> * #

Generic PkgconfigDependency # 
Instance details

Associated Types

type Rep PkgconfigDependency :: * -> * #

Generic BenchmarkType # 
Instance details

Associated Types

type Rep BenchmarkType :: * -> * #

Generic BenchmarkInterface # 
Instance details

Associated Types

type Rep BenchmarkInterface :: * -> * #

Generic License # 
Instance details

Associated Types

type Rep License :: * -> * #

Methods

from :: License -> Rep License x #

to :: Rep License x -> License #

Generic KnownExtension # 
Instance details

Associated Types

type Rep KnownExtension :: * -> * #

Generic Extension # 
Instance details

Associated Types

type Rep Extension :: * -> * #

Generic Language # 
Instance details

Associated Types

type Rep Language :: * -> * #

Methods

from :: Language -> Rep Language x #

to :: Rep Language x -> Language #

Generic AbiTag # 
Instance details

Associated Types

type Rep AbiTag :: * -> * #

Methods

from :: AbiTag -> Rep AbiTag x #

to :: Rep AbiTag x -> AbiTag #

Generic CompilerInfo # 
Instance details

Associated Types

type Rep CompilerInfo :: * -> * #

Generic CompilerId # 
Instance details

Associated Types

type Rep CompilerId :: * -> * #

Generic CompilerFlavor # 
Instance details

Associated Types

type Rep CompilerFlavor :: * -> * #

Generic PackageName # 
Instance details

Associated Types

type Rep PackageName :: * -> * #

Generic UnqualComponentName # 
Instance details

Associated Types

type Rep UnqualComponentName :: * -> * #

Generic ComponentName # 
Instance details

Associated Types

type Rep ComponentName :: * -> * #

Generic PackageIdentifier # 
Instance details

Associated Types

type Rep PackageIdentifier :: * -> * #

Generic DefUnitId # 
Instance details

Associated Types

type Rep DefUnitId :: * -> * #

Generic UnitId # 
Instance details

Associated Types

type Rep UnitId :: * -> * #

Methods

from :: UnitId -> Rep UnitId x #

to :: Rep UnitId x -> UnitId #

Generic Module # 
Instance details

Associated Types

type Rep Module :: * -> * #

Methods

from :: Module -> Rep Module x #

to :: Rep Module x -> Module #

Generic OpenModule # 
Instance details

Associated Types

type Rep OpenModule :: * -> * #

Generic OpenUnitId # 
Instance details

Associated Types

type Rep OpenUnitId :: * -> * #

Generic FullUnitId # 
Instance details

Associated Types

type Rep FullUnitId :: * -> * #

Generic ModuleReexport # 
Instance details

Associated Types

type Rep ModuleReexport :: * -> * #

Generic Mixin # 
Instance details

Associated Types

type Rep Mixin :: * -> * #

Methods

from :: Mixin -> Rep Mixin x #

to :: Rep Mixin x -> Mixin #

Generic ExeDependency # 
Instance details

Associated Types

type Rep ExeDependency :: * -> * #

Generic Dependency # 
Instance details

Associated Types

type Rep Dependency :: * -> * #

Generic SetupBuildInfo # 
Instance details

Associated Types

type Rep SetupBuildInfo :: * -> * #

Generic MungedPackageName # 
Instance details

Associated Types

type Rep MungedPackageName :: * -> * #

Generic MungedPackageId # 
Instance details

Associated Types

type Rep MungedPackageId :: * -> * #

Generic PathTemplateVariable # 
Instance details

Associated Types

type Rep PathTemplateVariable :: * -> * #

Generic PathTemplate # 
Instance details

Associated Types

type Rep PathTemplate :: * -> * #

Generic LegacyExeDependency # 
Instance details

Associated Types

type Rep LegacyExeDependency :: * -> * #

Generic BuildInfo # 
Instance details

Associated Types

type Rep BuildInfo :: * -> * #

Generic TestSuite # 
Instance details

Associated Types

type Rep TestSuite :: * -> * #

Generic Library # 
Instance details

Associated Types

type Rep Library :: * -> * #

Methods

from :: Library -> Rep Library x #

to :: Rep Library x -> Library #

Generic LibVersionInfo # 
Instance details

Associated Types

type Rep LibVersionInfo :: * -> * #

Generic ForeignLib # 
Instance details

Associated Types

type Rep ForeignLib :: * -> * #

Generic Executable # 
Instance details

Associated Types

type Rep Executable :: * -> * #

Generic Benchmark # 
Instance details

Associated Types

type Rep Benchmark :: * -> * #

Generic ComponentRequestedSpec # 
Instance details

Associated Types

type Rep ComponentRequestedSpec :: * -> * #

Generic PackageDescription # 
Instance details

Associated Types

type Rep PackageDescription :: * -> * #

Generic ConfVar # 
Instance details

Associated Types

type Rep ConfVar :: * -> * #

Methods

from :: ConfVar -> Rep ConfVar x #

to :: Rep ConfVar x -> ConfVar #

Generic FlagName # 
Instance details

Associated Types

type Rep FlagName :: * -> * #

Methods

from :: FlagName -> Rep FlagName x #

to :: Rep FlagName x -> FlagName #

Generic Flag # 
Instance details

Associated Types

type Rep Flag :: * -> * #

Methods

from :: Flag -> Rep Flag x #

to :: Rep Flag x -> Flag #

Generic GenericPackageDescription # 
Instance details

Associated Types

type Rep GenericPackageDescription :: * -> * #

Generic AbiDependency # 
Instance details

Associated Types

type Rep AbiDependency :: * -> * #

Generic ExposedModule # 
Instance details

Associated Types

type Rep ExposedModule :: * -> * #

Generic InstalledPackageInfo # 
Instance details

Associated Types

type Rep InstalledPackageInfo :: * -> * #

Generic ComponentLocalBuildInfo # 
Instance details

Associated Types

type Rep ComponentLocalBuildInfo :: * -> * #

Generic ModuleShape # 
Instance details

Associated Types

type Rep ModuleShape :: * -> * #

Generic ProgramSearchPathEntry # 
Instance details

Associated Types

type Rep ProgramSearchPathEntry :: * -> * #

Generic ProgramLocation # 
Instance details

Associated Types

type Rep ProgramLocation :: * -> * #

Generic ConfiguredProgram # 
Instance details

Associated Types

type Rep ConfiguredProgram :: * -> * #

Generic ProfDetailLevel # 
Instance details

Associated Types

type Rep ProfDetailLevel :: * -> * #

Generic DebugInfoLevel # 
Instance details

Associated Types

type Rep DebugInfoLevel :: * -> * #

Generic OptimisationLevel # 
Instance details

Associated Types

type Rep OptimisationLevel :: * -> * #

Generic PackageDB # 
Instance details

Associated Types

type Rep PackageDB :: * -> * #

Generic Compiler # 
Instance details

Associated Types

type Rep Compiler :: * -> * #

Methods

from :: Compiler -> Rep Compiler x #

to :: Rep Compiler x -> Compiler #

Generic BenchmarkFlags # 
Instance details

Associated Types

type Rep BenchmarkFlags :: * -> * #

Generic TestFlags # 
Instance details

Associated Types

type Rep TestFlags :: * -> * #

Generic ReplFlags # 
Instance details

Associated Types

type Rep ReplFlags :: * -> * #

Generic BuildFlags # 
Instance details

Associated Types

type Rep BuildFlags :: * -> * #

Generic CleanFlags # 
Instance details

Associated Types

type Rep CleanFlags :: * -> * #

Generic HaddockFlags # 
Instance details

Associated Types

type Rep HaddockFlags :: * -> * #

Generic HaddockTarget # 
Instance details

Associated Types

type Rep HaddockTarget :: * -> * #

Generic DoctestFlags # 
Instance details

Associated Types

type Rep DoctestFlags :: * -> * #

Generic HscolourFlags # 
Instance details

Associated Types

type Rep HscolourFlags :: * -> * #

Generic RegisterFlags # 
Instance details

Associated Types

type Rep RegisterFlags :: * -> * #

Generic SDistFlags # 
Instance details

Associated Types

type Rep SDistFlags :: * -> * #

Generic InstallFlags # 
Instance details

Associated Types

type Rep InstallFlags :: * -> * #

Generic CopyFlags # 
Instance details

Associated Types

type Rep CopyFlags :: * -> * #

Generic ConfigFlags # 
Instance details

Associated Types

type Rep ConfigFlags :: * -> * #

Generic RelaxedDep # 
Instance details

Associated Types

type Rep RelaxedDep :: * -> * #

Generic AllowOlder # 
Instance details

Associated Types

type Rep AllowOlder :: * -> * #

Generic AllowNewer # 
Instance details

Associated Types

type Rep AllowNewer :: * -> * #

Generic RelaxDeps # 
Instance details

Associated Types

type Rep RelaxDeps :: * -> * #

Generic GlobalFlags # 
Instance details

Associated Types

type Rep GlobalFlags :: * -> * #

Generic LocalBuildInfo # 
Instance details

Associated Types

type Rep LocalBuildInfo :: * -> * #

Generic GhcOptions # 
Instance details

Associated Types

type Rep GhcOptions :: * -> * #

Generic BuildTarget # 
Instance details

Associated Types

type Rep BuildTarget :: * -> * #

Generic [a] 
Instance details

Associated Types

type Rep [a] :: * -> * #

Methods

from :: [a] -> Rep [a] x #

to :: Rep [a] x -> [a] #

Generic (Maybe a) 
Instance details

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (Par1 p) 
Instance details

Associated Types

type Rep (Par1 p) :: * -> * #

Methods

from :: Par1 p -> Rep (Par1 p) x #

to :: Rep (Par1 p) x -> Par1 p #

Generic (Complex a) 
Instance details

Associated Types

type Rep (Complex a) :: * -> * #

Methods

from :: Complex a -> Rep (Complex a) x #

to :: Rep (Complex a) x -> Complex a #

Generic (Min a) 
Instance details

Associated Types

type Rep (Min a) :: * -> * #

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Generic (Max a) 
Instance details

Associated Types

type Rep (Max a) :: * -> * #

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Generic (First a) 
Instance details

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 
Instance details

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (WrappedMonoid m) 
Instance details

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Generic (Option a) 
Instance details

Associated Types

type Rep (Option a) :: * -> * #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Generic (NonEmpty a) 
Instance details

Associated Types

type Rep (NonEmpty a) :: * -> * #

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Generic (ZipList a) 
Instance details

Associated Types

type Rep (ZipList a) :: * -> * #

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

Generic (Identity a) 
Instance details

Associated Types

type Rep (Identity a) :: * -> * #

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Generic (Dual a) 
Instance details

Associated Types

type Rep (Dual a) :: * -> * #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Generic (Endo a) 
Instance details

Associated Types

type Rep (Endo a) :: * -> * #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Generic (Sum a) 
Instance details

Associated Types

type Rep (Sum a) :: * -> * #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Generic (Product a) 
Instance details

Associated Types

type Rep (Product a) :: * -> * #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Generic (First a) 
Instance details

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 
Instance details

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (SCC vertex) 
Instance details

Associated Types

type Rep (SCC vertex) :: * -> * #

Methods

from :: SCC vertex -> Rep (SCC vertex) x #

to :: Rep (SCC vertex) x -> SCC vertex #

Generic (Tree a) 
Instance details

Associated Types

type Rep (Tree a) :: * -> * #

Methods

from :: Tree a -> Rep (Tree a) x #

to :: Rep (Tree a) x -> Tree a #

Generic (ViewL a) 
Instance details

Associated Types

type Rep (ViewL a) :: * -> * #

Methods

from :: ViewL a -> Rep (ViewL a) x #

to :: Rep (ViewL a) x -> ViewL a #

Generic (ViewR a) 
Instance details

Associated Types

type Rep (ViewR a) :: * -> * #

Methods

from :: ViewR a -> Rep (ViewR a) x #

to :: Rep (ViewR a) x -> ViewR a #

Generic (Doc a) 
Instance details

Associated Types

type Rep (Doc a) :: * -> * #

Methods

from :: Doc a -> Rep (Doc a) x #

to :: Rep (Doc a) x -> Doc a #

Generic (Last' a) # 
Instance details

Associated Types

type Rep (Last' a) :: * -> * #

Methods

from :: Last' a -> Rep (Last' a) x #

to :: Rep (Last' a) x -> Last' a #

Generic (Condition c) # 
Instance details

Associated Types

type Rep (Condition c) :: * -> * #

Methods

from :: Condition c -> Rep (Condition c) x #

to :: Rep (Condition c) x -> Condition c #

Generic (InstallDirs dir) # 
Instance details

Associated Types

type Rep (InstallDirs dir) :: * -> * #

Methods

from :: InstallDirs dir -> Rep (InstallDirs dir) x #

to :: Rep (InstallDirs dir) x -> InstallDirs dir #

Generic (PackageIndex a) # 
Instance details

Associated Types

type Rep (PackageIndex a) :: * -> * #

Methods

from :: PackageIndex a -> Rep (PackageIndex a) x #

to :: Rep (PackageIndex a) x -> PackageIndex a #

Generic (Flag a) # 
Instance details

Associated Types

type Rep (Flag a) :: * -> * #

Methods

from :: Flag a -> Rep (Flag a) x #

to :: Rep (Flag a) x -> Flag a #

Generic (Either a b) 
Instance details

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (V1 k p) 
Instance details

Associated Types

type Rep (V1 k p) :: * -> * #

Methods

from :: V1 k p -> Rep (V1 k p) x #

to :: Rep (V1 k p) x -> V1 k p #

Generic (U1 k p) 
Instance details

Associated Types

type Rep (U1 k p) :: * -> * #

Methods

from :: U1 k p -> Rep (U1 k p) x #

to :: Rep (U1 k p) x -> U1 k p #

Generic (a, b) 
Instance details

Associated Types

type Rep (a, b) :: * -> * #

Methods

from :: (a, b) -> Rep (a, b) x #

to :: Rep (a, b) x -> (a, b) #

Generic (Arg a b) 
Instance details

Associated Types

type Rep (Arg a b) :: * -> * #

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

Generic (WrappedMonad m a) 
Instance details

Associated Types

type Rep (WrappedMonad m a) :: * -> * #

Methods

from :: WrappedMonad m a -> Rep (WrappedMonad m a) x #

to :: Rep (WrappedMonad m a) x -> WrappedMonad m a #

Generic (Proxy k t) 
Instance details

Associated Types

type Rep (Proxy k t) :: * -> * #

Methods

from :: Proxy k t -> Rep (Proxy k t) x #

to :: Rep (Proxy k t) x -> Proxy k t #

Generic (Rec1 k f p) 
Instance details

Associated Types

type Rep (Rec1 k f p) :: * -> * #

Methods

from :: Rec1 k f p -> Rep (Rec1 k f p) x #

to :: Rep (Rec1 k f p) x -> Rec1 k f p #

Generic (URec k (Ptr ()) p) 
Instance details

Associated Types

type Rep (URec k (Ptr ()) p) :: * -> * #

Methods

from :: URec k (Ptr ()) p -> Rep (URec k (Ptr ()) p) x #

to :: Rep (URec k (Ptr ()) p) x -> URec k (Ptr ()) p #

Generic (URec k Char p) 
Instance details

Associated Types

type Rep (URec k Char p) :: * -> * #

Methods

from :: URec k Char p -> Rep (URec k Char p) x #

to :: Rep (URec k Char p) x -> URec k Char p #

Generic (URec k Double p) 
Instance details

Associated Types

type Rep (URec k Double p) :: * -> * #

Methods

from :: URec k Double p -> Rep (URec k Double p) x #

to :: Rep (URec k Double p) x -> URec k Double p #

Generic (URec k Float p) 
Instance details

Associated Types

type Rep (URec k Float p) :: * -> * #

Methods

from :: URec k Float p -> Rep (URec k Float p) x #

to :: Rep (URec k Float p) x -> URec k Float p #

Generic (URec k Int p) 
Instance details

Associated Types

type Rep (URec k Int p) :: * -> * #

Methods

from :: URec k Int p -> Rep (URec k Int p) x #

to :: Rep (URec k Int p) x -> URec k Int p #

Generic (URec k Word p) 
Instance details

Associated Types

type Rep (URec k Word p) :: * -> * #

Methods

from :: URec k Word p -> Rep (URec k Word p) x #

to :: Rep (URec k Word p) x -> URec k Word p #

Generic (a, b, c) 
Instance details

Associated Types

type Rep (a, b, c) :: * -> * #

Methods

from :: (a, b, c) -> Rep (a, b, c) x #

to :: Rep (a, b, c) x -> (a, b, c) #

Generic (WrappedArrow a b c) 
Instance details

Associated Types

type Rep (WrappedArrow a b c) :: * -> * #

Methods

from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x #

to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c #

Generic (Const k a b) 
Instance details

Associated Types

type Rep (Const k a b) :: * -> * #

Methods

from :: Const k a b -> Rep (Const k a b) x #

to :: Rep (Const k a b) x -> Const k a b #

Generic (Alt k f a) 
Instance details

Associated Types

type Rep (Alt k f a) :: * -> * #

Methods

from :: Alt k f a -> Rep (Alt k f a) x #

to :: Rep (Alt k f a) x -> Alt k f a #

Generic (CondBranch v c a) # 
Instance details

Associated Types

type Rep (CondBranch v c a) :: * -> * #

Methods

from :: CondBranch v c a -> Rep (CondBranch v c a) x #

to :: Rep (CondBranch v c a) x -> CondBranch v c a #

Generic (CondTree v c a) # 
Instance details

Associated Types

type Rep (CondTree v c a) :: * -> * #

Methods

from :: CondTree v c a -> Rep (CondTree v c a) x #

to :: Rep (CondTree v c a) x -> CondTree v c a #

Generic (K1 k i c p) 
Instance details

Associated Types

type Rep (K1 k i c p) :: * -> * #

Methods

from :: K1 k i c p -> Rep (K1 k i c p) x #

to :: Rep (K1 k i c p) x -> K1 k i c p #

Generic ((:+:) k f g p) 
Instance details

Associated Types

type Rep ((k :+: f) g p) :: * -> * #

Methods

from :: (k :+: f) g p -> Rep ((k :+: f) g p) x #

to :: Rep ((k :+: f) g p) x -> (k :+: f) g p #

Generic ((:*:) k f g p) 
Instance details

Associated Types

type Rep ((k :*: f) g p) :: * -> * #

Methods

from :: (k :*: f) g p -> Rep ((k :*: f) g p) x #

to :: Rep ((k :*: f) g p) x -> (k :*: f) g p #

Generic (a, b, c, d) 
Instance details

Associated Types

type Rep (a, b, c, d) :: * -> * #

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) x #

to :: Rep (a, b, c, d) x -> (a, b, c, d) #

Generic (Product k f g a) 
Instance details

Associated Types

type Rep (Product k f g a) :: * -> * #

Methods

from :: Product k f g a -> Rep (Product k f g a) x #

to :: Rep (Product k f g a) x -> Product k f g a #

Generic (Sum k f g a) 
Instance details

Associated Types

type Rep (Sum k f g a) :: * -> * #

Methods

from :: Sum k f g a -> Rep (Sum k f g a) x #

to :: Rep (Sum k f g a) x -> Sum k f g a #

Generic (M1 k i c f p) 
Instance details

Associated Types

type Rep (M1 k i c f p) :: * -> * #

Methods

from :: M1 k i c f p -> Rep (M1 k i c f p) x #

to :: Rep (M1 k i c f p) x -> M1 k i c f p #

Generic ((:.:) k2 k1 f g p) 
Instance details

Associated Types

type Rep ((k2 :.: k1) f g p) :: * -> * #

Methods

from :: (k2 :.: k1) f g p -> Rep ((k2 :.: k1) f g p) x #

to :: Rep ((k2 :.: k1) f g p) x -> (k2 :.: k1) f g p #

Generic (a, b, c, d, e) 
Instance details

Associated Types

type Rep (a, b, c, d, e) :: * -> * #

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) x #

to :: Rep (a, b, c, d, e) x -> (a, b, c, d, e) #

Generic (Compose k1 k2 f g a) 
Instance details

Associated Types

type Rep (Compose k1 k2 f g a) :: * -> * #

Methods

from :: Compose k1 k2 f g a -> Rep (Compose k1 k2 f g a) x #

to :: Rep (Compose k1 k2 f g a) x -> Compose k1 k2 f g a #

Generic (a, b, c, d, e, f) 
Instance details

Associated Types

type Rep (a, b, c, d, e, f) :: * -> * #

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) x #

to :: Rep (a, b, c, d, e, f) x -> (a, b, c, d, e, f) #

Generic (a, b, c, d, e, f, g) 
Instance details

Associated Types

type Rep (a, b, c, d, e, f, g) :: * -> * #

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) x #

to :: Rep (a, b, c, d, e, f, g) x -> (a, b, c, d, e, f, g) #

class NFData a where #

A class of types that can be fully evaluated.

