{-# LANGUAGE NondecreasingIndentation #-}

module Agda.TypeChecking.Reduce
 -- Meta instantiation
 ( Instantiate, instantiate', instantiate, instantiateWhen
 -- Recursive meta instantiation
 , InstantiateFull, instantiateFull', instantiateFull
 , instantiateFullExceptForDefinitions
 -- Check for meta (no reduction)
 , IsMeta, isMeta
 -- Reduction and blocking
 , Reduce, reduce', reduceB', reduce, reduceB, reduceWithBlocker, reduceIApply'
 , reduceDefCopy, reduceDefCopyTCM
 , reduceHead
 , slowReduceTerm
 , unfoldCorecursion, unfoldCorecursionE
 , unfoldDefinitionE, unfoldDefinitionStep
 , unfoldInlined
 , appDef', appDefE'
 , abortIfBlocked, ifBlocked, isBlocked, fromBlocked, blockOnError
 -- Simplification
 , Simplify, simplify, simplifyBlocked'
 -- Normalization
 , Normalise, normalise', normalise
 , slowNormaliseArgs
 ) where

import Control.Monad ( (>=>), void )
import Control.Monad.Except

import Data.List ( intercalate )
import Data.Maybe
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Foldable
import Data.Traversable
import Data.HashMap.Strict (HashMap)
import qualified Data.Set as Set

import Agda.Interaction.Options

import Agda.Syntax.Position
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Internal.MetaVars
import Agda.Syntax.Scope.Base (Scope)
import Agda.Syntax.Literal

import {-# SOURCE #-} Agda.TypeChecking.Irrelevance (isPropM)
import Agda.TypeChecking.Monad hiding ( enterClosure, constructorForm )
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.CompiledClause
import Agda.TypeChecking.EtaContract

import Agda.TypeChecking.Reduce.Monad

import {-# SOURCE #-} Agda.TypeChecking.CompiledClause.Match
import {-# SOURCE #-} Agda.TypeChecking.Patterns.Match
import {-# SOURCE #-} Agda.TypeChecking.Pretty
import {-# SOURCE #-} Agda.TypeChecking.Rewriting
import {-# SOURCE #-} Agda.TypeChecking.Reduce.Fast
import {-# SOURCE #-} Agda.TypeChecking.Opacity

import Agda.Utils.Functor
import Agda.Utils.Lens
import Agda.Utils.List
import qualified Agda.Utils.Maybe.Strict as Strict
import Agda.Utils.Monad
import Agda.Syntax.Common.Pretty (prettyShow)
import Agda.Utils.Size
import Agda.Utils.Tuple
import qualified Agda.Utils.SmallSet as SmallSet

import Agda.Utils.Impossible

instantiate :: (Instantiate a, MonadReduce m) => a -> m a
instantiate :: forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate = ReduceM a -> m a
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM a -> m a) -> (a -> ReduceM a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ReduceM a
forall t. Instantiate t => t -> ReduceM t
instantiate'

instantiateFull :: (InstantiateFull a, MonadReduce m) => a -> m a
instantiateFull :: forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull = ReduceM a -> m a
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM a -> m a) -> (a -> ReduceM a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull'

-- | A variant of 'instantiateFull' that only instantiates those
-- meta-variables that satisfy the predicate.

instantiateWhen ::
  (InstantiateFull a, MonadReduce m) =>
  (MetaId -> ReduceM Bool) ->
  a -> m a
instantiateWhen :: forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
(MetaId -> ReduceM Bool) -> a -> m a
instantiateWhen MetaId -> ReduceM Bool
p =
  ReduceM a -> m a
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM a -> m a) -> (a -> ReduceM a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
  (ReduceEnv -> ReduceEnv) -> ReduceM a -> ReduceM a
forall a. (ReduceEnv -> ReduceEnv) -> ReduceM a -> ReduceM a
localR (\ReduceEnv
env -> ReduceEnv
env { redPred = Just p }) (ReduceM a -> ReduceM a) -> (a -> ReduceM a) -> a -> ReduceM a
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
  a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull'

reduce :: (Reduce a, MonadReduce m) => a -> m a
reduce :: forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce = ReduceM a -> m a
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM a -> m a) -> (a -> ReduceM a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ReduceM a
forall t. Reduce t => t -> ReduceM t
reduce'

reduceB :: (Reduce a, MonadReduce m) => a -> m (Blocked a)
reduceB :: forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB = ReduceM (Blocked a) -> m (Blocked a)
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM (Blocked a) -> m (Blocked a))
-> (a -> ReduceM (Blocked a)) -> a -> m (Blocked a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ReduceM (Blocked a)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB'

-- Reduce a term and also produce a blocker signifying when
-- this reduction should be retried.
reduceWithBlocker :: (Reduce a, IsMeta a, MonadReduce m) => a -> m (Blocker, a)
reduceWithBlocker :: forall a (m :: * -> *).
(Reduce a, IsMeta a, MonadReduce m) =>
a -> m (Blocker, a)
reduceWithBlocker a
a = a
-> (Blocker -> a -> m (Blocker, a))
-> (NotBlocked -> a -> m (Blocker, a))
-> m (Blocker, a)
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked a
a
  (\Blocker
b a
a' -> (Blocker, a) -> m (Blocker, a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocker
b, a
a'))
  (\NotBlocked
_ a
a' -> (Blocker, a) -> m (Blocker, a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocker
neverUnblock, a
a'))

normalise :: (Normalise a, MonadReduce m) => a -> m a
normalise :: forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise = ReduceM a -> m a
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM a -> m a) -> (a -> ReduceM a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise'

-- UNUSED
-- -- | Normalise the given term but also preserve blocking tags
-- --   TODO: implement a more efficient version of this.
-- normaliseB :: (MonadReduce m, Reduce t, Normalise t) => t -> m (Blocked t)
-- normaliseB = normalise >=> reduceB

simplify :: (Simplify a, MonadReduce m) => a -> m a
simplify :: forall a (m :: * -> *). (Simplify a, MonadReduce m) => a -> m a
simplify = ReduceM a -> m a
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM a -> m a) -> (a -> ReduceM a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ReduceM a
forall t. Simplify t => t -> ReduceM t
simplify'

