Safe Haskell | None |
---|---|
Language | Haskell2010 |
Kinds of standard universes: Prop
, Type
, SSet
.
Types
Flavor of standard universe (Prop < Type < SSet
,).
Instances
EmbPrj Univ Source # | |||||
Bounded Univ Source # | |||||
Enum Univ Source # | |||||
Generic Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ
| |||||
Show Univ Source # | |||||
NFData Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
Eq Univ Source # | |||||
Ord Univ Source # | |||||
type Rep Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ |
We have IsFibrant < IsStrict
.
Instances
EmbPrj IsFibrant Source # | |
Boolean IsFibrant Source # | |
IsBool IsFibrant Source # | |
Generic IsFibrant Source # | |
Defined in Agda.Syntax.Internal.Univ | |
Show IsFibrant Source # | |
NFData IsFibrant Source # | |
Defined in Agda.Syntax.Internal | |
Eq IsFibrant Source # | |
Ord IsFibrant Source # | |
Defined in Agda.Syntax.Internal.Univ | |
type Rep IsFibrant Source # | |
Universe kind arithmetic
funUniv :: Univ -> Univ -> Univ Source #
Compute the universe type of a function space from the universe types of domain and codomain.
Inverting funUniv
:: Bool | Have |
-> Univ |
|
-> Univ |
|
-> Maybe Univ |
|
Conclude u1
from funUniv u1 u2
and u2
.
:: Univ |
|
-> Univ |
|
-> Maybe Univ |
|
Conclude u2
from funUniv u1 u2
and u1
.
Fibrancy
univFibrancy :: Univ -> IsFibrant Source #
Fibrancy of standard universes.