Since: 1.1.0.0

Methods

rnf :: a -> () #

rnf should reduce its argument to normal form (that is, fully evaluate all sub-components), and then return '()'.

Generic NFData deriving

Starting with GHC 7.2, you can automatically derive instances for types possessing a Generic instance.

Note: Generic1 can be auto-derived starting with GHC 7.4

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic, Generic1)
import Control.DeepSeq

data Foo a = Foo a String
             deriving (Eq, Generic, Generic1)

instance NFData a => NFData (Foo a)
instance NFData1 Foo

data Colour = Red | Green | Blue
              deriving Generic

instance NFData Colour

Starting with GHC 7.10, the example above can be written more concisely by enabling the new DeriveAnyClass extension:

{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}

import GHC.Generics (Generic)
import Control.DeepSeq

data Foo a = Foo a String
             deriving (Eq, Generic, Generic1, NFData, NFData1)

data Colour = Red | Green | Blue
              deriving (Generic, NFData)

Compatibility with previous deepseq versions

Prior to version 1.4.0.0, the default implementation of the rnf method was defined as

rnf a = seq a ()

However, starting with deepseq-1.4.0.0, the default implementation is based on DefaultSignatures allowing for more accurate auto-derived NFData instances. If you need the previously used exact default rnf method implementation semantics, use

instance NFData Colour where rnf x = seq x ()

or alternatively

instance NFData Colour where rnf = rwhnf

or

{-# LANGUAGE BangPatterns #-}
instance NFData Colour where rnf !_ = ()
Instances
NFData Bool 
Instance details

Methods

rnf :: Bool -> () #

NFData Char 
Instance details

Methods

rnf :: Char -> () #

NFData Double 
Instance details

Methods

rnf :: Double -> () #

NFData Float 
Instance details

Methods

rnf :: Float -> () #

NFData Int 
Instance details

Methods

rnf :: Int -> () #

NFData Int8 
Instance details

Methods

rnf :: Int8 -> () #

NFData Int16 
Instance details

Methods

rnf :: Int16 -> () #

NFData Int32 
Instance details

Methods

rnf :: Int32 -> () #

NFData Int64 
Instance details

Methods

rnf :: Int64 -> () #

NFData Integer 
Instance details

Methods

rnf :: Integer -> () #

NFData Natural

Since: 1.4.0.0

Instance details

Methods

rnf :: Natural -> () #

NFData Ordering 
Instance details

Methods

rnf :: Ordering -> () #

NFData Word 
Instance details

Methods

rnf :: Word -> () #

NFData Word8 
Instance details

Methods

rnf :: Word8 -> () #

NFData Word16 
Instance details

Methods

rnf :: Word16 -> () #

NFData Word32 
Instance details

Methods

rnf :: Word32 -> () #

NFData Word64 
Instance details

Methods

rnf :: Word64 -> () #

NFData CallStack

Since: 1.4.2.0

Instance details

Methods

rnf :: CallStack -> () #

NFData () 
Instance details

Methods

rnf :: () -> () #

NFData TyCon

NOTE: Only defined for base-4.8.0.0 and later

Since: 1.4.0.0

Instance details

Methods

rnf :: TyCon -> () #

NFData Void

Defined as rnf = absurd.

Since: 1.4.0.0

Instance details

Methods

rnf :: Void -> () #

NFData Unique

Since: 1.4.0.0

Instance details

Methods

rnf :: Unique -> () #

NFData Version

Since: 1.3.0.0

Instance details

Methods

rnf :: Version -> () #

NFData ThreadId

Since: 1.4.0.0

Instance details

Methods

rnf :: ThreadId -> () #

NFData ExitCode

Since: 1.4.2.0

Instance details

Methods

rnf :: ExitCode -> () #

NFData TypeRep

NOTE: Only defined for base-4.8.0.0 and later

Since: 1.4.0.0

Instance details

Methods

rnf :: TypeRep -> () #

NFData All

Since: 1.4.0.0

Instance details

Methods

rnf :: All -> () #

NFData Any

Since: 1.4.0.0

Instance details

Methods

rnf :: Any -> () #

NFData CChar

Since: 1.4.0.0

Instance details

Methods

rnf :: CChar -> () #

NFData CSChar

Since: 1.4.0.0

Instance details

Methods

rnf :: CSChar -> () #

NFData CUChar

Since: 1.4.0.0

Instance details

Methods

rnf :: CUChar -> () #

NFData CShort

Since: 1.4.0.0

Instance details

Methods

rnf :: CShort -> () #

NFData CUShort

Since: 1.4.0.0

Instance details

Methods

rnf :: CUShort -> () #

NFData CInt

Since: 1.4.0.0

Instance details

Methods

rnf :: CInt -> () #

NFData CUInt

Since: 1.4.0.0

Instance details

Methods

rnf :: CUInt -> () #

NFData CLong

Since: 1.4.0.0

Instance details

Methods

rnf :: CLong -> () #

NFData CULong

Since: 1.4.0.0

Instance details

Methods

rnf :: CULong -> () #

NFData CLLong

Since: 1.4.0.0

Instance details

Methods

rnf :: CLLong -> () #

NFData CULLong

Since: 1.4.0.0

Instance details

Methods

rnf :: CULLong -> () #

NFData CBool

Since: 1.4.3.0

Instance details

Methods

rnf :: CBool -> () #

NFData CFloat

Since: 1.4.0.0

Instance details

Methods

rnf :: CFloat -> () #

NFData CDouble

Since: 1.4.0.0

Instance details

Methods

rnf :: CDouble -> () #

NFData CPtrdiff

Since: 1.4.0.0

Instance details

Methods

rnf :: CPtrdiff -> () #

NFData CSize

Since: 1.4.0.0

Instance details

Methods

rnf :: CSize -> () #

NFData CWchar

Since: 1.4.0.0

Instance details

Methods

rnf :: CWchar -> () #

NFData CSigAtomic

Since: 1.4.0.0

Instance details

Methods

rnf :: CSigAtomic -> () #

NFData CClock

Since: 1.4.0.0

Instance details

Methods

rnf :: CClock -> () #

NFData CTime

Since: 1.4.0.0

Instance details

Methods

rnf :: CTime -> () #

NFData CUSeconds

Since: 1.4.0.0

Instance details

Methods

rnf :: CUSeconds -> () #

NFData CSUSeconds

Since: 1.4.0.0

Instance details

Methods

rnf :: CSUSeconds -> () #

NFData CFile

Since: 1.4.0.0

Instance details

Methods

rnf :: CFile -> () #

NFData CFpos

Since: 1.4.0.0

Instance details

Methods

rnf :: CFpos -> () #

NFData CJmpBuf

Since: 1.4.0.0

Instance details

Methods

rnf :: CJmpBuf -> () #

NFData CIntPtr

Since: 1.4.0.0

Instance details

Methods

rnf :: CIntPtr -> () #

NFData CUIntPtr

Since: 1.4.0.0

Instance details

Methods

rnf :: CUIntPtr -> () #

NFData CIntMax

Since: 1.4.0.0

Instance details

Methods

rnf :: CIntMax -> () #

NFData CUIntMax

Since: 1.4.0.0

Instance details

Methods

rnf :: CUIntMax -> () #

NFData Fingerprint

Since: 1.4.0.0

Instance details

Methods

rnf :: Fingerprint -> () #

NFData SrcLoc

Since: 1.4.2.0

Instance details

Methods

rnf :: SrcLoc -> () #

NFData ShortByteString 
Instance details

Methods

rnf :: ShortByteString -> () #

NFData ByteString 
Instance details

Methods

rnf :: ByteString -> () #

NFData ByteString 
Instance details

Methods

rnf :: ByteString -> () #

NFData IntSet 
Instance details

Methods

rnf :: IntSet -> () #

NFData Doc 
Instance details

Methods

rnf :: Doc -> () #

NFData TextDetails 
Instance details

Methods

rnf :: TextDetails -> () #

NFData ZonedTime 
Instance details

Methods

rnf :: ZonedTime -> () #

NFData LocalTime 
Instance details

Methods

rnf :: LocalTime -> () #

NFData TimeOfDay 
Instance details

Methods

rnf :: TimeOfDay -> () #

NFData TimeZone 
Instance details

Methods

rnf :: TimeZone -> () #

NFData UniversalTime 
Instance details

Methods

rnf :: UniversalTime -> () #

NFData UTCTime 
Instance details

Methods

rnf :: UTCTime -> () #

NFData NominalDiffTime 
Instance details

Methods

rnf :: NominalDiffTime -> () #

NFData Day 
Instance details

Methods

rnf :: Day -> () #

NFData ShortText # 
Instance details

Methods

rnf :: ShortText -> () #

NFData PkgconfigName # 
Instance details

Methods

rnf :: PkgconfigName -> () #

NFData ComponentId # 
Instance details

Methods

rnf :: ComponentId -> () #

NFData ModuleName # 
Instance details

Methods

rnf :: ModuleName -> () #

NFData VersionRange # 
Instance details

Methods

rnf :: VersionRange -> () #

NFData Version # 
Instance details

Methods

rnf :: Version -> () #

NFData PkgconfigDependency # 
Instance details

Methods

rnf :: PkgconfigDependency -> () #

NFData PackageName # 
Instance details

Methods

rnf :: PackageName -> () #

NFData UnqualComponentName # 
Instance details

Methods

rnf :: UnqualComponentName -> () #

NFData PackageIdentifier # 
Instance details

Methods

rnf :: PackageIdentifier -> () #

NFData DefUnitId # 
Instance details

Methods

rnf :: DefUnitId -> () #

NFData UnitId # 
Instance details

Methods

rnf :: UnitId -> () #

NFData Module # 
Instance details

Methods

rnf :: Module -> () #

NFData OpenModule # 
Instance details

Methods

rnf :: OpenModule -> () #

NFData OpenUnitId # 
Instance details

Methods

rnf :: OpenUnitId -> () #

NFData ExeDependency # 
Instance details

Methods

rnf :: ExeDependency -> () #

NFData Dependency # 
Instance details

Methods

rnf :: Dependency -> () #

NFData MungedPackageName # 
Instance details

Methods

rnf :: MungedPackageName -> () #

NFData MungedPackageId # 
Instance details

Methods

rnf :: MungedPackageId -> () #

NFData LegacyExeDependency # 
Instance details

Methods

rnf :: LegacyExeDependency -> () #

NFData a => NFData [a] 
Instance details

Methods

rnf :: [a] -> () #

NFData a => NFData (Maybe a) 
Instance details

Methods

rnf :: Maybe a -> () #

NFData a => NFData (Ratio a) 
Instance details

Methods

rnf :: Ratio a -> () #

NFData (Ptr a)

Since: 1.4.2.0

Instance details

Methods

rnf :: Ptr a -> () #

NFData (FunPtr a)

Since: 1.4.2.0

Instance details

Methods

rnf :: FunPtr a -> () #

NFData a => NFData (Complex a) 
Instance details

Methods

rnf :: Complex a -> () #

NFData (Fixed a)

Since: 1.3.0.0

Instance details

Methods

rnf :: Fixed a -> () #

NFData a => NFData (Min a)

Since: 1.4.2.0

Instance details

Methods

rnf :: Min a -> () #

NFData a => NFData (Max a)

Since: 1.4.2.0

Instance details

Methods

rnf :: Max a -> () #

NFData a => NFData (First a)

Since: 1.4.2.0

Instance details

Methods

rnf :: First a -> () #

NFData a => NFData (Last a)

Since: 1.4.2.0

Instance details

Methods

rnf :: Last a -> () #

NFData m => NFData (WrappedMonoid m)

Since: 1.4.2.0

Instance details

Methods

rnf :: WrappedMonoid m -> () #

NFData a => NFData (Option a)

Since: 1.4.2.0

Instance details

Methods

rnf :: Option a -> () #

NFData a => NFData (NonEmpty a)

Since: 1.4.2.0

Instance details

Methods

rnf :: NonEmpty a -> () #

NFData (StableName a)

Since: 1.4.0.0

Instance details

Methods

rnf :: StableName a -> () #

NFData a => NFData (ZipList a)

Since: 1.4.0.0

Instance details

Methods

rnf :: ZipList a -> () #

NFData a => NFData (Identity a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Identity a -> () #

NFData (IORef a)

NOTE: Only strict in the reference and not the referenced value.

Since: 1.4.2.0

Instance details

Methods

rnf :: IORef a -> () #

NFData a => NFData (Dual a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Dual a -> () #

NFData a => NFData (Sum a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Sum a -> () #

NFData a => NFData (Product a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Product a -> () #

NFData a => NFData (First a)

Since: 1.4.0.0

Instance details

Methods

rnf :: First a -> () #

NFData a => NFData (Last a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Last a -> () #

NFData a => NFData (Down a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Down a -> () #

NFData (MVar a)

NOTE: Only strict in the reference and not the referenced value.

Since: 1.4.2.0

Instance details

Methods

rnf :: MVar a -> () #

NFData a => NFData (IntMap a) 
Instance details

Methods

rnf :: IntMap a -> () #

NFData a => NFData (SCC a) 
Instance details

Methods

rnf :: SCC a -> () #

NFData a => NFData (Tree a) 
Instance details

Methods

rnf :: Tree a -> () #

NFData a => NFData (Seq a) 
Instance details

Methods

rnf :: Seq a -> () #

NFData a => NFData (FingerTree a) 
Instance details

Methods

rnf :: FingerTree a -> () #

NFData a => NFData (Digit a) 
Instance details

Methods

rnf :: Digit a -> () #

NFData a => NFData (Node a) 
Instance details

Methods

rnf :: Node a -> () #

NFData a => NFData (Elem a) 
Instance details

Methods

rnf :: Elem a -> () #

NFData a => NFData (Set a) 
Instance details

Methods

rnf :: Set a -> () #

NFData a => NFData (Doc a) 
Instance details

Methods

rnf :: Doc a -> () #

NFData a => NFData (AnnotDetails a) 
Instance details

Methods

rnf :: AnnotDetails a -> () #

(NFData a, NFData (Key a)) => NFData (Graph a) # 
Instance details

Methods

rnf :: Graph a -> () #

NFData (a -> b)

This instance is for convenience and consistency with seq. This assumes that WHNF is equivalent to NF for functions.

Since: 1.3.0.0

Instance details

Methods

rnf :: (a -> b) -> () #

(NFData a, NFData b) => NFData (Either a b) 
Instance details

Methods

rnf :: Either a b -> () #

(NFData a, NFData b) => NFData (a, b) 
Instance details

Methods

rnf :: (a, b) -> () #

(NFData a, NFData b) => NFData (Array a b) 
Instance details

Methods

rnf :: Array a b -> () #

(NFData a, NFData b) => NFData (Arg a b)

Since: 1.4.2.0

Instance details

Methods

rnf :: Arg a b -> () #

NFData (Proxy k a)

Since: 1.4.0.0

Instance details

Methods

rnf :: Proxy k a -> () #

NFData (STRef s a)

NOTE: Only strict in the reference and not the referenced value.

Since: 1.4.2.0

Instance details

Methods

rnf :: STRef s a -> () #

(NFData k, NFData a) => NFData (Map k a) 
Instance details

Methods

rnf :: Map k a -> () #

(NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) 
Instance details

Methods

rnf :: (a1, a2, a3) -> () #

NFData a => NFData (Const k a b)

Since: 1.4.0.0

Instance details

Methods

rnf :: Const k a b -> () #

NFData ((:~:) k a b)

Since: 1.4.3.0

Instance details

Methods

rnf :: (k :~: a) b -> () #

(NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) 
Instance details

Methods

rnf :: (a1, a2, a3, a4) -> () #

(NFData1 f, NFData1 g, NFData a) => NFData (Product * f g a)

Since: 1.4.3.0

Instance details

Methods

rnf :: Product * f g a -> () #

(NFData1 f, NFData1 g, NFData a) => NFData (Sum * f g a)

Since: 1.4.3.0

Instance details

Methods

rnf :: Sum * f g a -> () #

NFData ((:~~:) k1 k2 a b)

Since: 1.4.3.0

Instance details

Methods

rnf :: (k1 :~~: k2) a b -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) 
Instance details

Methods

rnf :: (a1, a2, a3, a4, a5) -> () #

(NFData1 f, NFData1 g, NFData a) => NFData (Compose * * f g a)

Since: 1.4.3.0

Instance details

Methods

rnf :: Compose * * f g a -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) 
Instance details

Methods

rnf :: (a1, a2, a3, a4, a5, a6) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) 
Instance details

Methods

rnf :: (a1, a2, a3, a4, a5, a6, a7) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) 
Instance details

Methods

rnf :: (a1, a2, a3, a4, a5, a6, a7, a8) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) 
Instance details

Methods

rnf :: (a1, a2, a3, a4, a5, a6, a7, a8, a9) -> () #

genericRnf :: (Generic a, GNFData (Rep a)) => a -> () Source #

GHC.Generics-based rnf implementation

This is needed in order to support deepseq < 1.4 which didn't have a Generic-based default rnf implementation yet.

In order to define instances, use e.g.

instance NFData MyType where rnf = genericRnf

The implementation has been taken from deepseq-1.4.2's default rnf implementation.

class Binary t where #

The Binary class provides put and get, methods to encode and decode a Haskell value to a lazy ByteString. It mirrors the Read and Show classes for textual representation of Haskell types, and is suitable for serialising Haskell values to disk, over the network.

For decoding and generating simple external binary formats (e.g. C structures), Binary may be used, but in general is not suitable for complex protocols. Instead use the Put and Get primitives directly.

Instances of Binary should satisfy the following property:

decode . encode == id

That is, the get and put methods should be the inverse of each other. A range of instances are provided for basic Haskell types.

Methods

put :: t -> Put #

Encode a value in the Put monad.

get :: Get t #

Decode a value in the Get monad

putList :: [t] -> Put #

Encode a list of values in the Put monad. The default implementation may be overridden to be more efficient but must still have the same encoding format.