-- | Meaning no metas left in the instantiation.
isFullyInstantiatedMeta :: MetaId -> TCM Bool
isFullyInstantiatedMeta :: MetaId -> TCM Bool
isFullyInstantiatedMeta MetaId
m = do
  MetaInstantiation
inst <- MetaId -> TCMT IO MetaInstantiation
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m MetaInstantiation
lookupMetaInstantiation MetaId
m
  case MetaInstantiation
inst of
    InstV Instantiation
inst -> Term -> Bool
forall a. AllMetas a => a -> Bool
noMetas (Term -> Bool) -> TCMT IO Term -> TCM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> TCMT IO Term
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull (Instantiation -> Term
instBody Instantiation
inst)
    MetaInstantiation
_ -> Bool -> TCM Bool
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False

-- | Blocking on all blockers.
blockAll :: (Functor f, Foldable f) => f (Blocked a) -> Blocked (f a)
blockAll :: forall (f :: * -> *) a.
(Functor f, Foldable f) =>
f (Blocked a) -> Blocked (f a)
blockAll f (Blocked a)
bs = Blocker -> f a -> Blocked' Term (f a)
forall a t. Blocker -> a -> Blocked' t a
blockedOn Blocker
block (f a -> Blocked' Term (f a)) -> f a -> Blocked' Term (f a)
forall a b. (a -> b) -> a -> b
$ (Blocked a -> a) -> f (Blocked a) -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Blocked a -> a
forall t a. Blocked' t a -> a
ignoreBlocking f (Blocked a)
bs
  where block :: Blocker
block = Set Blocker -> Blocker
unblockOnAll (Set Blocker -> Blocker) -> Set Blocker -> Blocker
forall a b. (a -> b) -> a -> b
$ (Blocked a -> Set Blocker) -> f (Blocked a) -> Set Blocker
forall m a. Monoid m => (a -> m) -> f a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (Blocker -> Set Blocker
forall a. a -> Set a
Set.singleton (Blocker -> Set Blocker)
-> (Blocked a -> Blocker) -> Blocked a -> Set Blocker
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocked a -> Blocker
forall {t} {a}. Blocked' t a -> Blocker
blocker) f (Blocked a)
bs
        blocker :: Blocked' t a -> Blocker
blocker NotBlocked{}  = Blocker
alwaysUnblock
        blocker (Blocked Blocker
b a
_) = Blocker
b

-- | Blocking on any blockers.
blockAny :: (Functor f, Foldable f) => f (Blocked a) -> Blocked (f a)
blockAny :: forall (f :: * -> *) a.
(Functor f, Foldable f) =>
f (Blocked a) -> Blocked (f a)
blockAny f (Blocked a)
bs = Blocker -> f a -> Blocked' Term (f a)
forall a t. Blocker -> a -> Blocked' t a
blockedOn Blocker
block (f a -> Blocked' Term (f a)) -> f a -> Blocked' Term (f a)
forall a b. (a -> b) -> a -> b
$ (Blocked a -> a) -> f (Blocked a) -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Blocked a -> a
forall t a. Blocked' t a -> a
ignoreBlocking f (Blocked a)
bs
  where block :: Blocker
block = case (Blocked a -> [Blocker]) -> f (Blocked a) -> [Blocker]
forall m a. Monoid m => (a -> m) -> f a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Blocked a -> [Blocker]
forall {t} {a}. Blocked' t a -> [Blocker]
blocker f (Blocked a)
bs of
                  [] -> Blocker
alwaysUnblock -- no blockers
                  [Blocker]
bs -> Set Blocker -> Blocker
unblockOnAny (Set Blocker -> Blocker) -> Set Blocker -> Blocker
forall a b. (a -> b) -> a -> b
$ [Blocker] -> Set Blocker
forall a. Ord a => [a] -> Set a
Set.fromList [Blocker]
bs
        blocker :: Blocked' t a -> [Blocker]
blocker NotBlocked{}  = []
        blocker (Blocked Blocker
b a
_) = [Blocker
b]

-- | Run the given computation but turn any errors into blocked computations with the given blocker
blockOnError :: MonadError TCErr m => Blocker -> m a -> m a
blockOnError :: forall (m :: * -> *) a. MonadError TCErr m => Blocker -> m a -> m a
blockOnError Blocker
blocker m a
f
  | Blocker
blocker Blocker -> Blocker -> Bool
forall a. Eq a => a -> a -> Bool
== Blocker
neverUnblock = m a
f
  | Bool
otherwise               = m a
f m a -> (TCErr -> m a) -> m a
forall a. m a -> (TCErr -> m a) -> m a
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \case
    TypeError{}         -> TCErr -> m a
forall a. TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TCErr -> m a) -> TCErr -> m a
forall a b. (a -> b) -> a -> b
$ Blocker -> TCErr
PatternErr Blocker
blocker
    PatternErr Blocker
blocker' -> TCErr -> m a
forall a. TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TCErr -> m a) -> TCErr -> m a
forall a b. (a -> b) -> a -> b
$ Blocker -> TCErr
PatternErr (Blocker -> TCErr) -> Blocker -> TCErr
forall a b. (a -> b) -> a -> b
$ Blocker -> Blocker -> Blocker
unblockOnEither Blocker
blocker Blocker
blocker'
    err :: TCErr
err@Exception{}     -> TCErr -> m a
forall a. TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err
    err :: TCErr
err@IOException{}   -> TCErr -> m a
forall a. TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err