Instances
Binary Bool 
Instance details

Methods

put :: Bool -> Put #

get :: Get Bool #

putList :: [Bool] -> Put #

Binary Char 
Instance details

Methods

put :: Char -> Put #

get :: Get Char #

putList :: [Char] -> Put #

Binary Double 
Instance details

Methods

put :: Double -> Put #

get :: Get Double #

putList :: [Double] -> Put #

Binary Float 
Instance details

Methods

put :: Float -> Put #

get :: Get Float #

putList :: [Float] -> Put #

Binary Int 
Instance details

Methods

put :: Int -> Put #

get :: Get Int #

putList :: [Int] -> Put #

Binary Int8 
Instance details

Methods

put :: Int8 -> Put #

get :: Get Int8 #

putList :: [Int8] -> Put #

Binary Int16 
Instance details

Methods

put :: Int16 -> Put #

get :: Get Int16 #

putList :: [Int16] -> Put #

Binary Int32 
Instance details

Methods

put :: Int32 -> Put #

get :: Get Int32 #

putList :: [Int32] -> Put #

Binary Int64 
Instance details

Methods

put :: Int64 -> Put #

get :: Get Int64 #

putList :: [Int64] -> Put #

Binary Integer 
Instance details

Methods

put :: Integer -> Put #

get :: Get Integer #

putList :: [Integer] -> Put #

Binary Natural

Since: 0.7.3.0

Instance details

Methods

put :: Natural -> Put #

get :: Get Natural #

putList :: [Natural] -> Put #

Binary Ordering 
Instance details

Methods

put :: Ordering -> Put #

get :: Get Ordering #

putList :: [Ordering] -> Put #

Binary Word 
Instance details

Methods

put :: Word -> Put #

get :: Get Word #

putList :: [Word] -> Put #

Binary Word8 
Instance details

Methods

put :: Word8 -> Put #

get :: Get Word8 #

putList :: [Word8] -> Put #

Binary Word16 
Instance details

Methods

put :: Word16 -> Put #

get :: Get Word16 #

putList :: [Word16] -> Put #

Binary Word32 
Instance details

Methods

put :: Word32 -> Put #

get :: Get Word32 #

putList :: [Word32] -> Put #

Binary Word64 
Instance details

Methods

put :: Word64 -> Put #

get :: Get Word64 #

putList :: [Word64] -> Put #

Binary RuntimeRep

@since 0.8.5.0. See

Instance details
Binary VecCount

@since 0.8.5.0. See

Instance details

Methods

put :: VecCount -> Put #

get :: Get VecCount #

putList :: [VecCount] -> Put #

Binary VecElem

@since 0.8.5.0. See

Instance details

Methods

put :: VecElem -> Put #

get :: Get VecElem #

putList :: [VecElem] -> Put #

Binary SomeTypeRep 
Instance details
Binary () 
Instance details

Methods

put :: () -> Put #

get :: Get () #

putList :: [()] -> Put #

Binary TyCon

@since 0.8.5.0. See

Instance details

Methods

put :: TyCon -> Put #

get :: Get TyCon #

putList :: [TyCon] -> Put #

Binary KindRep

@since 0.8.5.0. See

Instance details

Methods

put :: KindRep -> Put #

get :: Get KindRep #

putList :: [KindRep] -> Put #

Binary TypeLitSort

@since 0.8.5.0. See

Instance details
Binary Void

Since: 0.8.0.0

Instance details

Methods

put :: Void -> Put #

get :: Get Void #

putList :: [Void] -> Put #

Binary Version

Since: 0.8.0.0

Instance details

Methods

put :: Version -> Put #

get :: Get Version #

putList :: [Version] -> Put #

Binary All

Since: 0.8.4.0

Instance details

Methods

put :: All -> Put #

get :: Get All #

putList :: [All] -> Put #

Binary Any

Since: 0.8.4.0

Instance details

Methods

put :: Any -> Put #

get :: Get Any #

putList :: [Any] -> Put #

Binary Fingerprint

Since: 0.7.6.0

Instance details
Binary ShortByteString 
Instance details
Binary ByteString 
Instance details
Binary ByteString 
Instance details
Binary IntSet 
Instance details

Methods

put :: IntSet -> Put #

get :: Get IntSet #

putList :: [IntSet] -> Put #

Binary Platform # 
Instance details

Methods

put :: Platform -> Put #

get :: Get Platform #

putList :: [Platform] -> Put #

Binary Arch # 
Instance details

Methods

put :: Arch -> Put #

get :: Get Arch #

putList :: [Arch] -> Put #

Binary OS # 
Instance details

Methods

put :: OS -> Put #

get :: Get OS #

putList :: [OS] -> Put #

Binary BuildType # 
Instance details
Binary ExecutableScope # 
Instance details
Binary ForeignLibOption # 
Instance details
Binary ForeignLibType # 
Instance details
Binary RepoType # 
Instance details

Methods

put :: RepoType -> Put #

get :: Get RepoType #

putList :: [RepoType] -> Put #

Binary RepoKind # 
Instance details

Methods

put :: RepoKind -> Put #

get :: Get RepoKind #

putList :: [RepoKind] -> Put #

Binary SourceRepo # 
Instance details
Binary ShortText # 
Instance details
Binary PkgconfigName # 
Instance details
Binary ComponentId # 
Instance details
Binary AbiHash # 
Instance details

Methods

put :: AbiHash -> Put #

get :: Get AbiHash #

putList :: [AbiHash] -> Put #

Binary ModuleName # 
Instance details
Binary ModuleRenaming # 
Instance details
Binary IncludeRenaming # 
Instance details
Binary Verbosity # 
Instance details
Binary VersionRange # 
Instance details
Binary Version # 
Instance details

Methods

put :: Version -> Put #

get :: Get Version #

putList :: [Version] -> Put #

Binary TestType # 
Instance details

Methods

put :: TestType -> Put #

get :: Get TestType #

putList :: [TestType] -> Put #

Binary TestSuiteInterface # 
Instance details
Binary PkgconfigDependency # 
Instance details
Binary BenchmarkType # 
Instance details
Binary BenchmarkInterface # 
Instance details
Binary License # 
Instance details

Methods

put :: License -> Put #

get :: Get License #

putList :: [License] -> Put #

Binary KnownExtension # 
Instance details
Binary Extension # 
Instance details
Binary Language # 
Instance details

Methods

put :: Language -> Put #

get :: Get Language #

putList :: [Language] -> Put #

Binary AbiTag # 
Instance details

Methods

put :: AbiTag -> Put #

get :: Get AbiTag #

putList :: [AbiTag] -> Put #

Binary CompilerInfo # 
Instance details
Binary CompilerId # 
Instance details
Binary CompilerFlavor # 
Instance details
Binary PackageName # 
Instance details
Binary UnqualComponentName # 
Instance details
Binary ComponentName # 
Instance details
Binary PackageIdentifier # 
Instance details
Binary DefUnitId # 
Instance details
Binary UnitId # 
Instance details

Methods

put :: UnitId -> Put #

get :: Get UnitId #

putList :: [UnitId] -> Put #

Binary Module # 
Instance details

Methods

put :: Module -> Put #

get :: Get Module #

putList :: [Module] -> Put #

Binary OpenModule # 
Instance details
Binary OpenUnitId # 
Instance details
Binary ModuleReexport # 
Instance details
Binary Mixin # 
Instance details

Methods

put :: Mixin -> Put #

get :: Get Mixin #

putList :: [Mixin] -> Put #

Binary ExeDependency # 
Instance details
Binary Dependency # 
Instance details
Binary SetupBuildInfo # 
Instance details
Binary MungedPackageName # 
Instance details
Binary MungedPackageId # 
Instance details
Binary PathTemplateVariable # 
Instance details
Binary PathTemplate # 
Instance details
Binary LegacyExeDependency # 
Instance details
Binary BuildInfo # 
Instance details
Binary TestSuite # 
Instance details
Binary Library # 
Instance details

Methods

put :: Library -> Put #

get :: Get Library #

putList :: [Library] -> Put #

Binary LibVersionInfo # 
Instance details
Binary ForeignLib # 
Instance details
Binary Executable # 
Instance details
Binary Benchmark # 
Instance details
Binary ComponentRequestedSpec # 
Instance details
Binary PackageDescription # 
Instance details
Binary ConfVar # 
Instance details

Methods

put :: ConfVar -> Put #

get :: Get ConfVar #

putList :: [ConfVar] -> Put #

Binary FlagName # 
Instance details

Methods

put :: FlagName -> Put #

get :: Get FlagName #

putList :: [FlagName] -> Put #

Binary Flag # 
Instance details

Methods

put :: Flag -> Put #

get :: Get Flag #

putList :: [Flag] -> Put #

Binary GenericPackageDescription # 
Instance details
Binary AbiDependency # 
Instance details
Binary ExposedModule # 
Instance details
Binary InstalledPackageInfo # 
Instance details
Binary ComponentLocalBuildInfo # 
Instance details
Binary ModuleShape # 
Instance details
Binary ProgramSearchPathEntry # 
Instance details
Binary ProgramLocation # 
Instance details
Binary ConfiguredProgram # 
Instance details
Binary ProgramDb #

Note that this instance does not preserve the known Programs. See restoreProgramDb for details.

Instance details
Binary ProfDetailLevel # 
Instance details
Binary DebugInfoLevel # 
Instance details
Binary OptimisationLevel # 
Instance details
Binary PackageDB # 
Instance details
Binary Compiler # 
Instance details

Methods

put :: Compiler -> Put #

get :: Get Compiler #

putList :: [Compiler] -> Put #

Binary ConfigFlags # 
Instance details
Binary RelaxedDep # 
Instance details
Binary AllowOlder # 
Instance details
Binary AllowNewer # 
Instance details
Binary RelaxDeps # 
Instance details
Binary LocalBuildInfo # 
Instance details
Binary BuildTarget # 
Instance details
Binary ModTime # 
Instance details

Methods

put :: ModTime -> Put #

get :: Get ModTime #

putList :: [ModTime] -> Put #

Binary a => Binary [a] 
Instance details

Methods

put :: [a] -> Put #

get :: Get [a] #

putList :: [[a]] -> Put #

Binary a => Binary (Maybe a) 
Instance details

Methods

put :: Maybe a -> Put #

get :: Get (Maybe a) #

putList :: [Maybe a] -> Put #

(Binary a, Integral a) => Binary (Ratio a) 
Instance details

Methods

put :: Ratio a -> Put #

get :: Get (Ratio a) #

putList :: [Ratio a] -> Put #

Binary a => Binary (Complex a) 
Instance details

Methods

put :: Complex a -> Put #

get :: Get (Complex a) #

putList :: [Complex a] -> Put #

Binary (Fixed a)

Since: 0.8.0.0

Instance details

Methods

put :: Fixed a -> Put #

get :: Get (Fixed a) #

putList :: [Fixed a] -> Put #

Binary a => Binary (Min a)

Since: 0.8.4.0

Instance details

Methods

put :: Min a -> Put #

get :: Get (Min a) #

putList :: [Min a] -> Put #

Binary a => Binary (Max a)

Since: 0.8.4.0

Instance details

Methods

put :: Max a -> Put #

get :: Get (Max a) #

putList :: [Max a] -> Put #

Binary a => Binary (First a)

Since: 0.8.4.0

Instance details

Methods

put :: First a -> Put #

get :: Get (First a) #

putList :: [First a] -> Put #

Binary a => Binary (Last a)

Since: 0.8.4.0

Instance details

Methods

put :: Last a -> Put #

get :: Get (Last a) #

putList :: [Last a] -> Put #

Binary m => Binary (WrappedMonoid m)

Since: 0.8.4.0

Instance details
Binary a => Binary (Option a)

Since: 0.8.4.0

Instance details

Methods

put :: Option a -> Put #

get :: Get (Option a) #

putList :: [Option a] -> Put #

Binary a => Binary (NonEmpty a)

Since: 0.8.4.0

Instance details

Methods

put :: NonEmpty a -> Put #

get :: Get (NonEmpty a) #

putList :: [NonEmpty a] -> Put #

Binary a => Binary (Dual a)

Since: 0.8.4.0

Instance details

Methods

put :: Dual a -> Put #

get :: Get (Dual a) #

putList :: [Dual a] -> Put #

Binary a => Binary (Sum a)

Since: 0.8.4.0

Instance details

Methods

put :: Sum a -> Put #

get :: Get (Sum a) #

putList :: [Sum a] -> Put #

Binary a => Binary (Product a)

Since: 0.8.4.0

Instance details

Methods

put :: Product a -> Put #

get :: Get (Product a) #

putList :: [Product a] -> Put #

Binary a => Binary (First a)

Since: 0.8.4.0

Instance details

Methods

put :: First a -> Put #

get :: Get (First a) #

putList :: [First a] -> Put #

Binary a => Binary (Last a)

Since: 0.8.4.0

Instance details

Methods

put :: Last a -> Put #

get :: Get (Last a) #

putList :: [Last a] -> Put #

Binary e => Binary (IntMap e) 
Instance details

Methods

put :: IntMap e -> Put #

get :: Get (IntMap e) #

putList :: [IntMap e] -> Put #

Binary e => Binary (Tree e) 
Instance details

Methods

put :: Tree e -> Put #

get :: Get (Tree e) #

putList :: [Tree e] -> Put #

Binary e => Binary (Seq e) 
Instance details

Methods

put :: Seq e -> Put #

get :: Get (Seq e) #

putList :: [Seq e] -> Put #

Binary a => Binary (Set a) 
Instance details

Methods

put :: Set a -> Put #

get :: Get (Set a) #

putList :: [Set a] -> Put #

Binary a => Binary (Last' a) # 
Instance details

Methods

put :: Last' a -> Put #

get :: Get (Last' a) #

putList :: [Last' a] -> Put #

(IsNode a, Binary a, Show (Key a)) => Binary (Graph a) # 
Instance details

Methods

put :: Graph a -> Put #

get :: Get (Graph a) #

putList :: [Graph a] -> Put #

Binary c => Binary (Condition c) # 
Instance details

Methods

put :: Condition c -> Put #

get :: Get (Condition c) #

putList :: [Condition c] -> Put #

Binary dir => Binary (InstallDirs dir) # 
Instance details

Methods

put :: InstallDirs dir -> Put #

get :: Get (InstallDirs dir) #

putList :: [InstallDirs dir] -> Put #

(Ord a, Binary a) => Binary (NubList a) #

Binary instance for 'NubList a' is the same as for '[a]'. For put, we just pull off constructor and put the list. For get, we get the list and make a NubList out of it using toNubList.

Instance details

Methods

put :: NubList a -> Put #

get :: Get (NubList a) #

putList :: [NubList a] -> Put #

Binary a => Binary (PackageIndex a) # 
Instance details

Methods

put :: PackageIndex a -> Put #

get :: Get (PackageIndex a) #

putList :: [PackageIndex a] -> Put #

Binary a => Binary (Flag a) # 
Instance details

Methods

put :: Flag a -> Put #

get :: Get (Flag a) #

putList :: [Flag a] -> Put #

(Binary a, Binary b) => Binary (Either a b) 
Instance details

Methods

put :: Either a b -> Put #

get :: Get (Either a b) #

putList :: [Either a b] -> Put #

Typeable k a => Binary (TypeRep k a) 
Instance details

Methods

put :: TypeRep k a -> Put #

get :: Get (TypeRep k a) #

putList :: [TypeRep k a] -> Put #

(Binary a, Binary b) => Binary (a, b) 
Instance details

Methods

put :: (a, b) -> Put #

get :: Get (a, b) #

putList :: [(a, b)] -> Put #

(Binary i, Ix i, Binary e, IArray UArray e) => Binary (UArray i e) 
Instance details

Methods

put :: UArray i e -> Put #

get :: Get (UArray i e) #

putList :: [UArray i e] -> Put #

(Binary i, Ix i, Binary e) => Binary (Array i e) 
Instance details

Methods

put :: Array i e -> Put #

get :: Get (Array i e) #

putList :: [Array i e] -> Put #

(Binary a, Binary b) => Binary (Arg a b)

Since: 0.8.4.0

Instance details

Methods

put :: Arg a b -> Put #

get :: Get (Arg a b) #

putList :: [Arg a b] -> Put #

(Binary k, Binary e) => Binary (Map k e) 
Instance details

Methods

put :: Map k e -> Put #

get :: Get (Map k e) #

putList :: [Map k e] -> Put #

(Binary a, Binary b, Binary c) => Binary (a, b, c) 
Instance details

Methods

put :: (a, b, c) -> Put #

get :: Get (a, b, c) #

putList :: [(a, b, c)] -> Put #

Binary (f a) => Binary (Alt k f a)

Since: 0.8.4.0

Instance details

Methods

put :: Alt k f a -> Put #

get :: Get (Alt k f a) #

putList :: [Alt k f a] -> Put #

(Binary v, Binary c, Binary a) => Binary (CondBranch v c a) # 
Instance details

Methods

put :: CondBranch v c a -> Put #

get :: Get (CondBranch v c a) #

putList :: [CondBranch v c a] -> Put #

(Binary v, Binary c, Binary a) => Binary (CondTree v c a) # 
Instance details

Methods

put :: CondTree v c a -> Put #

get :: Get (CondTree v c a) #

putList :: [CondTree v c a] -> Put #

(Binary a, Binary b, Binary c, Binary d) => Binary (a, b, c, d) 
Instance details

Methods

put :: (a, b, c, d) -> Put #

get :: Get (a, b, c, d) #

putList :: [(a, b, c, d)] -> Put #

(Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a, b, c, d, e) 
Instance details

Methods

put :: (a, b, c, d, e) -> Put #

get :: Get (a, b, c, d, e) #

putList :: [(a, b, c, d, e)] -> Put #

(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a, b, c, d, e, f) 
Instance details

Methods

put :: (a, b, c, d, e, f) -> Put #

get :: Get (a, b, c, d, e, f) #

putList :: [(a, b, c, d, e, f)] -> Put #

(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a, b, c, d, e, f, g) 
Instance details

Methods

put :: (a, b, c, d, e, f, g) -> Put #

get :: Get (a, b, c, d, e, f, g) #

putList :: [(a, b, c, d, e, f, g)] -> Put #

(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h) => Binary (a, b, c, d, e, f, g, h) 
Instance details

Methods

put :: (a, b, c, d, e, f, g, h) -> Put #

get :: Get (a, b, c, d, e, f, g, h) #

putList :: [(a, b, c, d, e, f, g, h)] -> Put #

(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h, Binary i) => Binary (a, b, c, d, e, f, g, h, i) 
Instance details

Methods

put :: (a, b, c, d, e, f, g, h, i) -> Put #

get :: Get (a, b, c, d, e, f, g, h, i) #

putList :: [(a, b, c, d, e, f, g, h, i)] -> Put #

(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h, Binary i, Binary j) => Binary (a, b, c, d, e, f, g, h, i, j) 
Instance details

Methods

put :: (a, b, c, d, e, f, g, h, i, j) -> Put #

get :: Get (a, b, c, d, e, f, g, h, i, j) #

putList :: [(a, b, c, d, e, f, g, h, i, j)] -> Put #

class Applicative f => Alternative (f :: * -> *) where #

A monoid on applicative functors.

If defined, some and many should be the least solutions of the equations:

  • some v = (:) <$> v <*> many v
  • many v = some v <|> pure []

Minimal complete definition

empty, (<|>)

Methods

empty :: f a #

The identity of <|>

(<|>) :: f a -> f a -> f a infixl 3 #

An associative binary operation

some :: f a -> f [a] #

One or more.

many :: f a -> f [a] #

Zero or more.

Instances
Alternative []

Since: 2.1

Instance details

Methods

empty :: [a] #

(<|>) :: [a] -> [a] -> [a] #

some :: [a] -> [[a]] #

many :: [a] -> [[a]] #

Alternative Maybe

Since: 2.1

Instance details

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

Alternative IO

Since: 4.9.0.0

Instance details

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

Alternative P

Since: 4.5.0.0

Instance details

Methods

empty :: P a #

(<|>) :: P a -> P a -> P a #

some :: P a -> P [a] #

many :: P a -> P [a] #

Alternative Option

Since: 4.9.0.0

Instance details

Methods

empty :: Option a #

(<|>) :: Option a -> Option a -> Option a #

some :: Option a -> Option [a] #

many :: Option a -> Option [a] #

Alternative STM

Since: 4.8.0.0

Instance details

Methods

empty :: STM a #

(<|>) :: STM a -> STM a -> STM a #

some :: STM a -> STM [a] #

many :: STM a -> STM [a] #

Alternative ReadPrec

Since: 4.6.0.0

Instance details

Methods

empty :: ReadPrec a #

(<|>) :: ReadPrec a -> ReadPrec a -> ReadPrec a #

some :: ReadPrec a -> ReadPrec [a] #

many :: ReadPrec a -> ReadPrec [a] #

Alternative ReadP

Since: 4.6.0.0

Instance details

Methods

empty :: ReadP a #

(<|>) :: ReadP a -> ReadP a -> ReadP a #

some :: ReadP a -> ReadP [a] #

many :: ReadP a -> ReadP [a] #

Alternative Get

Since: 0.7.0.0

Instance details

Methods

empty :: Get a #

(<|>) :: Get a -> Get a -> Get a #

some :: Get a -> Get [a] #

many :: Get a -> Get [a] #

Alternative Seq 
Instance details

Methods

empty :: Seq a #

(<|>) :: Seq a -> Seq a -> Seq a #

some :: Seq a -> Seq [a] #

many :: Seq a -> Seq [a] #

Alternative Condition # 
Instance details

Methods

empty :: Condition a #

(<|>) :: Condition a -> Condition a -> Condition a #

some :: Condition a -> Condition [a] #

many :: Condition a -> Condition [a] #

Alternative (U1 *)

Since: 4.9.0.0

Instance details

Methods

empty :: U1 * a #

(<|>) :: U1 * a -> U1 * a -> U1 * a #

some :: U1 * a -> U1 * [a] #

many :: U1 * a -> U1 * [a] #

MonadPlus m => Alternative (WrappedMonad m)

Since: 2.1

Instance details

Methods

empty :: WrappedMonad m a #

(<|>) :: WrappedMonad m a -> WrappedMonad m a -> WrappedMonad m a #

some :: WrappedMonad m a -> WrappedMonad m [a] #

many :: WrappedMonad m a -> WrappedMonad m [a] #

ArrowPlus a => Alternative (ArrowMonad a)

Since: 4.6.0.0

Instance details

Methods

empty :: ArrowMonad a a0 #

(<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

some :: ArrowMonad a a0 -> ArrowMonad a [a0] #

many :: ArrowMonad a a0 -> ArrowMonad a [a0] #

Alternative (Proxy *)

Since: 4.9.0.0

Instance details

Methods

empty :: Proxy * a #

(<|>) :: Proxy * a -> Proxy * a -> Proxy * a #

some :: Proxy * a -> Proxy * [a] #

many :: Proxy * a -> Proxy * [a] #

Alternative f => Alternative (Rec1 * f)

Since: 4.9.0.0

Instance details

Methods

empty :: Rec1 * f a #

(<|>) :: Rec1 * f a -> Rec1 * f a -> Rec1 * f a #

some :: Rec1 * f a -> Rec1 * f [a] #

many :: Rec1 * f a -> Rec1 * f [a] #

(ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b)

Since: 2.1

Instance details

Methods

empty :: WrappedArrow a b a0 #

(<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 #

some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

Alternative f => Alternative (Alt * f) 
Instance details

Methods

empty :: Alt * f a #

(<|>) :: Alt * f a -> Alt * f a -> Alt * f a #

some :: Alt * f a -> Alt * f [a] #

many :: Alt * f a -> Alt * f [a] #

Monoid fail => Alternative (Progress step fail) # 
Instance details

Methods

empty :: Progress step fail a #

(<|>) :: Progress step fail a -> Progress step fail a -> Progress step fail a #

some :: Progress step fail a -> Progress step fail [a] #

many :: Progress step fail a -> Progress step fail [a] #

(Alternative f, Alternative g) => Alternative ((:*:) * f g)

Since: 4.9.0.0

Instance details

Methods

empty :: (* :*: f) g a #

(<|>) :: (* :*: f) g a -> (* :*: f) g a -> (* :*: f) g a #

some :: (* :*: f) g a -> (* :*: f) g [a] #

many :: (* :*: f) g a -> (* :*: f) g [a] #

(Alternative f, Alternative g) => Alternative (Product * f g)

Since: 4.9.0.0

Instance details

Methods

empty :: Product * f g a #

(<|>) :: Product * f g a -> Product * f g a -> Product * f g a #

some :: Product * f g a -> Product * f g [a] #

many :: Product * f g a -> Product * f g [a] #

Alternative f => Alternative (M1 * i c f)

Since: 4.9.0.0

Instance details

Methods

empty :: M1 * i c f a #

(<|>) :: M1 * i c f a -> M1 * i c f a -> M1 * i c f a #

some :: M1 * i c f a -> M1 * i c f [a] #

many :: M1 * i c f a -> M1 * i c f [a] #

(Alternative f, Applicative g) => Alternative ((:.:) * * f g)

Since: 4.9.0.0

Instance details

Methods

empty :: (* :.: *) f g a #

(<|>) :: (* :.: *) f g a -> (* :.: *) f g a -> (* :.: *) f g a #

some :: (* :.: *) f g a -> (* :.: *) f g [a] #

many :: (* :.: *) f g a -> (* :.: *) f g [a] #

(Alternative f, Applicative g) => Alternative (Compose * * f g)

Since: 4.9.0.0

Instance details

Methods

empty :: Compose * * f g a #

(<|>) :: Compose * * f g a -> Compose * * f g a -> Compose * * f g a #

some :: Compose * * f g a -> Compose * * f g [a] #

many :: Compose * * f g a -> Compose * * f g [a] #

class (Alternative m, Monad m) => MonadPlus (m :: * -> *) where #

Monads that also support choice and failure.

Methods

mzero :: m a #

the identity of mplus. It should also satisfy the equations

mzero >>= f  =  mzero
v >> mzero   =  mzero

mplus :: m a -> m a -> m a #

an associative operation

Instances
MonadPlus []

Since: 2.1

Instance details

Methods

mzero :: [a] #

mplus :: [a] -> [a] -> [a] #

MonadPlus Maybe

Since: 2.1

Instance details

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

MonadPlus IO

Since: 4.9.0.0

Instance details

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

MonadPlus P

Since: 2.1

Instance details

Methods

mzero :: P a #

mplus :: P a -> P a -> P a #

MonadPlus Option

Since: 4.9.0.0

Instance details

Methods

mzero :: Option a #

mplus :: Option a -> Option a -> Option a #

MonadPlus STM

Since: 4.3.0.0

Instance details

Methods

mzero :: STM a #

mplus :: STM a -> STM a -> STM a #

MonadPlus ReadPrec

Since: 2.1

Instance details

Methods

mzero :: ReadPrec a #

mplus :: ReadPrec a -> ReadPrec a -> ReadPrec a #

MonadPlus ReadP

Since: 2.1

Instance details

Methods

mzero :: ReadP a #

mplus :: ReadP a -> ReadP a -> ReadP a #

MonadPlus Get

Since: 0.7.1.0

Instance details

Methods

mzero :: Get a #

mplus :: Get a -> Get a -> Get a #

MonadPlus Seq 
Instance details

Methods

mzero :: Seq a #

mplus :: Seq a -> Seq a -> Seq a #

MonadPlus Condition # 
Instance details

Methods

mzero :: Condition a #

mplus :: Condition a -> Condition a -> Condition a #

MonadPlus (U1 *)

Since: 4.9.0.0

Instance details

Methods

mzero :: U1 * a #

mplus :: U1 * a -> U1 * a -> U1 * a #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a)

Since: 4.6.0.0

Instance details

Methods

mzero :: ArrowMonad a a0 #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

MonadPlus (Proxy *)

Since: 4.9.0.0

Instance details

Methods

mzero :: Proxy * a #

mplus :: Proxy * a -> Proxy * a -> Proxy * a #

MonadPlus f => MonadPlus (Rec1 * f)

Since: 4.9.0.0

Instance details

Methods

mzero :: Rec1 * f a #

mplus :: Rec1 * f a -> Rec1 * f a -> Rec1 * f a #

MonadPlus f => MonadPlus (Alt * f) 
Instance details

Methods

mzero :: Alt * f a #

mplus :: Alt * f a -> Alt * f a -> Alt * f a #

(MonadPlus f, MonadPlus g) => MonadPlus ((:*:) * f g)

Since: 4.9.0.0

Instance details

Methods

mzero :: (* :*: f) g a #

mplus :: (* :*: f) g a -> (* :*: f) g a -> (* :*: f) g a #

(MonadPlus f, MonadPlus g) => MonadPlus (Product * f g)

Since: 4.9.0.0

Instance details

Methods

mzero :: Product * f g a #

mplus :: Product * f g a -> Product * f g a -> Product * f g a #

MonadPlus f => MonadPlus (M1 * i c f)

Since: 4.9.0.0

Instance details

Methods

mzero :: M1 * i c f a #

mplus :: M1 * i c f a -> M1 * i c f a -> M1 * i c f a #

class IsString a where #

Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).

Minimal complete definition

fromString

Methods

fromString :: String -> a #

Instances
IsString ShortByteString 
Instance details
IsString ByteString 
Instance details
IsString ByteString 
Instance details
IsString Doc 
Instance details

Methods

fromString :: String -> Doc #

IsString CmdSpec

construct a ShellCommand from a string literal

Since: 1.2.1.0

Instance details

Methods

fromString :: String -> CmdSpec #

IsString ShortText # 
Instance details
IsString PkgconfigName #

mkPkgconfigName

Since: 2.0

Instance details
IsString ComponentId #

mkComponentId

Since: 2.0

Instance details
IsString AbiHash #

mkAbiHash

Since: 2.0

Instance details

Methods

fromString :: String -> AbiHash #

IsString ModuleName #

Construct a ModuleName from a valid module name String.

This is just a convenience function intended for valid module strings. It is an error if it is used with a string that is not a valid module name. If you are parsing user input then use simpleParse instead.

Instance details
IsString PackageName #

mkPackageName

Since: 2.0

Instance details
IsString UnqualComponentName #

mkUnqualComponentName

Since: 2.0

Instance details
IsString UnitId #

mkUnitId

Since: 2.0

Instance details

Methods

fromString :: String -> UnitId #

IsString MungedPackageName #

mkMungedPackageName

Since: 2.0

Instance details
IsString FlagName #

mkFlagName

Since: 2.0

Instance details
(~) * a Char => IsString [a]

(a ~ Char) context was introduced in 4.9.0.0

Since: 2.1

Instance details

Methods

fromString :: String -> [a] #

IsString a => IsString (Identity a) 
Instance details

Methods

fromString :: String -> Identity a #

IsString (Seq Char) 
Instance details

Methods

fromString :: String -> Seq Char #

IsString (Doc a) 
Instance details

Methods

fromString :: String -> Doc a #

IsString a => IsString (Const * a b)

Since: 4.9.0.0

Instance details

Methods

fromString :: String -> Const * a b #

Some types

type IO a = WithCallStack (IO a) Source #

data Map k a #

A Map from keys k to values a.

Instances
Eq2 Map 
Instance details

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Map a c -> Map b d -> Bool #

Ord2 Map 
Instance details

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Map a c -> Map b d -> Ordering #

Show2 Map 
Instance details

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Map a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Map a b] -> ShowS #

Functor (Map k) 
Instance details

Methods

fmap :: (a -> b) -> Map k a -> Map k b #

(<$) :: a -> Map k b -> Map k a #

Foldable (Map k) 
Instance details

Methods

fold :: Monoid m => Map k m -> m #

foldMap :: Monoid m => (a -> m) -> Map k a -> m #

foldr :: (a -> b -> b) -> b -> Map k a -> b #

foldr' :: (a -> b -> b) -> b -> Map k a -> b #

foldl :: (b -> a -> b) -> b -> Map k a -> b #

foldl' :: (b -> a -> b) -> b -> Map k a -> b #

foldr1 :: (a -> a -> a) -> Map k a -> a #

foldl1 :: (a -> a -> a) -> Map k a -> a #

toList :: Map k a -> [a] #

null :: Map k a -> Bool #

length :: Map k a -> Int #

elem :: Eq a => a -> Map k a -> Bool #

maximum :: Ord a => Map k a -> a #

minimum :: Ord a => Map k a -> a #

sum :: Num a => Map k a -> a #

product :: Num a => Map k a -> a #

Traversable (Map k) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Eq k => Eq1 (Map k) 
Instance details

Methods

liftEq :: (a -> b -> Bool) -> Map k a -> Map k b -> Bool #

Ord k => Ord1 (Map k) 
Instance details

Methods

liftCompare :: (a -> b -> Ordering) -> Map k a -> Map k b -> Ordering #

(Ord k, Read k) => Read1 (Map k) 
Instance details

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Map k a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Map k a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Map k a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Map k a] #

Show k => Show1 (Map k) 
Instance details

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Map k a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Map k a] -> ShowS #

Ord k => IsList (Map k v) 
Instance details

Associated Types

type Item (Map k v) :: * #

Methods

fromList :: [Item (Map k v)] -> Map k v #

fromListN :: Int -> [Item (Map k v)] -> Map k v #

toList :: Map k v -> [Item (Map k v)] #

(Eq k, Eq a) => Eq (Map k a) 
Instance details

Methods

(==) :: Map k a -> Map k a -> Bool #

(/=) :: Map k a -> Map k a -> Bool #

(Data k, Data a, Ord k) => Data (Map k a) 
Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) #

toConstr :: Map k a -> Constr #

dataTypeOf :: Map k a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) #

gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

(Ord k, Ord v) => Ord (Map k v) 
Instance details

Methods

compare :: Map k v -> Map k v -> Ordering #

(<) :: Map k v -> Map k v -> Bool #

(<=) :: Map k v -> Map k v -> Bool #

(>) :: Map k v -> Map k v -> Bool #

(>=) :: Map k v -> Map k v -> Bool #

max :: Map k v -> Map k v -> Map k v #

min :: Map k v -> Map k v -> Map k v #

(Ord k, Read k, Read e) => Read (Map k e) 
Instance details

Methods

readsPrec :: Int -> ReadS (Map k e) #

readList :: ReadS [Map k e] #

readPrec :: ReadPrec (Map k e) #

readListPrec :: ReadPrec [Map k e] #

(Show k, Show a) => Show (Map k a) 
Instance details

Methods

showsPrec :: Int -> Map k a -> ShowS #

show :: Map k a -> String #

showList :: [Map k a] -> ShowS #

Ord k => Semigroup (Map k v) 
Instance details

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

Ord k => Monoid (Map k v) 
Instance details

Methods

mempty :: Map k v #

mappend :: Map k v -> Map k v -> Map k v #

mconcat :: [Map k v] -> Map k v #

(Binary k, Binary e) => Binary (Map k e) 
Instance details

Methods

put :: Map k e -> Put #

get :: Get (Map k e) #

putList :: [Map k e] -> Put #

(NFData k, NFData a) => NFData (Map k a) 
Instance details

Methods

rnf :: Map k a -> () #

ModSubst a => ModSubst (Map k a) Source # 
Instance details

Methods

modSubst :: OpenModuleSubst -> Map k a -> Map k a Source #

type Item (Map k v) 
Instance details
type Item (Map k v) = (k, v)

Data.Maybe

catMaybes :: [Maybe a] -> [a] #

The catMaybes function takes a list of Maybes and returns a list of all the Just values.

Examples

Expand

Basic usage:

>>> catMaybes [Just 1, Nothing, Just 3]
[1,3]

When constructing a list of Maybe values, catMaybes can be used to return all of the "success" results (if the list is the result of a map, then mapMaybe would be more appropriate):

>>> import Text.Read ( readMaybe )
>>> [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]
>>> catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]

mapMaybe :: (a -> Maybe b) -> [a] -> [b] #

The mapMaybe function is a version of map which can throw out elements. In particular, the functional argument returns something of type Maybe b. If this is Nothing, no element is added on to the result list. If it is Just b, then b is included in the result list.

Examples

Expand

Using mapMaybe f x is a shortcut for catMaybes $ map f x in most cases:

>>> import Text.Read ( readMaybe )
>>> let readMaybeInt = readMaybe :: String -> Maybe Int
>>> mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]
>>> catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]

If we map the Just constructor, the entire list should be returned:

>>> mapMaybe Just [1,2,3]
[1,2,3]

fromMaybe :: a -> Maybe a -> a #

The fromMaybe function takes a default value and and Maybe value. If the Maybe is Nothing, it returns the default values; otherwise, it returns the value contained in the Maybe.

Examples

Expand

Basic usage:

>>> fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>> fromMaybe "" Nothing
""

Read an integer from a string using readMaybe. If we fail to parse an integer, we want to return 0 by default:

>>> import Text.Read ( readMaybe )
>>> fromMaybe 0 (readMaybe "5")
5
>>> fromMaybe 0 (readMaybe "")
0

maybeToList :: Maybe a -> [a] #

The maybeToList function returns an empty list when given Nothing or a singleton list when not given Nothing.

Examples

Expand

Basic usage:

>>> maybeToList (Just 7)
[7]
>>> maybeToList Nothing
[]

One can use maybeToList to avoid pattern matching when combined with a function that (safely) works on lists:

>>> import Text.Read ( readMaybe )
>>> sum $ maybeToList (readMaybe "3")
3
>>> sum $ maybeToList (readMaybe "")
0

listToMaybe :: [a] -> Maybe a #

The listToMaybe function returns Nothing on an empty list or Just a where a is the first element of the list.

Examples

Expand

Basic usage:

>>> listToMaybe []
Nothing
>>> listToMaybe [9]
Just 9
>>> listToMaybe [1,2,3]
Just 1

Composing maybeToList with listToMaybe should be the identity on singleton/empty lists:

>>> maybeToList $ listToMaybe [5]
[5]
>>> maybeToList $ listToMaybe []
[]

But not on lists with more than one element:

>>> maybeToList $ listToMaybe [1,2,3]
[1]

isNothing :: Maybe a -> Bool #

The isNothing function returns True iff its argument is Nothing.

Examples

Expand

Basic usage:

>>> isNothing (Just 3)
False
>>> isNothing (Just ())
False
>>> isNothing Nothing
True

Only the outer constructor is taken into consideration:

>>> isNothing (Just Nothing)
False

isJust :: Maybe a -> Bool #

The isJust function returns True iff its argument is of the form Just _.

Examples

Expand

Basic usage:

>>> isJust (Just 3)
True
>>> isJust (Just ())
True
>>> isJust Nothing
False

Only the outer constructor is taken into consideration:

>>> isJust (Just Nothing)
True

Data.List

unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #

The unfoldr function is a `dual' to foldr: while foldr reduces a list to a summary value, unfoldr builds a list from a seed value. The function takes the element and returns Nothing if it is done producing the list or returns Just (a,b), in which case, a is a prepended to the list and b is used as the next element in a recursive call. For example,

iterate f == unfoldr (\x -> Just (x, f x))

In some cases, unfoldr can undo a foldr operation:

unfoldr f' (foldr f z xs) == xs

if the following holds:

f' (f x y) = Just (x,y)
f' z       = Nothing

A simple use of unfoldr:

unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
 [10,9,8,7,6,5,4,3,2,1]

isPrefixOf :: Eq a => [a] -> [a] -> Bool #

The isPrefixOf function takes two lists and returns True iff the first list is a prefix of the second.

isSuffixOf :: Eq a => [a] -> [a] -> Bool #

The isSuffixOf function takes two lists and returns True iff the first list is a suffix of the second. The second list must be finite.

intercalate :: [a] -> [[a]] -> [a] #

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the list xs in between the lists in xss and concatenates the result.

intersperse :: a -> [a] -> [a] #

The intersperse function takes an element and a list and `intersperses' that element between the elements of the list. For example,

intersperse ',' "abcde" == "a,b,c,d,e"

sort :: Ord a => [a] -> [a] #

The sort function implements a stable sorting algorithm. It is a special case of sortBy, which allows the programmer to supply their own comparison function.

Elements are arranged from from lowest to highest, keeping duplicates in the order they appeared in the input.

sortBy :: (a -> a -> Ordering) -> [a] -> [a] #

The sortBy function is the non-overloaded version of sort.

nub :: Eq a => [a] -> [a] #

O(n^2). The nub function removes duplicate elements from a list. In particular, it keeps only the first occurrence of each element. (The name nub means `essence'.) It is a special case of nubBy, which allows the programmer to supply their own equality test.

nubBy :: (a -> a -> Bool) -> [a] -> [a] #

The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of the overloaded == function.

Data.Foldable

class Foldable (t :: * -> *) where #

Data structures that can be folded.

For example, given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Foldable Tree where
   foldMap f Empty = mempty
   foldMap f (Leaf x) = f x
   foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r

This is suitable even for abstract types, as the monoid is assumed to satisfy the monoid laws. Alternatively, one could define foldr:

instance Foldable Tree where
   foldr f z Empty = z
   foldr f z (Leaf x) = f x z
   foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l

Foldable instances are expected to satisfy the following laws:

foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id

sum, product, maximum, and minimum should all be essentially equivalent to foldMap forms, such as

sum = getSum . foldMap Sum

but may be less defined.

If the type is also a Functor instance, it should satisfy

foldMap f = fold . fmap f

which implies that

foldMap f . fmap g = foldMap (f . g)

Minimal complete definition

foldMap | foldr

Methods

foldMap :: Monoid m => (a -> m) -> t a -> m #

Map each element of the structure to a monoid, and combine the results.

foldr :: (a -> b -> b) -> b -> t a -> b #

Right-associative fold of a structure.

In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

Note that, since the head of the resulting expression is produced by an application of the operator to the first element of the list, foldr can produce a terminating expression from an infinite list.

For a general Foldable structure this should be semantically identical to,

foldr f z = foldr f z . toList

foldl :: (b -> a -> b) -> b -> t a -> b #

Left-associative fold of a structure.

In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn

Note that to produce the outermost application of the operator the entire input list must be traversed. This means that foldl' will diverge if given an infinite list.

Also note that if you want an efficient left-fold, you probably want to use foldl' instead of foldl. The reason for this is that latter does not force the "inner" results (e.g. z f x1 in the above example) before applying them to the operator (e.g. to (f x2)). This results in a thunk chain O(n) elements long, which then must be evaluated from the outside-in.