-- | Instantiate something.
--   Results in an open meta variable or a non meta.
--   Doesn't do any reduction, and preserves blocking tags (when blocking meta
--   is uninstantiated).
class Instantiate t where
  instantiate' :: t -> ReduceM t

  default instantiate' :: (t ~ f a, Traversable f, Instantiate a) => t -> ReduceM t
  instantiate' = (a -> ReduceM a) -> f a -> ReduceM (f a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse a -> ReduceM a
forall t. Instantiate t => t -> ReduceM t
instantiate'

instance Instantiate t => Instantiate [t]
instance Instantiate t => Instantiate (Map k t)
instance Instantiate t => Instantiate (Maybe t)
instance Instantiate t => Instantiate (Strict.Maybe t)

instance Instantiate t => Instantiate (Abs t)
instance Instantiate t => Instantiate (Arg t)
instance Instantiate t => Instantiate (Elim' t)
instance Instantiate t => Instantiate (Tele t)
instance Instantiate t => Instantiate (IPBoundary' t)

instance Instantiate () where
    instantiate' :: () -> ReduceM ()
instantiate' () = () -> ReduceM ()
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()

instance (Instantiate a, Instantiate b) => Instantiate (a,b) where
    instantiate' :: (a, b) -> ReduceM (a, b)
instantiate' (a
x,b
y) = (,) (a -> b -> (a, b)) -> ReduceM a -> ReduceM (b -> (a, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Instantiate t => t -> ReduceM t
instantiate' a
x ReduceM (b -> (a, b)) -> ReduceM b -> ReduceM (a, b)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. Instantiate t => t -> ReduceM t
instantiate' b
y

instance (Instantiate a, Instantiate b,Instantiate c) => Instantiate (a,b,c) where
    instantiate' :: (a, b, c) -> ReduceM (a, b, c)
instantiate' (a
x,b
y,c
z) = (,,) (a -> b -> c -> (a, b, c))
-> ReduceM a -> ReduceM (b -> c -> (a, b, c))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Instantiate t => t -> ReduceM t
instantiate' a
x ReduceM (b -> c -> (a, b, c))
-> ReduceM b -> ReduceM (c -> (a, b, c))
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. Instantiate t => t -> ReduceM t
instantiate' b
y ReduceM (c -> (a, b, c)) -> ReduceM c -> ReduceM (a, b, c)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> c -> ReduceM c
forall t. Instantiate t => t -> ReduceM t
instantiate' c
z

-- | Run the second computation if the 'redPred' predicate holds for
-- the given meta-variable (or if the predicate is not defined), and
-- otherwise the first computation.

ifPredicateDoesNotHoldFor ::
  MetaId -> ReduceM a -> ReduceM a -> ReduceM a
ifPredicateDoesNotHoldFor :: forall a. MetaId -> ReduceM a -> ReduceM a -> ReduceM a
ifPredicateDoesNotHoldFor MetaId
m ReduceM a
doesNotHold ReduceM a
holds = do
  Maybe (MetaId -> ReduceM Bool)
pred <- ReduceEnv -> Maybe (MetaId -> ReduceM Bool)
redPred (ReduceEnv -> Maybe (MetaId -> ReduceM Bool))
-> ReduceM ReduceEnv -> ReduceM (Maybe (MetaId -> ReduceM Bool))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReduceM ReduceEnv
askR
  case Maybe (MetaId -> ReduceM Bool)
pred of
    Maybe (MetaId -> ReduceM Bool)
Nothing -> ReduceM a
holds
    Just MetaId -> ReduceM Bool
p  -> ReduceM Bool -> ReduceM a -> ReduceM a -> ReduceM a
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (MetaId -> ReduceM Bool
p MetaId
m) ReduceM a
holds ReduceM a
doesNotHold

instance Instantiate Term where
  instantiate' :: Term -> ReduceM Term
instantiate' t :: Term
t@(MetaV MetaId
x Elims
es) = MetaId -> ReduceM Term -> ReduceM Term -> ReduceM Term
forall a. MetaId -> ReduceM a -> ReduceM a -> ReduceM a
ifPredicateDoesNotHoldFor MetaId
x (Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t) (ReduceM Term -> ReduceM Term) -> ReduceM Term -> ReduceM Term
forall a b. (a -> b) -> a -> b
$ do
    Bool
blocking <- Lens' TCState Bool -> TCState -> Bool
forall o (m :: * -> *) i. MonadReader o m => Lens' o i -> m i
view (Bool -> f Bool) -> TCState -> f TCState
Lens' TCState Bool
stInstantiateBlocking (TCState -> Bool) -> ReduceM TCState -> ReduceM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReduceM TCState
forall (m :: * -> *). ReadTCState m => m TCState
getTCState

    Maybe (Either RemoteMetaVariable MetaVariable)
m <- MetaId -> ReduceM (Maybe (Either RemoteMetaVariable MetaVariable))
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe (Either RemoteMetaVariable MetaVariable))
lookupMeta MetaId
x
    case Maybe (Either RemoteMetaVariable MetaVariable)
m of
      Just (Left RemoteMetaVariable
rmv) -> Instantiation -> ReduceM Term
cont (RemoteMetaVariable -> Instantiation
rmvInstantiation RemoteMetaVariable
rmv)

      Just (Right MetaVariable
mv) -> case MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
mv of
         InstV Instantiation
inst -> Instantiation -> ReduceM Term
cont Instantiation
inst

         MetaInstantiation
_ | Just MetaId
m' <- MetaVariable -> Maybe MetaId
mvTwin MetaVariable
mv, Bool
blocking ->
           Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' (MetaId -> Elims -> Term
MetaV MetaId
m' Elims
es)

         MetaInstantiation
Open -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t

         MetaInstantiation
OpenInstance -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t

         BlockedConst Term
u
           | Bool
blocking  -> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' (Term -> ReduceM Term)
-> (BraveTerm -> Term) -> BraveTerm -> ReduceM Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BraveTerm -> Term
unBrave (BraveTerm -> ReduceM Term) -> BraveTerm -> ReduceM Term
forall a b. (a -> b) -> a -> b
$
                          Term -> BraveTerm
BraveTerm Term
u BraveTerm -> Elims -> BraveTerm
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es
           | Bool
otherwise -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t

         PostponedTypeCheckingProblem Closure TypeCheckingProblem
_ -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t

      Maybe (Either RemoteMetaVariable MetaVariable)
Nothing -> [Char] -> ReduceM Term
forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
[Char] -> m a
__IMPOSSIBLE_VERBOSE__
                   ([Char]
"Meta-variable not found: " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ MetaId -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow MetaId
x)
    where
    cont :: Instantiation -> ReduceM Term
cont Instantiation
i = Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
inst
      where
      -- A slight complication here is that the meta might be underapplied,
      -- in which case we have to build the lambda abstraction before
      -- applying the substitution, or overapplied in which case we need to
      -- fall back to applyE.
      (Elims
es1, Elims
es2) = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt ([Arg [Char]] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (Instantiation -> [Arg [Char]]
instTel Instantiation
i)) Elims
es
      vs1 :: [Term]
vs1 = [Term] -> [Term]
forall a. [a] -> [a]
reverse ([Term] -> [Term]) -> [Term] -> [Term]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Term) -> [Arg Term] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Term
forall e. Arg e -> e
unArg ([Arg Term] -> [Term]) -> [Arg Term] -> [Term]
forall a b. (a -> b) -> a -> b
$ [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es1
      rho :: Substitution' Term
rho = [Term]
vs1 [Term] -> Substitution' Term -> Substitution' Term
forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
wkS ([Term] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Term]
vs1) Substitution' Term
forall a. Substitution' a
idS
            -- really should be .. ++# emptyS but using wkS makes it reduce to idS
            -- when applicable
      -- specification:
      -- inst == foldr mkLam (instBody i) (instTel i) `applyE` es
      inst :: Term
inst =
        Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg Term)
rho
          ((Arg [Char] -> Term -> Term) -> Term -> [Arg [Char]] -> Term
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Arg [Char] -> Term -> Term
mkLam (Instantiation -> Term
instBody Instantiation
i) ([Arg [Char]] -> Term) -> [Arg [Char]] -> Term
forall a b. (a -> b) -> a -> b
$ Int -> [Arg [Char]] -> [Arg [Char]]
forall a. Int -> [a] -> [a]
drop (Elims -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
es1) (Instantiation -> [Arg [Char]]
instTel Instantiation
i))
          Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es2

  instantiate' (Level Level
l) = Level -> Term
levelTm (Level -> Term) -> ReduceM Level -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. Instantiate t => t -> ReduceM t
instantiate' Level
l
  instantiate' (Sort Sort
s) = Sort -> Term
Sort (Sort -> Term) -> ReduceM Sort -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
s
  instantiate' Term
t = Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t

instance Instantiate t => Instantiate (Type' t) where
  instantiate' :: Type' t -> ReduceM (Type' t)
instantiate' (El Sort
s t
t) = Sort -> t -> Type' t
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> t -> Type' t) -> ReduceM Sort -> ReduceM (t -> Type' t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
s ReduceM (t -> Type' t) -> ReduceM t -> ReduceM (Type' t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. Instantiate t => t -> ReduceM t
instantiate' t
t

instance Instantiate Level where
  instantiate' :: Level -> ReduceM Level
instantiate' (Max Integer
m [PlusLevel]
as) = Integer -> [PlusLevel] -> Level
levelMax Integer
m ([PlusLevel] -> Level) -> ReduceM [PlusLevel] -> ReduceM Level
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [PlusLevel] -> ReduceM [PlusLevel]
forall t. Instantiate t => t -> ReduceM t
instantiate' [PlusLevel]
as

-- Use Traversable instance
instance Instantiate t => Instantiate (PlusLevel' t)

instance Instantiate a => Instantiate (Blocked a) where
  instantiate' :: Blocked a -> ReduceM (Blocked a)
instantiate' v :: Blocked a
v@NotBlocked{} = Blocked a -> ReduceM (Blocked a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocked a
v
  instantiate' v :: Blocked a
v@(Blocked Blocker
b a
u) = Blocker -> ReduceM Blocker
forall t. Instantiate t => t -> ReduceM t
instantiate' Blocker
b ReduceM Blocker
-> (Blocker -> ReduceM (Blocked a)) -> ReduceM (Blocked a)
forall a b. ReduceM a -> (a -> ReduceM b) -> ReduceM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \ case
    Blocker
b | Blocker
b Blocker -> Blocker -> Bool
forall a. Eq a => a -> a -> Bool
== Blocker
alwaysUnblock -> a -> Blocked a
forall a t. a -> Blocked' t a
notBlocked (a -> Blocked a) -> ReduceM a -> ReduceM (Blocked a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Instantiate t => t -> ReduceM t
instantiate' a
u
      | Bool
otherwise          -> Blocked a -> ReduceM (Blocked a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked a -> ReduceM (Blocked a))
-> Blocked a -> ReduceM (Blocked a)
forall a b. (a -> b) -> a -> b
$ Blocker -> a -> Blocked a
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b a
u

instance Instantiate Blocker where
  instantiate' :: Blocker -> ReduceM Blocker
instantiate' (UnblockOnAll Set Blocker
bs) = Set Blocker -> Blocker
unblockOnAll (Set Blocker -> Blocker)
-> ([Blocker] -> Set Blocker) -> [Blocker] -> Blocker
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Blocker] -> Set Blocker
forall a. Ord a => [a] -> Set a
Set.fromList ([Blocker] -> Blocker) -> ReduceM [Blocker] -> ReduceM Blocker
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Blocker -> ReduceM Blocker) -> [Blocker] -> ReduceM [Blocker]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Blocker -> ReduceM Blocker
forall t. Instantiate t => t -> ReduceM t
instantiate' (Set Blocker -> [Blocker]
forall a. Set a -> [a]
Set.toList Set Blocker
bs)
  instantiate' (UnblockOnAny Set Blocker
bs) = Set Blocker -> Blocker
unblockOnAny (Set Blocker -> Blocker)
-> ([Blocker] -> Set Blocker) -> [Blocker] -> Blocker
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Blocker] -> Set Blocker
forall a. Ord a => [a] -> Set a
Set.fromList ([Blocker] -> Blocker) -> ReduceM [Blocker] -> ReduceM Blocker
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Blocker -> ReduceM Blocker) -> [Blocker] -> ReduceM [Blocker]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Blocker -> ReduceM Blocker
forall t. Instantiate t => t -> ReduceM t
instantiate' (Set Blocker -> [Blocker]
forall a. Set a -> [a]
Set.toList Set Blocker
bs)
  instantiate' b :: Blocker
b@(UnblockOnMeta MetaId
x) =
    ReduceM Bool
-> ReduceM Blocker -> ReduceM Blocker -> ReduceM Blocker
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (MetaId -> ReduceM Bool
forall a (m :: * -> *).
(IsInstantiatedMeta a, MonadFail m, ReadTCState m) =>
a -> m Bool
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m Bool
isInstantiatedMeta MetaId
x) (Blocker -> ReduceM Blocker
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocker
alwaysUnblock) (Blocker -> ReduceM Blocker
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocker
b)
  instantiate' (UnblockOnProblem ProblemId
pi) =
    ReduceM Bool
-> ReduceM Blocker -> ReduceM Blocker -> ReduceM Blocker
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (ProblemId -> ReduceM Bool
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
ProblemId -> m Bool
isProblemSolved ProblemId
pi) (Blocker -> ReduceM Blocker
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocker
alwaysUnblock) (Blocker -> ReduceM Blocker
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocker -> ReduceM Blocker) -> Blocker -> ReduceM Blocker
forall a b. (a -> b) -> a -> b
$ ProblemId -> Blocker
UnblockOnProblem ProblemId
pi)
  instantiate' b :: Blocker
b@UnblockOnDef{} = Blocker -> ReduceM Blocker
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocker
b