For a general Foldable structure this should be semantically identical to,

foldl f z = foldl f z . toList

foldl' :: (b -> a -> b) -> b -> t a -> b #

Left-associative fold of a structure but with strict application of the operator.

This ensures that each step of the fold is forced to weak head normal form before being applied, avoiding the collection of thunks that would otherwise occur. This is often what you want to strictly reduce a finite list to a single, monolithic result (e.g. length).

For a general Foldable structure this should be semantically identical to,

foldl f z = foldl' f z . toList

foldr1 :: (a -> a -> a) -> t a -> a #

A variant of foldr that has no base case, and thus may only be applied to non-empty structures.

foldr1 f = foldr1 f . toList

foldl1 :: (a -> a -> a) -> t a -> a #

A variant of foldl that has no base case, and thus may only be applied to non-empty structures.

foldl1 f = foldl1 f . toList

null :: t a -> Bool #

Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

length :: t a -> Int #

Returns the size/length of a finite structure as an Int. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

elem :: Eq a => a -> t a -> Bool infix 4 #

Does the element occur in the structure?

maximum :: Ord a => t a -> a #

The largest element of a non-empty structure.

minimum :: Ord a => t a -> a #

The least element of a non-empty structure.

sum :: Num a => t a -> a #

The sum function computes the sum of the numbers of a structure.

product :: Num a => t a -> a #

The product function computes the product of the numbers of a structure.

Instances
Foldable []

Since: 2.1

Instance details

Methods

fold :: Monoid m => [m] -> m #

foldMap :: Monoid m => (a -> m) -> [a] -> m #

foldr :: (a -> b -> b) -> b -> [a] -> b #

foldr' :: (a -> b -> b) -> b -> [a] -> b #

foldl :: (b -> a -> b) -> b -> [a] -> b #

foldl' :: (b -> a -> b) -> b -> [a] -> b #

foldr1 :: (a -> a -> a) -> [a] -> a #

foldl1 :: (a -> a -> a) -> [a] -> a #

toList :: [a] -> [a] #

null :: [a] -> Bool #

length :: [a] -> Int #

elem :: Eq a => a -> [a] -> Bool #

maximum :: Ord a => [a] -> a #

minimum :: Ord a => [a] -> a #

sum :: Num a => [a] -> a #

product :: Num a => [a] -> a #

Foldable Maybe

Since: 2.1

Instance details

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Foldable Par1 
Instance details

Methods

fold :: Monoid m => Par1 m -> m #

foldMap :: Monoid m => (a -> m) -> Par1 a -> m #

foldr :: (a -> b -> b) -> b -> Par1 a -> b #

foldr' :: (a -> b -> b) -> b -> Par1 a -> b #

foldl :: (b -> a -> b) -> b -> Par1 a -> b #

foldl' :: (b -> a -> b) -> b -> Par1 a -> b #

foldr1 :: (a -> a -> a) -> Par1 a -> a #

foldl1 :: (a -> a -> a) -> Par1 a -> a #

toList :: Par1 a -> [a] #

null :: Par1 a -> Bool #

length :: Par1 a -> Int #

elem :: Eq a => a -> Par1 a -> Bool #

maximum :: Ord a => Par1 a -> a #

minimum :: Ord a => Par1 a -> a #

sum :: Num a => Par1 a -> a #

product :: Num a => Par1 a -> a #

Foldable Complex 
Instance details

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Foldable Min

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Foldable Max

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Foldable First

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Option

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Option m -> m #

foldMap :: Monoid m => (a -> m) -> Option a -> m #

foldr :: (a -> b -> b) -> b -> Option a -> b #

foldr' :: (a -> b -> b) -> b -> Option a -> b #

foldl :: (b -> a -> b) -> b -> Option a -> b #

foldl' :: (b -> a -> b) -> b -> Option a -> b #

foldr1 :: (a -> a -> a) -> Option a -> a #

foldl1 :: (a -> a -> a) -> Option a -> a #

toList :: Option a -> [a] #

null :: Option a -> Bool #

length :: Option a -> Int #

elem :: Eq a => a -> Option a -> Bool #

maximum :: Ord a => Option a -> a #

minimum :: Ord a => Option a -> a #

sum :: Num a => Option a -> a #

product :: Num a => Option a -> a #

Foldable NonEmpty

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Foldable ZipList 
Instance details

Methods

fold :: Monoid m => ZipList m -> m #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m #

foldr :: (a -> b -> b) -> b -> ZipList a -> b #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b #

foldl :: (b -> a -> b) -> b -> ZipList a -> b #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b #

foldr1 :: (a -> a -> a) -> ZipList a -> a #

foldl1 :: (a -> a -> a) -> ZipList a -> a #

toList :: ZipList a -> [a] #

null :: ZipList a -> Bool #

length :: ZipList a -> Int #

elem :: Eq a => a -> ZipList a -> Bool #

maximum :: Ord a => ZipList a -> a #

minimum :: Ord a => ZipList a -> a #

sum :: Num a => ZipList a -> a #

product :: Num a => ZipList a -> a #

Foldable Identity

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Foldable Dual

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable Sum

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable Product

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable First

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable IntMap 
Instance details

Methods

fold :: Monoid m => IntMap m -> m #

foldMap :: Monoid m => (a -> m) -> IntMap a -> m #

foldr :: (a -> b -> b) -> b -> IntMap a -> b #

foldr' :: (a -> b -> b) -> b -> IntMap a -> b #

foldl :: (b -> a -> b) -> b -> IntMap a -> b #

foldl' :: (b -> a -> b) -> b -> IntMap a -> b #

foldr1 :: (a -> a -> a) -> IntMap a -> a #

foldl1 :: (a -> a -> a) -> IntMap a -> a #

toList :: IntMap a -> [a] #

null :: IntMap a -> Bool #

length :: IntMap a -> Int #

elem :: Eq a => a -> IntMap a -> Bool #

maximum :: Ord a => IntMap a -> a #

minimum :: Ord a => IntMap a -> a #

sum :: Num a => IntMap a -> a #

product :: Num a => IntMap a -> a #

Foldable SCC 
Instance details

Methods

fold :: Monoid m => SCC m -> m #

foldMap :: Monoid m => (a -> m) -> SCC a -> m #

foldr :: (a -> b -> b) -> b -> SCC a -> b #

foldr' :: (a -> b -> b) -> b -> SCC a -> b #

foldl :: (b -> a -> b) -> b -> SCC a -> b #

foldl' :: (b -> a -> b) -> b -> SCC a -> b #

foldr1 :: (a -> a -> a) -> SCC a -> a #

foldl1 :: (a -> a -> a) -> SCC a -> a #

toList :: SCC a -> [a] #

null :: SCC a -> Bool #

length :: SCC a -> Int #

elem :: Eq a => a -> SCC a -> Bool #

maximum :: Ord a => SCC a -> a #

minimum :: Ord a => SCC a -> a #

sum :: Num a => SCC a -> a #

product :: Num a => SCC a -> a #

Foldable Tree 
Instance details

Methods

fold :: Monoid m => Tree m -> m #

foldMap :: Monoid m => (a -> m) -> Tree a -> m #

foldr :: (a -> b -> b) -> b -> Tree a -> b #

foldr' :: (a -> b -> b) -> b -> Tree a -> b #

foldl :: (b -> a -> b) -> b -> Tree a -> b #

foldl' :: (b -> a -> b) -> b -> Tree a -> b #

foldr1 :: (a -> a -> a) -> Tree a -> a #

foldl1 :: (a -> a -> a) -> Tree a -> a #

toList :: Tree a -> [a] #

null :: Tree a -> Bool #

length :: Tree a -> Int #

elem :: Eq a => a -> Tree a -> Bool #

maximum :: Ord a => Tree a -> a #

minimum :: Ord a => Tree a -> a #

sum :: Num a => Tree a -> a #

product :: Num a => Tree a -> a #

Foldable Seq 
Instance details

Methods

fold :: Monoid m => Seq m -> m #

foldMap :: Monoid m => (a -> m) -> Seq a -> m #

foldr :: (a -> b -> b) -> b -> Seq a -> b #

foldr' :: (a -> b -> b) -> b -> Seq a -> b #

foldl :: (b -> a -> b) -> b -> Seq a -> b #

foldl' :: (b -> a -> b) -> b -> Seq a -> b #

foldr1 :: (a -> a -> a) -> Seq a -> a #

foldl1 :: (a -> a -> a) -> Seq a -> a #

toList :: Seq a -> [a] #

null :: Seq a -> Bool #

length :: Seq a -> Int #

elem :: Eq a => a -> Seq a -> Bool #

maximum :: Ord a => Seq a -> a #

minimum :: Ord a => Seq a -> a #

sum :: Num a => Seq a -> a #

product :: Num a => Seq a -> a #

Foldable FingerTree 
Instance details

Methods

fold :: Monoid m => FingerTree m -> m #

foldMap :: Monoid m => (a -> m) -> FingerTree a -> m #

foldr :: (a -> b -> b) -> b -> FingerTree a -> b #

foldr' :: (a -> b -> b) -> b -> FingerTree a -> b #

foldl :: (b -> a -> b) -> b -> FingerTree a -> b #

foldl' :: (b -> a -> b) -> b -> FingerTree a -> b #

foldr1 :: (a -> a -> a) -> FingerTree a -> a #

foldl1 :: (a -> a -> a) -> FingerTree a -> a #

toList :: FingerTree a -> [a] #

null :: FingerTree a -> Bool #

length :: FingerTree a -> Int #

elem :: Eq a => a -> FingerTree a -> Bool #

maximum :: Ord a => FingerTree a -> a #

minimum :: Ord a => FingerTree a -> a #

sum :: Num a => FingerTree a -> a #

product :: Num a => FingerTree a -> a #

Foldable Digit 
Instance details

Methods

fold :: Monoid m => Digit m -> m #

foldMap :: Monoid m => (a -> m) -> Digit a -> m #

foldr :: (a -> b -> b) -> b -> Digit a -> b #

foldr' :: (a -> b -> b) -> b -> Digit a -> b #

foldl :: (b -> a -> b) -> b -> Digit a -> b #

foldl' :: (b -> a -> b) -> b -> Digit a -> b #

foldr1 :: (a -> a -> a) -> Digit a -> a #

foldl1 :: (a -> a -> a) -> Digit a -> a #

toList :: Digit a -> [a] #

null :: Digit a -> Bool #

length :: Digit a -> Int #

elem :: Eq a => a -> Digit a -> Bool #

maximum :: Ord a => Digit a -> a #

minimum :: Ord a => Digit a -> a #

sum :: Num a => Digit a -> a #

product :: Num a => Digit a -> a #

Foldable Node 
Instance details

Methods

fold :: Monoid m => Node m -> m #

foldMap :: Monoid m => (a -> m) -> Node a -> m #

foldr :: (a -> b -> b) -> b -> Node a -> b #

foldr' :: (a -> b -> b) -> b -> Node a -> b #

foldl :: (b -> a -> b) -> b -> Node a -> b #

foldl' :: (b -> a -> b) -> b -> Node a -> b #

foldr1 :: (a -> a -> a) -> Node a -> a #

foldl1 :: (a -> a -> a) -> Node a -> a #

toList :: Node a -> [a] #

null :: Node a -> Bool #

length :: Node a -> Int #

elem :: Eq a => a -> Node a -> Bool #

maximum :: Ord a => Node a -> a #

minimum :: Ord a => Node a -> a #

sum :: Num a => Node a -> a #

product :: Num a => Node a -> a #

Foldable Elem 
Instance details

Methods

fold :: Monoid m => Elem m -> m #

foldMap :: Monoid m => (a -> m) -> Elem a -> m #

foldr :: (a -> b -> b) -> b -> Elem a -> b #

foldr' :: (a -> b -> b) -> b -> Elem a -> b #

foldl :: (b -> a -> b) -> b -> Elem a -> b #

foldl' :: (b -> a -> b) -> b -> Elem a -> b #

foldr1 :: (a -> a -> a) -> Elem a -> a #

foldl1 :: (a -> a -> a) -> Elem a -> a #

toList :: Elem a -> [a] #

null :: Elem a -> Bool #

length :: Elem a -> Int #

elem :: Eq a => a -> Elem a -> Bool #

maximum :: Ord a => Elem a -> a #

minimum :: Ord a => Elem a -> a #

sum :: Num a => Elem a -> a #

product :: Num a => Elem a -> a #

Foldable ViewL 
Instance details

Methods

fold :: Monoid m => ViewL m -> m #

foldMap :: Monoid m => (a -> m) -> ViewL a -> m #

foldr :: (a -> b -> b) -> b -> ViewL a -> b #

foldr' :: (a -> b -> b) -> b -> ViewL a -> b #

foldl :: (b -> a -> b) -> b -> ViewL a -> b #

foldl' :: (b -> a -> b) -> b -> ViewL a -> b #

foldr1 :: (a -> a -> a) -> ViewL a -> a #

foldl1 :: (a -> a -> a) -> ViewL a -> a #

toList :: ViewL a -> [a] #

null :: ViewL a -> Bool #

length :: ViewL a -> Int #

elem :: Eq a => a -> ViewL a -> Bool #

maximum :: Ord a => ViewL a -> a #

minimum :: Ord a => ViewL a -> a #

sum :: Num a => ViewL a -> a #

product :: Num a => ViewL a -> a #

Foldable ViewR 
Instance details

Methods

fold :: Monoid m => ViewR m -> m #

foldMap :: Monoid m => (a -> m) -> ViewR a -> m #

foldr :: (a -> b -> b) -> b -> ViewR a -> b #

foldr' :: (a -> b -> b) -> b -> ViewR a -> b #

foldl :: (b -> a -> b) -> b -> ViewR a -> b #

foldl' :: (b -> a -> b) -> b -> ViewR a -> b #

foldr1 :: (a -> a -> a) -> ViewR a -> a #

foldl1 :: (a -> a -> a) -> ViewR a -> a #

toList :: ViewR a -> [a] #

null :: ViewR a -> Bool #

length :: ViewR a -> Int #

elem :: Eq a => a -> ViewR a -> Bool #

maximum :: Ord a => ViewR a -> a #

minimum :: Ord a => ViewR a -> a #

sum :: Num a => ViewR a -> a #

product :: Num a => ViewR a -> a #

Foldable Set 
Instance details

Methods

fold :: Monoid m => Set m -> m #

foldMap :: Monoid m => (a -> m) -> Set a -> m #

foldr :: (a -> b -> b) -> b -> Set a -> b #

foldr' :: (a -> b -> b) -> b -> Set a -> b #

foldl :: (b -> a -> b) -> b -> Set a -> b #

foldl' :: (b -> a -> b) -> b -> Set a -> b #

foldr1 :: (a -> a -> a) -> Set a -> a #

foldl1 :: (a -> a -> a) -> Set a -> a #

toList :: Set a -> [a] #

null :: Set a -> Bool #

length :: Set a -> Int #

elem :: Eq a => a -> Set a -> Bool #

maximum :: Ord a => Set a -> a #

minimum :: Ord a => Set a -> a #

sum :: Num a => Set a -> a #

product :: Num a => Set a -> a #

Foldable Graph # 
Instance details

Methods

fold :: Monoid m => Graph m -> m #

foldMap :: Monoid m => (a -> m) -> Graph a -> m #

foldr :: (a -> b -> b) -> b -> Graph a -> b #

foldr' :: (a -> b -> b) -> b -> Graph a -> b #

foldl :: (b -> a -> b) -> b -> Graph a -> b #

foldl' :: (b -> a -> b) -> b -> Graph a -> b #

foldr1 :: (a -> a -> a) -> Graph a -> a #

foldl1 :: (a -> a -> a) -> Graph a -> a #

toList :: Graph a -> [a] #

null :: Graph a -> Bool #

length :: Graph a -> Int #

elem :: Eq a => a -> Graph a -> Bool #

maximum :: Ord a => Graph a -> a #

minimum :: Ord a => Graph a -> a #

sum :: Num a => Graph a -> a #

product :: Num a => Graph a -> a #

Foldable Condition # 
Instance details

Methods

fold :: Monoid m => Condition m -> m #

foldMap :: Monoid m => (a -> m) -> Condition a -> m #

foldr :: (a -> b -> b) -> b -> Condition a -> b #

foldr' :: (a -> b -> b) -> b -> Condition a -> b #

foldl :: (b -> a -> b) -> b -> Condition a -> b #

foldl' :: (b -> a -> b) -> b -> Condition a -> b #

foldr1 :: (a -> a -> a) -> Condition a -> a #

foldl1 :: (a -> a -> a) -> Condition a -> a #

toList :: Condition a -> [a] #

null :: Condition a -> Bool #

length :: Condition a -> Int #

elem :: Eq a => a -> Condition a -> Bool #

maximum :: Ord a => Condition a -> a #

minimum :: Ord a => Condition a -> a #

sum :: Num a => Condition a -> a #

product :: Num a => Condition a -> a #

Foldable (Either a)

Since: 4.7.0.0

Instance details

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

toList :: Either a a0 -> [a0] #

null :: Either a a0 -> Bool #

length :: Either a a0 -> Int #

elem :: Eq a0 => a0 -> Either a a0 -> Bool #

maximum :: Ord a0 => Either a a0 -> a0 #

minimum :: Ord a0 => Either a a0 -> a0 #

sum :: Num a0 => Either a a0 -> a0 #

product :: Num a0 => Either a a0 -> a0 #

Foldable (V1 *) 
Instance details

Methods

fold :: Monoid m => V1 * m -> m #

foldMap :: Monoid m => (a -> m) -> V1 * a -> m #

foldr :: (a -> b -> b) -> b -> V1 * a -> b #

foldr' :: (a -> b -> b) -> b -> V1 * a -> b #

foldl :: (b -> a -> b) -> b -> V1 * a -> b #

foldl' :: (b -> a -> b) -> b -> V1 * a -> b #

foldr1 :: (a -> a -> a) -> V1 * a -> a #

foldl1 :: (a -> a -> a) -> V1 * a -> a #

toList :: V1 * a -> [a] #

null :: V1 * a -> Bool #

length :: V1 * a -> Int #

elem :: Eq a => a -> V1 * a -> Bool #

maximum :: Ord a => V1 * a -> a #

minimum :: Ord a => V1 * a -> a #

sum :: Num a => V1 * a -> a #

product :: Num a => V1 * a -> a #

Foldable (U1 *)

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => U1 * m -> m #

foldMap :: Monoid m => (a -> m) -> U1 * a -> m #

foldr :: (a -> b -> b) -> b -> U1 * a -> b #

foldr' :: (a -> b -> b) -> b -> U1 * a -> b #

foldl :: (b -> a -> b) -> b -> U1 * a -> b #

foldl' :: (b -> a -> b) -> b -> U1 * a -> b #

foldr1 :: (a -> a -> a) -> U1 * a -> a #

foldl1 :: (a -> a -> a) -> U1 * a -> a #

toList :: U1 * a -> [a] #

null :: U1 * a -> Bool #

length :: U1 * a -> Int #

elem :: Eq a => a -> U1 * a -> Bool #

maximum :: Ord a => U1 * a -> a #

minimum :: Ord a => U1 * a -> a #

sum :: Num a => U1 * a -> a #

product :: Num a => U1 * a -> a #

Foldable ((,) a)

Since: 4.7.0.0

Instance details

Methods

fold :: Monoid m => (a, m) -> m #

foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m #

foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

toList :: (a, a0) -> [a0] #

null :: (a, a0) -> Bool #

length :: (a, a0) -> Int #

elem :: Eq a0 => a0 -> (a, a0) -> Bool #

maximum :: Ord a0 => (a, a0) -> a0 #

minimum :: Ord a0 => (a, a0) -> a0 #

sum :: Num a0 => (a, a0) -> a0 #

product :: Num a0 => (a, a0) -> a0 #

Foldable (Array i)

Since: 4.8.0.0

Instance details

Methods

fold :: Monoid m => Array i m -> m #

foldMap :: Monoid m => (a -> m) -> Array i a -> m #

foldr :: (a -> b -> b) -> b -> Array i a -> b #

foldr' :: (a -> b -> b) -> b -> Array i a -> b #

foldl :: (b -> a -> b) -> b -> Array i a -> b #

foldl' :: (b -> a -> b) -> b -> Array i a -> b #

foldr1 :: (a -> a -> a) -> Array i a -> a #

foldl1 :: (a -> a -> a) -> Array i a -> a #

toList :: Array i a -> [a] #

null :: Array i a -> Bool #

length :: Array i a -> Int #

elem :: Eq a => a -> Array i a -> Bool #

maximum :: Ord a => Array i a -> a #

minimum :: Ord a => Array i a -> a #

sum :: Num a => Array i a -> a #

product :: Num a => Array i a -> a #

Foldable (Arg a)