instance Instantiate Sort where
  instantiate' :: Sort -> ReduceM Sort
instantiate' = \case
    MetaS MetaId
x Elims
es -> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' (MetaId -> Elims -> Term
MetaV MetaId
x Elims
es) ReduceM Term -> (Term -> ReduceM Sort) -> ReduceM Sort
forall a b. ReduceM a -> (a -> ReduceM b) -> ReduceM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
      Sort Sort
s'      -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s'
      MetaV MetaId
x' Elims
es' -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Sort -> ReduceM Sort) -> Sort -> ReduceM Sort
forall a b. (a -> b) -> a -> b
$ MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x' Elims
es'
      Def QName
d Elims
es'    -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Sort -> ReduceM Sort) -> Sort -> ReduceM Sort
forall a b. (a -> b) -> a -> b
$ QName -> Elims -> Sort
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d Elims
es'
      Term
_            -> ReduceM Sort
forall a. HasCallStack => a
__IMPOSSIBLE__
    Sort
s -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s

instance (Instantiate t, Instantiate e) => Instantiate (Dom' t e) where
    instantiate' :: Dom' t e -> ReduceM (Dom' t e)
instantiate' (Dom ArgInfo
i Maybe NamedName
n Bool
b Maybe t
tac e
x) = ArgInfo -> Maybe NamedName -> Bool -> Maybe t -> e -> Dom' t e
forall t e.
ArgInfo -> Maybe NamedName -> Bool -> Maybe t -> e -> Dom' t e
Dom ArgInfo
i Maybe NamedName
n Bool
b (Maybe t -> e -> Dom' t e)
-> ReduceM (Maybe t) -> ReduceM (e -> Dom' t e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe t -> ReduceM (Maybe t)
forall t. Instantiate t => t -> ReduceM t
instantiate' Maybe t
tac ReduceM (e -> Dom' t e) -> ReduceM e -> ReduceM (Dom' t e)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> e -> ReduceM e
forall t. Instantiate t => t -> ReduceM t
instantiate' e
x

instance Instantiate a => Instantiate (Closure a) where
    instantiate' :: Closure a -> ReduceM (Closure a)
instantiate' Closure a
cl = do
        a
x <- Closure a -> (a -> ReduceM a) -> ReduceM a
forall c a b. LensClosure c a => c -> (a -> ReduceM b) -> ReduceM b
enterClosure Closure a
cl a -> ReduceM a
forall t. Instantiate t => t -> ReduceM t
instantiate'
        Closure a -> ReduceM (Closure a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Closure a -> ReduceM (Closure a))
-> Closure a -> ReduceM (Closure a)
forall a b. (a -> b) -> a -> b
$ Closure a
cl { clValue = x }

instance Instantiate Constraint where
  instantiate' :: Constraint -> ReduceM Constraint
instantiate' (ValueCmp Comparison
cmp CompareAs
t Term
u Term
v) = do
    (CompareAs
t,Term
u,Term
v) <- (CompareAs, Term, Term) -> ReduceM (CompareAs, Term, Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' (CompareAs
t,Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp CompareAs
t Term
u Term
v
  instantiate' (ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v) = do
    ((Term
p,Type
t),Term
u,Term
v) <- ((Term, Type), Term, Term) -> ReduceM ((Term, Type), Term, Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' ((Term
p,Type
t),Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Type -> Term -> Term -> Constraint
ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v
  instantiate' (ElimCmp [Polarity]
cmp [IsForced]
fs Type
t Term
v Elims
as Elims
bs) =
    [Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
cmp [IsForced]
fs (Type -> Term -> Elims -> Elims -> Constraint)
-> ReduceM Type -> ReduceM (Term -> Elims -> Elims -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
t ReduceM (Term -> Elims -> Elims -> Constraint)
-> ReduceM Term -> ReduceM (Elims -> Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
v ReduceM (Elims -> Elims -> Constraint)
-> ReduceM Elims -> ReduceM (Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Instantiate t => t -> ReduceM t
instantiate' Elims
as ReduceM (Elims -> Constraint)
-> ReduceM Elims -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Instantiate t => t -> ReduceM t
instantiate' Elims
bs
  instantiate' (LevelCmp Comparison
cmp Level
u Level
v)   = (Level -> Level -> Constraint) -> (Level, Level) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
cmp) ((Level, Level) -> Constraint)
-> ReduceM (Level, Level) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Level, Level) -> ReduceM (Level, Level)
forall t. Instantiate t => t -> ReduceM t
instantiate' (Level
u,Level
v)
  instantiate' (SortCmp Comparison
cmp Sort
a Sort
b)    = (Sort -> Sort -> Constraint) -> (Sort, Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
cmp) ((Sort, Sort) -> Constraint)
-> ReduceM (Sort, Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Sort, Sort) -> ReduceM (Sort, Sort)
forall t. Instantiate t => t -> ReduceM t
instantiate' (Sort
a,Sort
b)
  instantiate' (UnBlock MetaId
m)          = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ MetaId -> Constraint
UnBlock MetaId
m
  instantiate' (FindInstance MetaId
m Maybe [Candidate]
cs)  = MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
m (Maybe [Candidate] -> Constraint)
-> ReduceM (Maybe [Candidate]) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([Candidate] -> ReduceM [Candidate])
-> Maybe [Candidate] -> ReduceM (Maybe [Candidate])
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Maybe a -> m (Maybe b)
mapM [Candidate] -> ReduceM [Candidate]
forall t. Instantiate t => t -> ReduceM t
instantiate' Maybe [Candidate]
cs
  instantiate' (IsEmpty Range
r Type
t)        = Range -> Type -> Constraint
IsEmpty Range
r (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
t
  instantiate' (CheckSizeLtSat Term
t)   = Term -> Constraint
CheckSizeLtSat (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
t
  instantiate' c :: Constraint
c@CheckFunDef{}      = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  instantiate' (HasBiggerSort Sort
a)    = Sort -> Constraint
HasBiggerSort (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
a
  instantiate' (HasPTSRule Dom Type
a Abs Sort
b)     = (Dom Type -> Abs Sort -> Constraint)
-> (Dom Type, Abs Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Sort -> Constraint
HasPTSRule ((Dom Type, Abs Sort) -> Constraint)
-> ReduceM (Dom Type, Abs Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Sort) -> ReduceM (Dom Type, Abs Sort)
forall t. Instantiate t => t -> ReduceM t
instantiate' (Dom Type
a,Abs Sort
b)
  instantiate' (CheckLockedVars Term
a Type
b Arg Term
c Type
d) =
    Term -> Type -> Arg Term -> Type -> Constraint
CheckLockedVars (Term -> Type -> Arg Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Arg Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
a ReduceM (Type -> Arg Term -> Type -> Constraint)
-> ReduceM Type -> ReduceM (Arg Term -> Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
b ReduceM (Arg Term -> Type -> Constraint)
-> ReduceM (Arg Term) -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' Arg Term
c ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
d
  instantiate' (UnquoteTactic Term
t Term
h Type
g) = Term -> Term -> Type -> Constraint
UnquoteTactic (Term -> Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
t ReduceM (Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
h ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
g
  instantiate' (CheckDataSort QName
q Sort
s)  = QName -> Sort -> Constraint
CheckDataSort QName
q (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
s
  instantiate' c :: Constraint
c@CheckMetaInst{}    = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  instantiate' (CheckType Type
t)        = Type -> Constraint
CheckType (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
t
  instantiate' (UsableAtModality WhyCheckModality
cc Maybe Sort
ms Modality
mod Term
t) = (Maybe Sort -> Modality -> Term -> Constraint)
-> Modality -> Maybe Sort -> Term -> Constraint
forall a b c. (a -> b -> c) -> b -> a -> c
flip (WhyCheckModality -> Maybe Sort -> Modality -> Term -> Constraint
UsableAtModality WhyCheckModality
cc) Modality
mod (Maybe Sort -> Term -> Constraint)
-> ReduceM (Maybe Sort) -> ReduceM (Term -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Sort -> ReduceM (Maybe Sort)
forall t. Instantiate t => t -> ReduceM t
instantiate' Maybe Sort
ms ReduceM (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
t

instance Instantiate CompareAs where
  instantiate' :: CompareAs -> ReduceM CompareAs
instantiate' (AsTermsOf Type
a) = Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> ReduceM Type -> ReduceM CompareAs
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
a
  instantiate' CompareAs
AsSizes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsSizes
  instantiate' CompareAs
AsTypes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsTypes

instance Instantiate Candidate where
  instantiate' :: Candidate -> ReduceM Candidate
instantiate' (Candidate CandidateKind
q Term
u Type
t Bool
ov) = CandidateKind -> Term -> Type -> Bool -> Candidate
Candidate CandidateKind
q (Term -> Type -> Bool -> Candidate)
-> ReduceM Term -> ReduceM (Type -> Bool -> Candidate)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
u ReduceM (Type -> Bool -> Candidate)
-> ReduceM Type -> ReduceM (Bool -> Candidate)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
t ReduceM (Bool -> Candidate) -> ReduceM Bool -> ReduceM Candidate
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
ov

instance Instantiate EqualityView where
  instantiate' :: EqualityView -> ReduceM EqualityView
instantiate' (OtherType Type
t)            = Type -> EqualityView
OtherType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
t
  instantiate' (IdiomType Type
t)            = Type -> EqualityView
IdiomType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Instantiate t => t -> ReduceM t
instantiate' Type
t
  instantiate' (EqualityType Sort
s QName
eq [Arg Term]
l Arg Term
t Arg Term
a Arg Term
b) = Sort
-> QName
-> [Arg Term]
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
EqualityType
    (Sort
 -> QName
 -> [Arg Term]
 -> Arg Term
 -> Arg Term
 -> Arg Term
 -> EqualityView)
-> ReduceM Sort
-> ReduceM
     (QName
      -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
s
    ReduceM
  (QName
   -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM QName
-> ReduceM
     ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> QName -> ReduceM QName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return QName
eq
    ReduceM
  ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM [Arg Term]
-> ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Arg Term -> ReduceM (Arg Term))
-> [Arg Term] -> ReduceM [Arg Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Arg Term -> ReduceM (Arg Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' [Arg Term]
l
    ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term)
-> ReduceM (Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' Arg Term
t
    ReduceM (Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM (Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' Arg Term
a
    ReduceM (Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM EqualityView
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Instantiate t => t -> ReduceM t
instantiate' Arg Term
b

---------------------------------------------------------------------------
-- * Reduction to weak head normal form.
---------------------------------------------------------------------------

-- | Is something (an elimination of) a meta variable?
--   Does not perform any reductions.

class IsMeta a where
  isMeta :: a -> Maybe MetaId

instance IsMeta Term where
  isMeta :: Term -> Maybe MetaId
isMeta (MetaV MetaId
m Elims
_) = MetaId -> Maybe MetaId
forall a. a -> Maybe a
Just MetaId
m
  isMeta Term
_           = Maybe MetaId
forall a. Maybe a
Nothing

instance IsMeta a => IsMeta (Sort' a) where
  isMeta :: Sort' a -> Maybe MetaId
isMeta (MetaS MetaId
m [Elim' a]
_) = MetaId -> Maybe MetaId
forall a. a -> Maybe a
Just MetaId
m
  isMeta Sort' a
_           = Maybe MetaId
forall a. Maybe a
Nothing

instance IsMeta a => IsMeta (Type'' t a) where
  isMeta :: Type'' t a -> Maybe MetaId
isMeta = a -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta (a -> Maybe MetaId)
-> (Type'' t a -> a) -> Type'' t a -> Maybe MetaId
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type'' t a -> a
forall t a. Type'' t a -> a
unEl