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

toList :: Arg a a0 -> [a0] #

null :: Arg a a0 -> Bool #

length :: Arg a a0 -> Int #

elem :: Eq a0 => a0 -> Arg a a0 -> Bool #

maximum :: Ord a0 => Arg a a0 -> a0 #

minimum :: Ord a0 => Arg a a0 -> a0 #

sum :: Num a0 => Arg a a0 -> a0 #

product :: Num a0 => Arg a a0 -> a0 #

Foldable (Proxy *)

Since: 4.7.0.0

Instance details

Methods

fold :: Monoid m => Proxy * m -> m #

foldMap :: Monoid m => (a -> m) -> Proxy * a -> m #

foldr :: (a -> b -> b) -> b -> Proxy * a -> b #

foldr' :: (a -> b -> b) -> b -> Proxy * a -> b #

foldl :: (b -> a -> b) -> b -> Proxy * a -> b #

foldl' :: (b -> a -> b) -> b -> Proxy * a -> b #

foldr1 :: (a -> a -> a) -> Proxy * a -> a #

foldl1 :: (a -> a -> a) -> Proxy * a -> a #

toList :: Proxy * a -> [a] #

null :: Proxy * a -> Bool #

length :: Proxy * a -> Int #

elem :: Eq a => a -> Proxy * a -> Bool #

maximum :: Ord a => Proxy * a -> a #

minimum :: Ord a => Proxy * a -> a #

sum :: Num a => Proxy * a -> a #

product :: Num a => Proxy * a -> a #

Foldable (Map k) 
Instance details

Methods

fold :: Monoid m => Map k m -> m #

foldMap :: Monoid m => (a -> m) -> Map k a -> m #

foldr :: (a -> b -> b) -> b -> Map k a -> b #

foldr' :: (a -> b -> b) -> b -> Map k a -> b #

foldl :: (b -> a -> b) -> b -> Map k a -> b #

foldl' :: (b -> a -> b) -> b -> Map k a -> b #

foldr1 :: (a -> a -> a) -> Map k a -> a #

foldl1 :: (a -> a -> a) -> Map k a -> a #

toList :: Map k a -> [a] #

null :: Map k a -> Bool #

length :: Map k a -> Int #

elem :: Eq a => a -> Map k a -> Bool #

maximum :: Ord a => Map k a -> a #

minimum :: Ord a => Map k a -> a #

sum :: Num a => Map k a -> a #

product :: Num a => Map k a -> a #

Foldable f => Foldable (Rec1 * f) 
Instance details

Methods

fold :: Monoid m => Rec1 * f m -> m #

foldMap :: Monoid m => (a -> m) -> Rec1 * f a -> m #

foldr :: (a -> b -> b) -> b -> Rec1 * f a -> b #

foldr' :: (a -> b -> b) -> b -> Rec1 * f a -> b #

foldl :: (b -> a -> b) -> b -> Rec1 * f a -> b #

foldl' :: (b -> a -> b) -> b -> Rec1 * f a -> b #

foldr1 :: (a -> a -> a) -> Rec1 * f a -> a #

foldl1 :: (a -> a -> a) -> Rec1 * f a -> a #

toList :: Rec1 * f a -> [a] #

null :: Rec1 * f a -> Bool #

length :: Rec1 * f a -> Int #

elem :: Eq a => a -> Rec1 * f a -> Bool #

maximum :: Ord a => Rec1 * f a -> a #

minimum :: Ord a => Rec1 * f a -> a #

sum :: Num a => Rec1 * f a -> a #

product :: Num a => Rec1 * f a -> a #

Foldable (URec * Char) 
Instance details

Methods

fold :: Monoid m => URec * Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Char a -> m #

foldr :: (a -> b -> b) -> b -> URec * Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Char a -> b #

foldl :: (b -> a -> b) -> b -> URec * Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Char a -> b #

foldr1 :: (a -> a -> a) -> URec * Char a -> a #

foldl1 :: (a -> a -> a) -> URec * Char a -> a #

toList :: URec * Char a -> [a] #

null :: URec * Char a -> Bool #

length :: URec * Char a -> Int #

elem :: Eq a => a -> URec * Char a -> Bool #

maximum :: Ord a => URec * Char a -> a #

minimum :: Ord a => URec * Char a -> a #

sum :: Num a => URec * Char a -> a #

product :: Num a => URec * Char a -> a #

Foldable (URec * Double) 
Instance details

Methods

fold :: Monoid m => URec * Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Double a -> m #

foldr :: (a -> b -> b) -> b -> URec * Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Double a -> b #

foldl :: (b -> a -> b) -> b -> URec * Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Double a -> b #

foldr1 :: (a -> a -> a) -> URec * Double a -> a #

foldl1 :: (a -> a -> a) -> URec * Double a -> a #

toList :: URec * Double a -> [a] #

null :: URec * Double a -> Bool #

length :: URec * Double a -> Int #

elem :: Eq a => a -> URec * Double a -> Bool #

maximum :: Ord a => URec * Double a -> a #

minimum :: Ord a => URec * Double a -> a #

sum :: Num a => URec * Double a -> a #

product :: Num a => URec * Double a -> a #

Foldable (URec * Float) 
Instance details

Methods

fold :: Monoid m => URec * Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Float a -> m #

foldr :: (a -> b -> b) -> b -> URec * Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Float a -> b #

foldl :: (b -> a -> b) -> b -> URec * Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Float a -> b #

foldr1 :: (a -> a -> a) -> URec * Float a -> a #

foldl1 :: (a -> a -> a) -> URec * Float a -> a #

toList :: URec * Float a -> [a] #

null :: URec * Float a -> Bool #

length :: URec * Float a -> Int #

elem :: Eq a => a -> URec * Float a -> Bool #

maximum :: Ord a => URec * Float a -> a #

minimum :: Ord a => URec * Float a -> a #

sum :: Num a => URec * Float a -> a #

product :: Num a => URec * Float a -> a #

Foldable (URec * Int) 
Instance details

Methods

fold :: Monoid m => URec * Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Int a -> m #

foldr :: (a -> b -> b) -> b -> URec * Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Int a -> b #

foldl :: (b -> a -> b) -> b -> URec * Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Int a -> b #

foldr1 :: (a -> a -> a) -> URec * Int a -> a #

foldl1 :: (a -> a -> a) -> URec * Int a -> a #

toList :: URec * Int a -> [a] #

null :: URec * Int a -> Bool #

length :: URec * Int a -> Int #

elem :: Eq a => a -> URec * Int a -> Bool #

maximum :: Ord a => URec * Int a -> a #

minimum :: Ord a => URec * Int a -> a #

sum :: Num a => URec * Int a -> a #

product :: Num a => URec * Int a -> a #

Foldable (URec * Word) 
Instance details

Methods

fold :: Monoid m => URec * Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Word a -> m #

foldr :: (a -> b -> b) -> b -> URec * Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Word a -> b #

foldl :: (b -> a -> b) -> b -> URec * Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Word a -> b #

foldr1 :: (a -> a -> a) -> URec * Word a -> a #

foldl1 :: (a -> a -> a) -> URec * Word a -> a #

toList :: URec * Word a -> [a] #

null :: URec * Word a -> Bool #

length :: URec * Word a -> Int #

elem :: Eq a => a -> URec * Word a -> Bool #

maximum :: Ord a => URec * Word a -> a #

minimum :: Ord a => URec * Word a -> a #

sum :: Num a => URec * Word a -> a #

product :: Num a => URec * Word a -> a #

Foldable (URec * (Ptr ())) 
Instance details

Methods

fold :: Monoid m => URec * (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec * (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec * (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec * (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec * (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec * (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec * (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec * (Ptr ()) a -> a #

toList :: URec * (Ptr ()) a -> [a] #

null :: URec * (Ptr ()) a -> Bool #

length :: URec * (Ptr ()) a -> Int #

elem :: Eq a => a -> URec * (Ptr ()) a -> Bool #

maximum :: Ord a => URec * (Ptr ()) a -> a #

minimum :: Ord a => URec * (Ptr ()) a -> a #

sum :: Num a => URec * (Ptr ()) a -> a #

product :: Num a => URec * (Ptr ()) a -> a #

Foldable (Const * m)

Since: 4.7.0.0

Instance details

Methods

fold :: Monoid m0 => Const * m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const * m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const * m a -> b #

foldr' :: (a -> b -> b) -> b -> Const * m a -> b #

foldl :: (b -> a -> b) -> b -> Const * m a -> b #

foldl' :: (b -> a -> b) -> b -> Const * m a -> b #

foldr1 :: (a -> a -> a) -> Const * m a -> a #

foldl1 :: (a -> a -> a) -> Const * m a -> a #

toList :: Const * m a -> [a] #

null :: Const * m a -> Bool #

length :: Const * m a -> Int #

elem :: Eq a => a -> Const * m a -> Bool #

maximum :: Ord a => Const * m a -> a #

minimum :: Ord a => Const * m a -> a #

sum :: Num a => Const * m a -> a #

product :: Num a => Const * m a -> a #

Foldable (CondBranch v c) # 
Instance details

Methods

fold :: Monoid m => CondBranch v c m -> m #

foldMap :: Monoid m => (a -> m) -> CondBranch v c a -> m #

foldr :: (a -> b -> b) -> b -> CondBranch v c a -> b #

foldr' :: (a -> b -> b) -> b -> CondBranch v c a -> b #

foldl :: (b -> a -> b) -> b -> CondBranch v c a -> b #

foldl' :: (b -> a -> b) -> b -> CondBranch v c a -> b #

foldr1 :: (a -> a -> a) -> CondBranch v c a -> a #

foldl1 :: (a -> a -> a) -> CondBranch v c a -> a #

toList :: CondBranch v c a -> [a] #

null :: CondBranch v c a -> Bool #

length :: CondBranch v c a -> Int #

elem :: Eq a => a -> CondBranch v c a -> Bool #

maximum :: Ord a => CondBranch v c a -> a #

minimum :: Ord a => CondBranch v c a -> a #

sum :: Num a => CondBranch v c a -> a #

product :: Num a => CondBranch v c a -> a #

Foldable (CondTree v c) # 
Instance details

Methods

fold :: Monoid m => CondTree v c m -> m #

foldMap :: Monoid m => (a -> m) -> CondTree v c a -> m #

foldr :: (a -> b -> b) -> b -> CondTree v c a -> b #

foldr' :: (a -> b -> b) -> b -> CondTree v c a -> b #

foldl :: (b -> a -> b) -> b -> CondTree v c a -> b #

foldl' :: (b -> a -> b) -> b -> CondTree v c a -> b #

foldr1 :: (a -> a -> a) -> CondTree v c a -> a #

foldl1 :: (a -> a -> a) -> CondTree v c a -> a #

toList :: CondTree v c a -> [a] #

null :: CondTree v c a -> Bool #

length :: CondTree v c a -> Int #

elem :: Eq a => a -> CondTree v c a -> Bool #

maximum :: Ord a => CondTree v c a -> a #

minimum :: Ord a => CondTree v c a -> a #

sum :: Num a => CondTree v c a -> a #

product :: Num a => CondTree v c a -> a #

Foldable (K1 * i c) 
Instance details

Methods

fold :: Monoid m => K1 * i c m -> m #

foldMap :: Monoid m => (a -> m) -> K1 * i c a -> m #

foldr :: (a -> b -> b) -> b -> K1 * i c a -> b #

foldr' :: (a -> b -> b) -> b -> K1 * i c a -> b #

foldl :: (b -> a -> b) -> b -> K1 * i c a -> b #

foldl' :: (b -> a -> b) -> b -> K1 * i c a -> b #

foldr1 :: (a -> a -> a) -> K1 * i c a -> a #

foldl1 :: (a -> a -> a) -> K1 * i c a -> a #

toList :: K1 * i c a -> [a] #

null :: K1 * i c a -> Bool #

length :: K1 * i c a -> Int #

elem :: Eq a => a -> K1 * i c a -> Bool #

maximum :: Ord a => K1 * i c a -> a #

minimum :: Ord a => K1 * i c a -> a #

sum :: Num a => K1 * i c a -> a #

product :: Num a => K1 * i c a -> a #

(Foldable f, Foldable g) => Foldable ((:+:) * f g) 
Instance details

Methods

fold :: Monoid m => (* :+: f) g m -> m #

foldMap :: Monoid m => (a -> m) -> (* :+: f) g a -> m #

foldr :: (a -> b -> b) -> b -> (* :+: f) g a -> b #

foldr' :: (a -> b -> b) -> b -> (* :+: f) g a -> b #

foldl :: (b -> a -> b) -> b -> (* :+: f) g a -> b #

foldl' :: (b -> a -> b) -> b -> (* :+: f) g a -> b #

foldr1 :: (a -> a -> a) -> (* :+: f) g a -> a #

foldl1 :: (a -> a -> a) -> (* :+: f) g a -> a #

toList :: (* :+: f) g a -> [a] #

null :: (* :+: f) g a -> Bool #

length :: (* :+: f) g a -> Int #

elem :: Eq a => a -> (* :+: f) g a -> Bool #

maximum :: Ord a => (* :+: f) g a -> a #

minimum :: Ord a => (* :+: f) g a -> a #

sum :: Num a => (* :+: f) g a -> a #

product :: Num a => (* :+: f) g a -> a #

(Foldable f, Foldable g) => Foldable ((:*:) * f g) 
Instance details

Methods

fold :: Monoid m => (* :*: f) g m -> m #

foldMap :: Monoid m => (a -> m) -> (* :*: f) g a -> m #

foldr :: (a -> b -> b) -> b -> (* :*: f) g a -> b #

foldr' :: (a -> b -> b) -> b -> (* :*: f) g a -> b #

foldl :: (b -> a -> b) -> b -> (* :*: f) g a -> b #

foldl' :: (b -> a -> b) -> b -> (* :*: f) g a -> b #

foldr1 :: (a -> a -> a) -> (* :*: f) g a -> a #

foldl1 :: (a -> a -> a) -> (* :*: f) g a -> a #

toList :: (* :*: f) g a -> [a] #

null :: (* :*: f) g a -> Bool #

length :: (* :*: f) g a -> Int #

elem :: Eq a => a -> (* :*: f) g a -> Bool #

maximum :: Ord a => (* :*: f) g a -> a #

minimum :: Ord a => (* :*: f) g a -> a #

sum :: Num a => (* :*: f) g a -> a #

product :: Num a => (* :*: f) g a -> a #

(Foldable f, Foldable g) => Foldable (Product * f g)

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Product * f g m -> m #

foldMap :: Monoid m => (a -> m) -> Product * f g a -> m #

foldr :: (a -> b -> b) -> b -> Product * f g a -> b #

foldr' :: (a -> b -> b) -> b -> Product * f g a -> b #

foldl :: (b -> a -> b) -> b -> Product * f g a -> b #

foldl' :: (b -> a -> b) -> b -> Product * f g a -> b #

foldr1 :: (a -> a -> a) -> Product * f g a -> a #

foldl1 :: (a -> a -> a) -> Product * f g a -> a #

toList :: Product * f g a -> [a] #

null :: Product * f g a -> Bool #

length :: Product * f g a -> Int #

elem :: Eq a => a -> Product * f g a -> Bool #

maximum :: Ord a => Product * f g a -> a #

minimum :: Ord a => Product * f g a -> a #

sum :: Num a => Product * f g a -> a #

product :: Num a => Product * f g a -> a #

(Foldable f, Foldable g) => Foldable (Sum * f g)

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Sum * f g m -> m #

foldMap :: Monoid m => (a -> m) -> Sum * f g a -> m #

foldr :: (a -> b -> b) -> b -> Sum * f g a -> b #

foldr' :: (a -> b -> b) -> b -> Sum * f g a -> b #

foldl :: (b -> a -> b) -> b -> Sum * f g a -> b #

foldl' :: (b -> a -> b) -> b -> Sum * f g a -> b #

foldr1 :: (a -> a -> a) -> Sum * f g a -> a #

foldl1 :: (a -> a -> a) -> Sum * f g a -> a #

toList :: Sum * f g a -> [a] #

null :: Sum * f g a -> Bool #

length :: Sum * f g a -> Int #

elem :: Eq a => a -> Sum * f g a -> Bool #

maximum :: Ord a => Sum * f g a -> a #

minimum :: Ord a => Sum * f g a -> a #

sum :: Num a => Sum * f g a -> a #

product :: Num a => Sum * f g a -> a #

Foldable f => Foldable (M1 * i c f) 
Instance details

Methods

fold :: Monoid m => M1 * i c f m -> m #

foldMap :: Monoid m => (a -> m) -> M1 * i c f a -> m #

foldr :: (a -> b -> b) -> b -> M1 * i c f a -> b #

foldr' :: (a -> b -> b) -> b -> M1 * i c f a -> b #

foldl :: (b -> a -> b) -> b -> M1 * i c f a -> b #

foldl' :: (b -> a -> b) -> b -> M1 * i c f a -> b #

foldr1 :: (a -> a -> a) -> M1 * i c f a -> a #

foldl1 :: (a -> a -> a) -> M1 * i c f a -> a #

toList :: M1 * i c f a -> [a] #

null :: M1 * i c f a -> Bool #

length :: M1 * i c f a -> Int #

elem :: Eq a => a -> M1 * i c f a -> Bool #

maximum :: Ord a => M1 * i c f a -> a #

minimum :: Ord a => M1 * i c f a -> a #

sum :: Num a => M1 * i c f a -> a #

product :: Num a => M1 * i c f a -> a #

(Foldable f, Foldable g) => Foldable ((:.:) * * f g) 
Instance details

Methods

fold :: Monoid m => (* :.: *) f g m -> m #

foldMap :: Monoid m => (a -> m) -> (* :.: *) f g a -> m #

foldr :: (a -> b -> b) -> b -> (* :.: *) f g a -> b #

foldr' :: (a -> b -> b) -> b -> (* :.: *) f g a -> b #

foldl :: (b -> a -> b) -> b -> (* :.: *) f g a -> b #

foldl' :: (b -> a -> b) -> b -> (* :.: *) f g a -> b #

foldr1 :: (a -> a -> a) -> (* :.: *) f g a -> a #

foldl1 :: (a -> a -> a) -> (* :.: *) f g a -> a #

toList :: (* :.: *) f g a -> [a] #

null :: (* :.: *) f g a -> Bool #

length :: (* :.: *) f g a -> Int #

elem :: Eq a => a -> (* :.: *) f g a -> Bool #

maximum :: Ord a => (* :.: *) f g a -> a #

minimum :: Ord a => (* :.: *) f g a -> a #

sum :: Num a => (* :.: *) f g a -> a #

product :: Num a => (* :.: *) f g a -> a #

(Foldable f, Foldable g) => Foldable (Compose * * f g)

Since: 4.9.0.0

Instance details

Methods

fold :: Monoid m => Compose * * f g m -> m #

foldMap :: Monoid m => (a -> m) -> Compose * * f g a -> m #

foldr :: (a -> b -> b) -> b -> Compose * * f g a -> b #

foldr' :: (a -> b -> b) -> b -> Compose * * f g a -> b #

foldl :: (b -> a -> b) -> b -> Compose * * f g a -> b #

foldl' :: (b -> a -> b) -> b -> Compose * * f g a -> b #

foldr1 :: (a -> a -> a) -> Compose * * f g a -> a #

foldl1 :: (a -> a -> a) -> Compose * * f g a -> a #

toList :: Compose * * f g a -> [a] #

null :: Compose * * f g a -> Bool #

length :: Compose * * f g a -> Int #

elem :: Eq a => a -> Compose * * f g a -> Bool #

maximum :: Ord a => Compose * * f g a -> a #

minimum :: Ord a => Compose * * f g a -> a #

sum :: Num a => Compose * * f g a -> a #

product :: Num a => Compose * * f g a -> a #

foldMap :: Foldable t => forall m a. Monoid m => (a -> m) -> t a -> m #

Map each element of the structure to a monoid, and combine the results.

foldr :: Foldable t => forall a b. (a -> b -> b) -> b -> t a -> b #

Right-associative fold of a structure.