instance IsMeta a => IsMeta (Elim' a) where
  isMeta :: Elim' a -> Maybe MetaId
isMeta Proj{}    = Maybe MetaId
forall a. Maybe a
Nothing
  isMeta IApply{}  = Maybe MetaId
forall a. Maybe a
Nothing
  isMeta (Apply Arg a
a) = Arg a -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta Arg a
a

instance IsMeta a => IsMeta (Arg a) where
  isMeta :: Arg a -> Maybe MetaId
isMeta = a -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta (a -> Maybe MetaId) -> (Arg a -> a) -> Arg a -> Maybe MetaId
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg a -> a
forall e. Arg e -> e
unArg

instance IsMeta a => IsMeta (Level' a) where
  isMeta :: Level' a -> Maybe MetaId
isMeta (Max Integer
0 [PlusLevel' a
l]) = PlusLevel' a -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta PlusLevel' a
l
  isMeta Level' a
_           = Maybe MetaId
forall a. Maybe a
Nothing

instance IsMeta a => IsMeta (PlusLevel' a) where
  isMeta :: PlusLevel' a -> Maybe MetaId
isMeta (Plus Integer
0 a
l)  = a -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta a
l
  isMeta PlusLevel' a
_           = Maybe MetaId
forall a. Maybe a
Nothing

instance IsMeta CompareAs where
  isMeta :: CompareAs -> Maybe MetaId
isMeta (AsTermsOf Type
a) = Type -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta Type
a
  isMeta CompareAs
AsSizes       = Maybe MetaId
forall a. Maybe a
Nothing
  isMeta CompareAs
AsTypes       = Maybe MetaId
forall a. Maybe a
Nothing

-- | Case on whether a term is blocked on a meta (or is a meta).
--   That means it can change its shape when the meta is instantiated.
ifBlocked
  :: (Reduce t, IsMeta t, MonadReduce m)
  => t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked :: forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked t
t Blocker -> t -> m a
blocked NotBlocked -> t -> m a
unblocked = do
  Blocked t
t <- t -> m (Blocked t)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB t
t
  case Blocked t
t of
    Blocked Blocker
m t
t     -> Blocker -> t -> m a
blocked Blocker
m t
t
    NotBlocked NotBlocked
nb t
t -> case t -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta t
t of -- #4899: MetaS counts as NotBlocked at the moment
      Just MetaId
m    -> Blocker -> t -> m a
blocked (MetaId -> Blocker
unblockOnMeta MetaId
m) t
t
      Maybe MetaId
Nothing   -> NotBlocked -> t -> m a
unblocked NotBlocked
nb t
t

-- | Throw pattern violation if blocked or a meta.
abortIfBlocked :: (MonadReduce m, MonadBlock m, IsMeta t, Reduce t) => t -> m t
abortIfBlocked :: forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked t
t = t -> (Blocker -> t -> m t) -> (NotBlocked -> t -> m t) -> m t
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked t
t (m t -> t -> m t
forall a b. a -> b -> a
const (m t -> t -> m t) -> (Blocker -> m t) -> Blocker -> t -> m t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocker -> m t
forall a. Blocker -> m a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation) ((t -> m t) -> NotBlocked -> t -> m t
forall a b. a -> b -> a
const t -> m t
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return)

isBlocked
  :: (Reduce t, IsMeta t, MonadReduce m)
  => t -> m (Maybe Blocker)
isBlocked :: forall t (m :: * -> *).
(Reduce t, IsMeta t, MonadReduce m) =>
t -> m (Maybe Blocker)
isBlocked t
t = t
-> (Blocker -> t -> m (Maybe Blocker))
-> (NotBlocked -> t -> m (Maybe Blocker))
-> m (Maybe Blocker)
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked t
t (\Blocker
m t
_ -> Maybe Blocker -> m (Maybe Blocker)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Blocker -> m (Maybe Blocker))
-> Maybe Blocker -> m (Maybe Blocker)
forall a b. (a -> b) -> a -> b
$ Blocker -> Maybe Blocker
forall a. a -> Maybe a
Just Blocker
m) (\NotBlocked
_ t
_ -> Maybe Blocker -> m (Maybe Blocker)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Blocker
forall a. Maybe a
Nothing)

-- | Throw a pattern violation if the argument is @Blocked@,
--   otherwise return the value embedded in the @NotBlocked@.
fromBlocked :: MonadBlock m => Blocked a -> m a
fromBlocked :: forall (m :: * -> *) a. MonadBlock m => Blocked a -> m a
fromBlocked (Blocked Blocker
b a
_) = Blocker -> m a
forall a. Blocker -> m a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
b
fromBlocked (NotBlocked NotBlocked
_ a
x) = a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x

class Reduce t where
  reduce'  :: t -> ReduceM t
  reduceB' :: t -> ReduceM (Blocked t)

  reduce'  t
t = Blocked t -> t
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked t -> t) -> ReduceM (Blocked t) -> ReduceM t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> t -> ReduceM (Blocked t)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' t
t
  reduceB' t
t = t -> Blocked t
forall a t. a -> Blocked' t a
notBlocked (t -> Blocked t) -> ReduceM t -> ReduceM (Blocked t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> t -> ReduceM t
forall t. Reduce t => t -> ReduceM t
reduce' t
t

instance Reduce Type where
    reduce' :: Type -> ReduceM Type
reduce'  (El Sort
s Term
t) = ReduceM Type -> ReduceM Type
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes (ReduceM Type -> ReduceM Type) -> ReduceM Type -> ReduceM Type
forall a b. (a -> b) -> a -> b
$ Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s (Term -> Type) -> ReduceM Term -> ReduceM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
t
    reduceB' :: Type -> ReduceM (Blocked Type)
reduceB' (El Sort
s Term
t) = ReduceM (Blocked Type) -> ReduceM (Blocked Type)
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes (ReduceM (Blocked Type) -> ReduceM (Blocked Type))
-> ReduceM (Blocked Type) -> ReduceM (Blocked Type)
forall a b. (a -> b) -> a -> b
$ (Term -> Type) -> Blocked' Term Term -> Blocked Type
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s) (Blocked' Term Term -> Blocked Type)
-> ReduceM (Blocked' Term Term) -> ReduceM (Blocked Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Term
t