In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

Note that, since the head of the resulting expression is produced by an application of the operator to the first element of the list, foldr can produce a terminating expression from an infinite list.

For a general Foldable structure this should be semantically identical to,

foldr f z = foldr f z . toList

null :: Foldable t => forall a. t a -> Bool #

Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

length :: Foldable t => forall a. t a -> Int #

Returns the size/length of a finite structure as an Int. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

find :: Foldable t => (a -> Bool) -> t a -> Maybe a #

The find function takes a predicate and a structure and returns the leftmost element of the structure matching the predicate, or Nothing if there is no such element.

foldl' :: Foldable t => forall b a. (b -> a -> b) -> b -> t a -> b #

Left-associative fold of a structure but with strict application of the operator.

This ensures that each step of the fold is forced to weak head normal form before being applied, avoiding the collection of thunks that would otherwise occur. This is often what you want to strictly reduce a finite list to a single, monolithic result (e.g. length).

For a general Foldable structure this should be semantically identical to,

foldl f z = foldl' f z . toList

traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #

Map each element of a structure to an action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see traverse.

for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #

for_ is traverse_ with its arguments flipped. For a version that doesn't ignore the results see for.

>>> for_ [1..4] print
1
2
3
4

Data.Traversable

class (Functor t, Foldable t) => Traversable (t :: * -> *) where #

Functors representing data structures that can be traversed from left to right.

A definition of traverse must satisfy the following laws:

naturality
t . traverse f = traverse (t . f) for every applicative transformation t
identity
traverse Identity = Identity
composition
traverse (Compose . fmap g . f) = Compose . fmap (traverse g) . traverse f

A definition of sequenceA must satisfy the following laws:

naturality
t . sequenceA = sequenceA . fmap t for every applicative transformation t
identity
sequenceA . fmap Identity = Identity
composition
sequenceA . fmap Compose = Compose . fmap sequenceA . sequenceA

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations, i.e.

and the identity functor Identity and composition of functors Compose are defined as

  newtype Identity a = Identity a

  instance Functor Identity where
    fmap f (Identity x) = Identity (f x)

  instance Applicative Identity where
    pure x = Identity x
    Identity f <*> Identity x = Identity (f x)

  newtype Compose f g a = Compose (f (g a))

  instance (Functor f, Functor g) => Functor (Compose f g) where
    fmap f (Compose x) = Compose (fmap (fmap f) x)

  instance (Applicative f, Applicative g) => Applicative (Compose f g) where
    pure x = Compose (pure (pure x))
    Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

(The naturality law is implied by parametricity.)

Instances are similar to Functor, e.g. given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Traversable Tree where
   traverse f Empty = pure Empty
   traverse f (Leaf x) = Leaf <$> f x
   traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r

This is suitable even for abstract types, as the laws for <*> imply a form of associativity.

The superclass instances should satisfy the following:

Minimal complete definition

traverse | sequenceA

Methods

traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

sequenceA :: Applicative f => t (f a) -> f (t a) #

Evaluate each action in the structure from left to right, and and collect the results. For a version that ignores the results see sequenceA_.

Instances
Traversable []

Since: 2.1

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] #

sequenceA :: Applicative f => [f a] -> f [a] #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

sequence :: Monad m => [m a] -> m [a] #

Traversable Maybe

Since: 2.1

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable Par1 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) #

Traversable Complex 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Traversable Min

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Traversable Max

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Traversable First

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Option

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Traversable NonEmpty

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Traversable ZipList

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Traversable Identity 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Traversable Dual

Since: 4.8.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Traversable Sum

Since: 4.8.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Traversable Product

Since: 4.8.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Traversable First

Since: 4.8.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: 4.8.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable IntMap 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) #

Traversable SCC 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> SCC a -> f (SCC b) #

sequenceA :: Applicative f => SCC (f a) -> f (SCC a) #

mapM :: Monad m => (a -> m b) -> SCC a -> m (SCC b) #

sequence :: Monad m => SCC (m a) -> m (SCC a) #

Traversable Tree 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) #

sequence :: Monad m => Tree (m a) -> m (Tree a) #

Traversable Seq 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) #

sequence :: Monad m => Seq (m a) -> m (Seq a) #

Traversable FingerTree 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) #

Traversable Digit 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) #

sequence :: Monad m => Digit (m a) -> m (Digit a) #

Traversable Node 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) #

sequenceA :: Applicative f => Node (f a) -> f (Node a) #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) #

sequence :: Monad m => Node (m a) -> m (Node a) #

Traversable Elem 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) #

sequence :: Monad m => Elem (m a) -> m (Elem a) #

Traversable ViewL 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) #

Traversable ViewR 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) #

Traversable Condition # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Condition a -> f (Condition b) #

sequenceA :: Applicative f => Condition (f a) -> f (Condition a) #

mapM :: Monad m => (a -> m b) -> Condition a -> m (Condition b) #

sequence :: Monad m => Condition (m a) -> m (Condition a) #

Traversable (Either a)

Since: 4.7.0.0

Instance details

Methods

traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) #

mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) #

sequence :: Monad m => Either a (m a0) -> m (Either a a0) #

Traversable (V1 *) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> V1 * a -> f (V1 * b) #

sequenceA :: Applicative f => V1 * (f a) -> f (V1 * a) #

mapM :: Monad m => (a -> m b) -> V1 * a -> m (V1 * b) #

sequence :: Monad m => V1 * (m a) -> m (V1 * a) #

Traversable (U1 *)

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> U1 * a -> f (U1 * b) #

sequenceA :: Applicative f => U1 * (f a) -> f (U1 * a) #

mapM :: Monad m => (a -> m b) -> U1 * a -> m (U1 * b) #

sequence :: Monad m => U1 * (m a) -> m (U1 * a) #

Traversable ((,) a)

Since: 4.7.0.0

Instance details

Methods

traverse :: Applicative f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequenceA :: Applicative f => (a, f a0) -> f (a, a0) #

mapM :: Monad m => (a0 -> m b) -> (a, a0) -> m (a, b) #

sequence :: Monad m => (a, m a0) -> m (a, a0) #

Ix i => Traversable (Array i)

Since: 2.1

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

Traversable (Arg a)

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f => (a0 -> f b) -> Arg a a0 -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a0) -> f (Arg a a0) #

mapM :: Monad m => (a0 -> m b) -> Arg a a0 -> m (Arg a b) #

sequence :: Monad m => Arg a (m a0) -> m (Arg a a0) #

Traversable (Proxy *)

Since: 4.7.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Proxy * a -> f (Proxy * b) #

sequenceA :: Applicative f => Proxy * (f a) -> f (Proxy * a) #

mapM :: Monad m => (a -> m b) -> Proxy * a -> m (Proxy * b) #

sequence :: Monad m => Proxy * (m a) -> m (Proxy * a) #

Traversable (Map k) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Traversable f => Traversable (Rec1 * f) 
Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 * f a -> f0 (Rec1 * f b) #

sequenceA :: Applicative f0 => Rec1 * f (f0 a) -> f0 (Rec1 * f a) #

mapM :: Monad m => (a -> m b) -> Rec1 * f a -> m (Rec1 * f b) #

sequence :: Monad m => Rec1 * f (m a) -> m (Rec1 * f a) #

Traversable (URec * Char) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * Char a -> f (URec * Char b) #

sequenceA :: Applicative f => URec * Char (f a) -> f (URec * Char a) #

mapM :: Monad m => (a -> m b) -> URec * Char a -> m (URec * Char b) #

sequence :: Monad m => URec * Char (m a) -> m (URec * Char a) #

Traversable (URec * Double) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * Double a -> f (URec * Double b) #

sequenceA :: Applicative f => URec * Double (f a) -> f (URec * Double a) #

mapM :: Monad m => (a -> m b) -> URec * Double a -> m (URec * Double b) #

sequence :: Monad m => URec * Double (m a) -> m (URec * Double a) #

Traversable (URec * Float) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * Float a -> f (URec * Float b) #

sequenceA :: Applicative f => URec * Float (f a) -> f (URec * Float a) #

mapM :: Monad m => (a -> m b) -> URec * Float a -> m (URec * Float b) #

sequence :: Monad m => URec * Float (m a) -> m (URec * Float a) #

Traversable (URec * Int) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * Int a -> f (URec * Int b) #

sequenceA :: Applicative f => URec * Int (f a) -> f (URec * Int a) #

mapM :: Monad m => (a -> m b) -> URec * Int a -> m (URec * Int b) #

sequence :: Monad m => URec * Int (m a) -> m (URec * Int a) #

Traversable (URec * Word) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * Word a -> f (URec * Word b) #

sequenceA :: Applicative f => URec * Word (f a) -> f (URec * Word a) #

mapM :: Monad m => (a -> m b) -> URec * Word a -> m (URec * Word b) #

sequence :: Monad m => URec * Word (m a) -> m (URec * Word a) #

Traversable (URec * (Ptr ())) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * (Ptr ()) a -> f (URec * (Ptr ()) b) #

sequenceA :: Applicative f => URec * (Ptr ()) (f a) -> f (URec * (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec * (Ptr ()) a -> m (URec * (Ptr ()) b) #

sequence :: Monad m => URec * (Ptr ()) (m a) -> m (URec * (Ptr ()) a) #

Traversable (Const * m)

Since: 4.7.0.0

Instance details

Methods

traverse :: Applicative f => (a -> f b) -> Const * m a -> f (Const * m b) #

sequenceA :: Applicative f => Const * m (f a) -> f (Const * m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const * m a -> m0 (Const * m b) #

sequence :: Monad m0 => Const * m (m0 a) -> m0 (Const * m a) #

Traversable (CondBranch v c) # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> CondBranch v c a -> f (CondBranch v c b) #

sequenceA :: Applicative f => CondBranch v c (f a) -> f (CondBranch v c a) #

mapM :: Monad m => (a -> m b) -> CondBranch v c a -> m (CondBranch v c b) #

sequence :: Monad m => CondBranch v c (m a) -> m (CondBranch v c a) #

Traversable (CondTree v c) # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> CondTree v c a -> f (CondTree v c b) #

sequenceA :: Applicative f => CondTree v c (f a) -> f (CondTree v c a) #

mapM :: Monad m => (a -> m b) -> CondTree v c a -> m (CondTree v c b) #

sequence :: Monad m => CondTree v c (m a) -> m (CondTree v c a) #

Traversable (K1 * i c) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> K1 * i c a -> f (K1 * i c b) #

sequenceA :: Applicative f => K1 * i c (f a) -> f (K1 * i c a) #

mapM :: Monad m => (a -> m b) -> K1 * i c a -> m (K1 * i c b) #

sequence :: Monad m => K1 * i c (m a) -> m (K1 * i c a) #

(Traversable f, Traversable g) => Traversable ((:+:) * f g) 
Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (* :+: f) g a -> f0 ((* :+: f) g b) #

sequenceA :: Applicative f0 => (* :+: f) g (f0 a) -> f0 ((* :+: f) g a) #

mapM :: Monad m => (a -> m b) -> (* :+: f) g a -> m ((* :+: f) g b) #

sequence :: Monad m => (* :+: f) g (m a) -> m ((* :+: f) g a) #

(Traversable f, Traversable g) => Traversable ((:*:) * f g) 
Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (* :*: f) g a -> f0 ((* :*: f) g b) #

sequenceA :: Applicative f0 => (* :*: f) g (f0 a) -> f0 ((* :*: f) g a) #

mapM :: Monad m => (a -> m b) -> (* :*: f) g a -> m ((* :*: f) g b) #

sequence :: Monad m => (* :*: f) g (m a) -> m ((* :*: f) g a) #

(Traversable f, Traversable g) => Traversable (Product * f g)

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Product * f g a -> f0 (Product * f g b) #

sequenceA :: Applicative f0 => Product * f g (f0 a) -> f0 (Product * f g a) #

mapM :: Monad m => (a -> m b) -> Product * f g a -> m (Product * f g b) #

sequence :: Monad m => Product * f g (m a) -> m (Product * f g a) #

(Traversable f, Traversable g) => Traversable (Sum * f g)

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Sum * f g a -> f0 (Sum * f g b) #

sequenceA :: Applicative f0 => Sum * f g (f0 a) -> f0 (Sum * f g a) #

mapM :: Monad m => (a -> m b) -> Sum * f g a -> m (Sum * f g b) #

sequence :: Monad m => Sum * f g (m a) -> m (Sum * f g a) #

Traversable f => Traversable (M1 * i c f) 
Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 * i c f a -> f0 (M1 * i c f b) #

sequenceA :: Applicative f0 => M1 * i c f (f0 a) -> f0 (M1 * i c f a) #

mapM :: Monad m => (a -> m b) -> M1 * i c f a -> m (M1 * i c f b) #

sequence :: Monad m => M1 * i c f (m a) -> m (M1 * i c f a) #

(Traversable f, Traversable g) => Traversable ((:.:) * * f g) 
Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (* :.: *) f g a -> f0 ((* :.: *) f g b) #

sequenceA :: Applicative f0 => (* :.: *) f g (f0 a) -> f0 ((* :.: *) f g a) #

mapM :: Monad m => (a -> m b) -> (* :.: *) f g a -> m ((* :.: *) f g b) #

sequence :: Monad m => (* :.: *) f g (m a) -> m ((* :.: *) f g a) #

(Traversable f, Traversable g) => Traversable (Compose * * f g)

Since: 4.9.0.0

Instance details

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose * * f g a -> f0 (Compose * * f g b) #

sequenceA :: Applicative f0 => Compose * * f g (f0 a) -> f0 (Compose * * f g a) #

mapM :: Monad m => (a -> m b) -> Compose * * f g a -> m (Compose * * f g b) #

sequence :: Monad m => Compose * * f g (m a) -> m (Compose * * f g a) #

traverse :: Traversable t => forall (f :: * -> *) a b. Applicative f => (a -> f b) -> t a -> f (t b) #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

sequenceA :: Traversable t => forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a) #

Evaluate each action in the structure from left to right, and and collect the results. For a version that ignores the results see sequenceA_.

for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #

for is traverse with its arguments flipped. For a version that ignores the results see for_.

Control.Arrow

first :: Arrow a => forall b c d. a b c -> a (b, d) (c, d) #

Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.

Control.Monad

liftM :: Monad m => (a1 -> r) -> m a1 -> m r #

Promote a function to a monad.

liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right. For example,

   liftM2 (+) [0,1] [0,2] = [0,2,1,3]
   liftM2 (+) (Just 1) Nothing = Nothing

unless :: Applicative f => Bool -> f () -> f () #

The reverse of when.

when :: Applicative f => Bool -> f () -> f () #

Conditional execution of Applicative expressions. For example,

when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

ap :: Monad m => m (a -> b) -> m a -> m b #

In many situations, the liftM operations can be replaced by uses of ap, which promotes function application.

      return f `ap` x1 `ap` ... `ap` xn

is equivalent to

      liftMn f x1 x2 ... xn

void :: Functor f => f a -> f () #

void value discards or ignores the result of evaluation, such as the return value of an IO action.

Examples

Expand

Replace the contents of a Maybe Int with unit:

>>> void Nothing
Nothing
>>> void (Just 3)
Just ()

Replace the contents of an Either Int Int with unit, resulting in an Either Int '()':

>>> void (Left 8675309)
Left 8675309
>>> void (Right 8675309)
Right ()

Replace every element of a list with unit:

>>> void [1,2,3]
[(),(),()]

Replace the second element of a pair with unit:

>>> void (1,2)
(1,())

Discard the result of an IO action:

>>> mapM print [1,2]
1
2
[(),()]
>>> void $ mapM print [1,2]
1
2

foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #

The foldM function is analogous to foldl, except that its result is encapsulated in a monad. Note that foldM works from left-to-right over the list arguments. This could be an issue where (>>) and the `folded function' are not commutative.

      foldM f a1 [x1, x2, ..., xm]

==

      do
        a2 <- f a1 x1
        a3 <- f a2 x2
        ...
        f am xm

If right-to-left evaluation is required, the input list should be reversed.

Note: foldM is the same as foldlM

filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #

This generalizes the list-based filter function.

Data.Char

isSpace :: Char -> Bool #

Returns True for any Unicode space character, and the control characters \t, \n, \r, \f, \v.

isDigit :: Char -> Bool #

Selects ASCII digits, i.e. '0'..'9'.

isUpper :: Char -> Bool #

Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small number of letter ligatures like the single-character form of Lj.

isAlpha :: Char -> Bool #

Selects alphabetic Unicode characters (lower-case, upper-case and title-case letters, plus letters of caseless scripts and modifiers letters). This function is equivalent to isLetter.

isAlphaNum :: Char -> Bool #

Selects alphabetic or numeric digit Unicode characters.

Note that numeric digits outside the ASCII range are selected by this function but not by isDigit. Such digits may be part of identifiers but are not used by the printer and reader to represent numbers.

chr :: Int -> Char #

The toEnum method restricted to the type Char.

ord :: Char -> Int #

The fromEnum method restricted to the type Char.

toLower :: Char -> Char #

Convert a letter to the corresponding lower-case letter, if any. Any other character is returned unchanged.

toUpper :: Char -> Char #

Convert a letter to the corresponding upper-case letter, if any. Any other character is returned unchanged.

Data.Word & Data.Int

data Word #

A Word is an unsigned integral type, with the same size as Int.

Instances
Bounded Word

Since: 2.1

Instance details
Enum Word

Since: 2.1

Instance details

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Eq Word 
Instance details

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Integral Word

Since: 2.1

Instance details

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Data Word

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Num Word

Since: 2.1

Instance details

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Ord Word 
Instance details

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Read Word

Since: 4.5.0.0

Instance details
Real Word

Since: 2.1

Instance details

Methods

toRational :: Word -> Rational #

Show Word

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Ix Word

Since: 4.6.0.0

Instance details

Methods

range :: (Word, Word) -> [Word] #

index :: (Word, Word) -> Word -> Int #

unsafeIndex :: (Word, Word) -> Word -> Int

inRange :: (Word, Word) -> Word -> Bool #

rangeSize :: (Word, Word) -> Int #

unsafeRangeSize :: (Word, Word) -> Int

Bits Word

Since: 2.1

Instance details
FiniteBits Word

Since: 4.6.0.0

Instance details
Binary Word 
Instance details

Methods

put :: Word -> Put #

get :: Get Word #

putList :: [Word] -> Put #

NFData Word 
Instance details

Methods

rnf :: Word -> () #

IArray UArray Word 
Instance details

Methods

bounds :: Ix i => UArray i Word -> (i, i) #

numElements :: Ix i => UArray i Word -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Word)] -> UArray i Word

unsafeAt :: Ix i => UArray i Word -> Int -> Word

unsafeReplace :: Ix i => UArray i Word -> [(Int, Word)] -> UArray i Word

unsafeAccum :: Ix i => (Word -> e' -> Word) -> UArray i Word -> [(Int, e')] -> UArray i Word

unsafeAccumArray :: Ix i => (Word -> e' -> Word) -> Word -> (i, i) -> [(Int, e')] -> UArray i Word

Generic1 k (URec k Word) 
Instance details

Associated Types

type Rep1 (URec k Word) (f :: URec k Word -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Word) f a #

to1 :: Rep1 (URec k Word) f a -> f a #

MArray (STUArray s) Word (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Word -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Word -> ST s Int

newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word)

unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word

unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s ()

Functor (URec * Word) 
Instance details

Methods

fmap :: (a -> b) -> URec * Word a -> URec * Word b #

(<$) :: a -> URec * Word b -> URec * Word a #

Foldable (URec * Word) 
Instance details

Methods

fold :: Monoid m => URec * Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Word a -> m #

foldr :: (a -> b -> b) -> b -> URec * Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Word a -> b #

foldl :: (b -> a -> b) -> b -> URec * Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Word a -> b #

foldr1 :: (a -> a -> a) -> URec * Word a -> a #

foldl1 :: (a -> a -> a) -> URec * Word a -> a #

toList :: URec * Word a -> [a] #

null :: URec * Word a -> Bool #

length :: URec * Word a -> Int #

elem :: Eq a => a -> URec * Word a -> Bool #

maximum :: Ord a => URec * Word a -> a #

minimum :: Ord a => URec * Word a -> a #

sum :: Num a => URec * Word a -> a #

product :: Num a => URec * Word a -> a #

Traversable (URec * Word) 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec * Word a -> f (URec * Word b) #

sequenceA :: Applicative f => URec * Word (f a) -> f (URec * Word a) #

mapM :: Monad m => (a -> m b) -> URec * Word a -> m (URec * Word b) #

sequence :: Monad m => URec * Word (m a) -> m (URec * Word a) #

Eq (URec k Word p) 
Instance details

Methods

(==) :: URec k Word p -> URec k Word p -> Bool #

(/=) :: URec k Word p -> URec k Word p -> Bool #

Ord (URec k Word p) 
Instance details

Methods

compare :: URec k Word p -> URec k Word p -> Ordering #

(<) :: URec k Word p -> URec k Word p -> Bool #

(<=) :: URec k Word p -> URec k Word p -> Bool #

(>) :: URec k Word p -> URec k Word p -> Bool #

(>=) :: URec k Word p -> URec k Word p -> Bool #

max :: URec k Word p -> URec k Word p -> URec k Word p #

min :: URec k Word p -> URec k Word p -> URec k Word p #

Show (URec k Word p) 
Instance details

Methods

showsPrec :: Int -> URec k Word p -> ShowS #

show :: URec k Word p -> String #

showList :: [URec k Word p] -> ShowS #

Generic (URec k Word p) 
Instance details

Associated Types

type Rep (URec k Word p) :: * -> * #

Methods

from :: URec k Word p -> Rep (URec k Word p) x #

to :: Rep (URec k Word p) x -> URec k Word p #

data URec k Word

Used for marking occurrences of Word#

Since: 4.9.0.0

Instance details
data URec k Word = UWord {}
type Rep1 k (URec k Word) 
Instance details
type Rep1 k (URec k Word) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UWord" PrefixI True) (S1 k (MetaSel (Just Symbol "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord k)))
type Rep (URec k Word p) 
Instance details
type Rep (URec k Word p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UWord" PrefixI True) (S1 * (MetaSel (Just Symbol "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord *)))

data Word8 #

8-bit unsigned integer type

Instances
Bounded Word8

Since: 2.1

Instance details
Enum Word8

Since: 2.1

Instance details
Eq Word8

Since: 2.1

Instance details

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Integral Word8

Since: 2.1

Instance details
Data Word8

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 #

toConstr :: Word8 -> Constr #

dataTypeOf :: Word8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) #

gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

Num Word8

Since: 2.1

Instance details
Ord Word8

Since: 2.1

Instance details

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Read Word8

Since: 2.1

Instance details
Real Word8

Since: 2.1

Instance details

Methods

toRational :: Word8 -> Rational #

Show Word8

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Ix Word8

Since: 2.1

Instance details
Bits Word8

Since: 2.1

Instance details
FiniteBits Word8

Since: 4.6.0.0

Instance details
Binary Word8 
Instance details

Methods

put :: Word8 -> Put #

get :: Get Word8 #

putList :: [Word8] -> Put #

NFData Word8 
Instance details

Methods

rnf :: Word8 -> () #

IArray UArray Word8 
Instance details

Methods

bounds :: Ix i => UArray i Word8 -> (i, i) #

numElements :: Ix i => UArray i Word8 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Word8)] -> UArray i Word8

unsafeAt :: Ix i => UArray i Word8 -> Int -> Word8

unsafeReplace :: Ix i => UArray i Word8 -> [(Int, Word8)] -> UArray i Word8

unsafeAccum :: Ix i => (Word8 -> e' -> Word8) -> UArray i Word8 -> [(Int, e')] -> UArray i Word8

unsafeAccumArray :: Ix i => (Word8 -> e' -> Word8) -> Word8 -> (i, i) -> [(Int, e')] -> UArray i Word8

MArray (STUArray s) Word8 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Word8 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Word8 -> ST s Int

newArray :: Ix i => (i, i) -> Word8 -> ST s (STUArray s i Word8) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8)

unsafeRead :: Ix i => STUArray s i Word8 -> Int -> ST s Word8

unsafeWrite :: Ix i => STUArray s i Word8 -> Int -> Word8 -> ST s ()

data Word16 #

16-bit unsigned integer type

Instances
Bounded Word16

Since: 2.1

Instance details
Enum Word16

Since: 2.1

Instance details
Eq Word16

Since: 2.1

Instance details

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Integral Word16

Since: 2.1

Instance details
Data Word16

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 #

toConstr :: Word16 -> Constr #

dataTypeOf :: Word16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) #

gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

Num Word16

Since: 2.1

Instance details
Ord Word16

Since: 2.1

Instance details
Read Word16

Since: 2.1

Instance details
Real Word16

Since: 2.1

Instance details
Show Word16

Since: 2.1

Instance details
Ix Word16

Since: 2.1

Instance details
Bits Word16

Since: 2.1

Instance details
FiniteBits Word16

Since: 4.6.0.0

Instance details
Binary Word16 
Instance details

Methods

put :: Word16 -> Put #

get :: Get Word16 #

putList :: [Word16] -> Put #

NFData Word16 
Instance details

Methods

rnf :: Word16 -> () #

IArray UArray Word16 
Instance details

Methods

bounds :: Ix i => UArray i Word16 -> (i, i) #

numElements :: Ix i => UArray i Word16 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Word16)] -> UArray i Word16

unsafeAt :: Ix i => UArray i Word16 -> Int -> Word16

unsafeReplace :: Ix i => UArray i Word16 -> [(Int, Word16)] -> UArray i Word16

unsafeAccum :: Ix i => (Word16 -> e' -> Word16) -> UArray i Word16 -> [(Int, e')] -> UArray i Word16

unsafeAccumArray :: Ix i => (Word16 -> e' -> Word16) -> Word16 -> (i, i) -> [(Int, e')] -> UArray i Word16

MArray (STUArray s) Word16 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Word16 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Word16 -> ST s Int

newArray :: Ix i => (i, i) -> Word16 -> ST s (STUArray s i Word16) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16)

unsafeRead :: Ix i => STUArray s i Word16 -> Int -> ST s Word16

unsafeWrite :: Ix i => STUArray s i Word16 -> Int -> Word16 -> ST s ()

data Word32 #

32-bit unsigned integer type

Instances
Bounded Word32

Since: 2.1

Instance details
Enum Word32

Since: 2.1

Instance details
Eq Word32

Since: 2.1

Instance details

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Integral Word32

Since: 2.1

Instance details
Data Word32

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 #

toConstr :: Word32 -> Constr #

dataTypeOf :: Word32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) #

gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

Num Word32

Since: 2.1

Instance details
Ord Word32

Since: 2.1

Instance details
Read Word32

Since: 2.1

Instance details
Real Word32

Since: 2.1

Instance details
Show Word32

Since: 2.1

Instance details
Ix Word32

Since: 2.1

Instance details
Bits Word32

Since: 2.1

Instance details
FiniteBits Word32

Since: 4.6.0.0

Instance details
Binary Word32 
Instance details

Methods

put :: Word32 -> Put #

get :: Get Word32 #

putList :: [Word32] -> Put #

NFData Word32 
Instance details

Methods

rnf :: Word32 -> () #

IArray UArray Word32 
Instance details

Methods

bounds :: Ix i => UArray i Word32 -> (i, i) #

numElements :: Ix i => UArray i Word32 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Word32)] -> UArray i Word32

unsafeAt :: Ix i => UArray i Word32 -> Int -> Word32

unsafeReplace :: Ix i => UArray i Word32 -> [(Int, Word32)] -> UArray i Word32

unsafeAccum :: Ix i => (Word32 -> e' -> Word32) -> UArray i Word32 -> [(Int, e')] -> UArray i Word32

unsafeAccumArray :: Ix i => (Word32 -> e' -> Word32) -> Word32 -> (i, i) -> [(Int, e')] -> UArray i Word32

MArray (STUArray s) Word32 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Word32 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Word32 -> ST s Int

newArray :: Ix i => (i, i) -> Word32 -> ST s (STUArray s i Word32) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32)

unsafeRead :: Ix i => STUArray s i Word32 -> Int -> ST s Word32

unsafeWrite :: Ix i => STUArray s i Word32 -> Int -> Word32 -> ST s ()

data Word64 #

64-bit unsigned integer type

Instances
Bounded Word64

Since: 2.1

Instance details
Enum Word64

Since: 2.1

Instance details
Eq Word64

Since: 2.1

Instance details

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Integral Word64

Since: 2.1

Instance details
Data Word64

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 #

toConstr :: Word64 -> Constr #

dataTypeOf :: Word64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) #

gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

Num Word64

Since: 2.1

Instance details
Ord Word64

Since: 2.1

Instance details
Read Word64

Since: 2.1

Instance details
Real Word64

Since: 2.1

Instance details
Show Word64

Since: 2.1

Instance details
Ix Word64

Since: 2.1

Instance details
Bits Word64

Since: 2.1

Instance details
FiniteBits Word64

Since: 4.6.0.0

Instance details
Binary Word64 
Instance details

Methods

put :: Word64 -> Put #

get :: Get Word64 #

putList :: [Word64] -> Put #

NFData Word64 
Instance details

Methods

rnf :: Word64 -> () #

IArray UArray Word64 
Instance details

Methods

bounds :: Ix i => UArray i Word64 -> (i, i) #

numElements :: Ix i => UArray i Word64 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Word64)] -> UArray i Word64

unsafeAt :: Ix i => UArray i Word64 -> Int -> Word64

unsafeReplace :: Ix i => UArray i Word64 -> [(Int, Word64)] -> UArray i Word64

unsafeAccum :: Ix i => (Word64 -> e' -> Word64) -> UArray i Word64 -> [(Int, e')] -> UArray i Word64

unsafeAccumArray :: Ix i => (Word64 -> e' -> Word64) -> Word64 -> (i, i) -> [(Int, e')] -> UArray i Word64

MArray (STUArray s) Word64 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Word64 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Word64 -> ST s Int

newArray :: Ix i => (i, i) -> Word64 -> ST s (STUArray s i Word64) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64)

unsafeRead :: Ix i => STUArray s i Word64 -> Int -> ST s Word64

unsafeWrite :: Ix i => STUArray s i Word64 -> Int -> Word64 -> ST s ()

data Int8 #

8-bit signed integer type

Instances
Bounded Int8

Since: 2.1

Instance details
Enum Int8

Since: 2.1

Instance details

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Eq Int8

Since: 2.1

Instance details

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Integral Int8

Since: 2.1

Instance details

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Data Int8

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 #

toConstr :: Int8 -> Constr #

dataTypeOf :: Int8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) #

gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

Num Int8

Since: 2.1

Instance details

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Ord Int8

Since: 2.1

Instance details

Methods

compare :: Int8 -> Int8 -> Ordering #

(<) :: Int8 -> Int8 -> Bool #

(<=) :: Int8 -> Int8 -> Bool #

(>) :: Int8 -> Int8 -> Bool #

(>=) :: Int8 -> Int8 -> Bool #

max :: Int8 -> Int8 -> Int8 #

min :: Int8 -> Int8 -> Int8 #

Read Int8

Since: 2.1

Instance details
Real Int8

Since: 2.1

Instance details

Methods

toRational :: Int8 -> Rational #

Show Int8

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Ix Int8

Since: 2.1

Instance details

Methods

range :: (Int8, Int8) -> [Int8] #

index :: (Int8, Int8) -> Int8 -> Int #

unsafeIndex :: (Int8, Int8) -> Int8 -> Int

inRange :: (Int8, Int8) -> Int8 -> Bool #

rangeSize :: (Int8, Int8) -> Int #

unsafeRangeSize :: (Int8, Int8) -> Int

Bits Int8

Since: 2.1

Instance details
FiniteBits Int8

Since: 4.6.0.0

Instance details
Binary Int8 
Instance details

Methods

put :: Int8 -> Put #

get :: Get Int8 #

putList :: [Int8] -> Put #

NFData Int8 
Instance details

Methods

rnf :: Int8 -> () #

IArray UArray Int8 
Instance details

Methods

bounds :: Ix i => UArray i Int8 -> (i, i) #

numElements :: Ix i => UArray i Int8 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Int8)] -> UArray i Int8

unsafeAt :: Ix i => UArray i Int8 -> Int -> Int8

unsafeReplace :: Ix i => UArray i Int8 -> [(Int, Int8)] -> UArray i Int8

unsafeAccum :: Ix i => (Int8 -> e' -> Int8) -> UArray i Int8 -> [(Int, e')] -> UArray i Int8

unsafeAccumArray :: Ix i => (Int8 -> e' -> Int8) -> Int8 -> (i, i) -> [(Int, e')] -> UArray i Int8

MArray (STUArray s) Int8 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Int8 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Int8 -> ST s Int

newArray :: Ix i => (i, i) -> Int8 -> ST s (STUArray s i Int8) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8)

unsafeRead :: Ix i => STUArray s i Int8 -> Int -> ST s Int8

unsafeWrite :: Ix i => STUArray s i Int8 -> Int -> Int8 -> ST s ()

data Int16 #

16-bit signed integer type

Instances
Bounded Int16

Since: 2.1

Instance details
Enum Int16

Since: 2.1

Instance details
Eq Int16

Since: 2.1

Instance details

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Integral Int16

Since: 2.1

Instance details
Data Int16

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 #

toConstr :: Int16 -> Constr #

dataTypeOf :: Int16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) #

gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

Num Int16

Since: 2.1

Instance details
Ord Int16

Since: 2.1

Instance details

Methods

compare :: Int16 -> Int16 -> Ordering #

(<) :: Int16 -> Int16 -> Bool #

(<=) :: Int16 -> Int16 -> Bool #

(>) :: Int16 -> Int16 -> Bool #

(>=) :: Int16 -> Int16 -> Bool #

max :: Int16 -> Int16 -> Int16 #

min :: Int16 -> Int16 -> Int16 #

Read Int16

Since: 2.1

Instance details
Real Int16

Since: 2.1

Instance details

Methods

toRational :: Int16 -> Rational #

Show Int16

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Ix Int16

Since: 2.1

Instance details
Bits Int16

Since: 2.1

Instance details
FiniteBits Int16

Since: 4.6.0.0

Instance details
Binary Int16 
Instance details

Methods

put :: Int16 -> Put #

get :: Get Int16 #

putList :: [Int16] -> Put #

NFData Int16 
Instance details

Methods

rnf :: Int16 -> () #

IArray UArray Int16 
Instance details

Methods

bounds :: Ix i => UArray i Int16 -> (i, i) #

numElements :: Ix i => UArray i Int16 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Int16)] -> UArray i Int16

unsafeAt :: Ix i => UArray i Int16 -> Int -> Int16

unsafeReplace :: Ix i => UArray i Int16 -> [(Int, Int16)] -> UArray i Int16

unsafeAccum :: Ix i => (Int16 -> e' -> Int16) -> UArray i Int16 -> [(Int, e')] -> UArray i Int16

unsafeAccumArray :: Ix i => (Int16 -> e' -> Int16) -> Int16 -> (i, i) -> [(Int, e')] -> UArray i Int16

MArray (STUArray s) Int16 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Int16 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Int16 -> ST s Int

newArray :: Ix i => (i, i) -> Int16 -> ST s (STUArray s i Int16) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int16) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int16)

unsafeRead :: Ix i => STUArray s i Int16 -> Int -> ST s Int16

unsafeWrite :: Ix i => STUArray s i Int16 -> Int -> Int16 -> ST s ()

data Int32 #

32-bit signed integer type

Instances
Bounded Int32

Since: 2.1

Instance details
Enum Int32

Since: 2.1

Instance details
Eq Int32

Since: 2.1

Instance details

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Integral Int32

Since: 2.1

Instance details
Data Int32

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 #

toConstr :: Int32 -> Constr #

dataTypeOf :: Int32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) #

gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

Num Int32

Since: 2.1

Instance details
Ord Int32

Since: 2.1

Instance details

Methods

compare :: Int32 -> Int32 -> Ordering #

(<) :: Int32 -> Int32 -> Bool #

(<=) :: Int32 -> Int32 -> Bool #

(>) :: Int32 -> Int32 -> Bool #

(>=) :: Int32 -> Int32 -> Bool #

max :: Int32 -> Int32 -> Int32 #

min :: Int32 -> Int32 -> Int32 #

Read Int32

Since: 2.1

Instance details
Real Int32

Since: 2.1

Instance details

Methods

toRational :: Int32 -> Rational #

Show Int32

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Ix Int32

Since: 2.1

Instance details
Bits Int32

Since: 2.1

Instance details
FiniteBits Int32

Since: 4.6.0.0

Instance details
Binary Int32 
Instance details

Methods

put :: Int32 -> Put #

get :: Get Int32 #

putList :: [Int32] -> Put #

NFData Int32 
Instance details

Methods

rnf :: Int32 -> () #

IArray UArray Int32 
Instance details

Methods

bounds :: Ix i => UArray i Int32 -> (i, i) #

numElements :: Ix i => UArray i Int32 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Int32)] -> UArray i Int32

unsafeAt :: Ix i => UArray i Int32 -> Int -> Int32

unsafeReplace :: Ix i => UArray i Int32 -> [(Int, Int32)] -> UArray i Int32

unsafeAccum :: Ix i => (Int32 -> e' -> Int32) -> UArray i Int32 -> [(Int, e')] -> UArray i Int32

unsafeAccumArray :: Ix i => (Int32 -> e' -> Int32) -> Int32 -> (i, i) -> [(Int, e')] -> UArray i Int32

MArray (STUArray s) Int32 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Int32 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Int32 -> ST s Int

newArray :: Ix i => (i, i) -> Int32 -> ST s (STUArray s i Int32) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int32) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int32)

unsafeRead :: Ix i => STUArray s i Int32 -> Int -> ST s Int32

unsafeWrite :: Ix i => STUArray s i Int32 -> Int -> Int32 -> ST s ()

data Int64 #

64-bit signed integer type

Instances
Bounded Int64

Since: 2.1

Instance details
Enum Int64

Since: 2.1

Instance details
Eq Int64

Since: 2.1

Instance details

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Integral Int64

Since: 2.1

Instance details
Data Int64

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 #

toConstr :: Int64 -> Constr #

dataTypeOf :: Int64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) #

gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

Num Int64

Since: 2.1

Instance details
Ord Int64

Since: 2.1

Instance details

Methods

compare :: Int64 -> Int64 -> Ordering #

(<) :: Int64 -> Int64 -> Bool #

(<=) :: Int64 -> Int64 -> Bool #

(>) :: Int64 -> Int64 -> Bool #

(>=) :: Int64 -> Int64 -> Bool #

max :: Int64 -> Int64 -> Int64 #

min :: Int64 -> Int64 -> Int64 #

Read Int64

Since: 2.1

Instance details
Real Int64

Since: 2.1

Instance details

Methods

toRational :: Int64 -> Rational #

Show Int64

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Ix Int64

Since: 2.1

Instance details
Bits Int64

Since: 2.1

Instance details
FiniteBits Int64

Since: 4.6.0.0

Instance details
Binary Int64 
Instance details

Methods

put :: Int64 -> Put #

get :: Get Int64 #

putList :: [Int64] -> Put #

NFData Int64 
Instance details

Methods

rnf :: Int64 -> () #

IArray UArray Int64 
Instance details

Methods

bounds :: Ix i => UArray i Int64 -> (i, i) #

numElements :: Ix i => UArray i Int64 -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Int64)] -> UArray i Int64

unsafeAt :: Ix i => UArray i Int64 -> Int -> Int64

unsafeReplace :: Ix i => UArray i Int64 -> [(Int, Int64)] -> UArray i Int64

unsafeAccum :: Ix i => (Int64 -> e' -> Int64) -> UArray i Int64 -> [(Int, e')] -> UArray i Int64

unsafeAccumArray :: Ix i => (Int64 -> e' -> Int64) -> Int64 -> (i, i) -> [(Int, e')] -> UArray i Int64

MArray (STUArray s) Int64 (ST s) 
Instance details

Methods

getBounds :: Ix i => STUArray s i Int64 -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Int64 -> ST s Int

newArray :: Ix i => (i, i) -> Int64 -> ST s (STUArray s i Int64) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int64) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int64)

unsafeRead :: Ix i => STUArray s i Int64 -> Int -> ST s Int64

unsafeWrite :: Ix i => STUArray s i Int64 -> Int -> Int64 -> ST s ()

Text.PrettyPrint

(<<>>) :: Doc -> Doc -> Doc Source #

New name for <>