instance Reduce Sort where
    reduceB' :: Sort -> ReduceM (Blocked Sort)
reduceB' Sort
s = do
      Sort
s <- Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
s
      let done :: ReduceM (Blocked Sort)
done | MetaS MetaId
x Elims
_ <- Sort
s = Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ MetaId -> Sort -> Blocked Sort
forall a t. MetaId -> a -> Blocked' t a
blocked MetaId
x Sort
s
               | Bool
otherwise      = Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Sort -> Blocked Sort
forall a t. a -> Blocked' t a
notBlocked Sort
s
      case Sort
s of
        PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> (Sort, Abs Sort) -> ReduceM (Blocked (Sort, Abs Sort))
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' (Sort
s1 , Abs Sort
s2) ReduceM (Blocked (Sort, Abs Sort))
-> (Blocked (Sort, Abs Sort) -> ReduceM (Blocked Sort))
-> ReduceM (Blocked Sort)
forall a b. ReduceM a -> (a -> ReduceM b) -> ReduceM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
          Blocked Blocker
b (Sort
s1',Abs Sort
s2') -> Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Blocker -> Sort -> Blocked Sort
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b (Sort -> Blocked Sort) -> Sort -> Blocked Sort
forall a b. (a -> b) -> a -> b
$ Dom' Term Term -> Sort -> Abs Sort -> Sort
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom' Term Term
a Sort
s1' Abs Sort
s2'
          NotBlocked NotBlocked
_ (Sort
s1',Abs Sort
s2') -> do
            -- Jesper, 2022-10-12: do instantiateFull here because
            -- `piSort'` does checking of free variables, and if we
            -- don't instantiate we might end up blocking on a solved
            -- metavariable.
            Abs Sort
s2' <- Abs Sort -> ReduceM (Abs Sort)
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull Abs Sort
s2'
            case Dom' Term Term -> Sort -> Abs Sort -> Either Blocker Sort
piSort' Dom' Term Term
a Sort
s1' Abs Sort
s2' of
              Left Blocker
b -> Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Blocker -> Sort -> Blocked Sort
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b (Sort -> Blocked Sort) -> Sort -> Blocked Sort
forall a b. (a -> b) -> a -> b
$ Dom' Term Term -> Sort -> Abs Sort -> Sort
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom' Term Term
a Sort
s1' Abs Sort
s2'
              Right Sort
s -> Sort -> ReduceM (Blocked Sort)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Sort
s
        FunSort Sort
s1 Sort
s2 -> (Sort, Sort) -> ReduceM (Blocked (Sort, Sort))
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' (Sort
s1 , Sort
s2) ReduceM (Blocked (Sort, Sort))
-> (Blocked (Sort, Sort) -> ReduceM (Blocked Sort))
-> ReduceM (Blocked Sort)
forall a b. ReduceM a -> (a -> ReduceM b) -> ReduceM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
          Blocked Blocker
b (Sort
s1',Sort
s2') -> Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Blocker -> Sort -> Blocked Sort
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b (Sort -> Blocked Sort) -> Sort -> Blocked Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1' Sort
s2'
          NotBlocked NotBlocked
_ (Sort
s1',Sort
s2') -> do
            case Sort -> Sort -> Either Blocker Sort
funSort' Sort
s1' Sort
s2' of
              Left Blocker
b -> Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Blocker -> Sort -> Blocked Sort
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b (Sort -> Blocked Sort) -> Sort -> Blocked Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1' Sort
s2'
              Right Sort
s -> Sort -> ReduceM (Blocked Sort)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Sort
s
        UnivSort Sort
s1 -> Sort -> ReduceM (Blocked Sort)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Sort
s1 ReduceM (Blocked Sort)
-> (Blocked Sort -> ReduceM (Blocked Sort))
-> ReduceM (Blocked Sort)
forall a b. ReduceM a -> (a -> ReduceM b) -> ReduceM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
          Blocked Blocker
b Sort
s1' -> Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Blocker -> Sort -> Blocked Sort
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b (Sort -> Blocked Sort) -> Sort -> Blocked Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s1'
          NotBlocked NotBlocked
_ Sort
s1' -> case Sort -> Either Blocker Sort
univSort' Sort
s1' of
            Left Blocker
b -> Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Blocker -> Sort -> Blocked Sort
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
b (Sort -> Blocked Sort) -> Sort -> Blocked Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s1'
            Right Sort
s -> Sort -> ReduceM (Blocked Sort)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Sort
s
        Univ Univ
u Level
l   -> Sort -> Blocked Sort
forall a t. a -> Blocked' t a
notBlocked (Sort -> Blocked Sort) -> (Level -> Sort) -> Level -> Blocked Sort
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Univ -> Level -> Sort
forall t. Univ -> Level' t -> Sort' t
Univ Univ
u (Level -> Blocked Sort) -> ReduceM Level -> ReduceM (Blocked Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Level
l
        Inf Univ
_ Integer
_    -> ReduceM (Blocked Sort)
done
        Sort
SizeUniv   -> ReduceM (Blocked Sort)
done
        Sort
LockUniv   -> ReduceM (Blocked Sort)
done
        Sort
LevelUniv  -> do
          Bool
levelUniverseEnabled <- ReduceM Bool
forall (m :: * -> *). HasOptions m => m Bool
isLevelUniverseEnabled
          if Bool
levelUniverseEnabled
          then ReduceM (Blocked Sort)
done
          else Blocked Sort -> ReduceM (Blocked Sort)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Sort -> ReduceM (Blocked Sort))
-> Blocked Sort -> ReduceM (Blocked Sort)
forall a b. (a -> b) -> a -> b
$ Sort -> Blocked Sort
forall a t. a -> Blocked' t a
notBlocked (Integer -> Sort
mkType Integer
0)
        Sort
IntervalUniv -> ReduceM (Blocked Sort)
done
        MetaS MetaId
x Elims
es -> ReduceM (Blocked Sort)
done
        DefS QName
d Elims
es  -> ReduceM (Blocked Sort)
done -- postulated sorts do not reduce
        DummyS{}   -> ReduceM (Blocked Sort)
done

instance Reduce Elim where
  reduce' :: Elim -> ReduceM Elim
reduce' (Apply Arg Term
v) = Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> ReduceM (Arg Term) -> ReduceM Elim
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg Term -> ReduceM (Arg Term)
forall t. Reduce t => t -> ReduceM t
reduce' Arg Term
v
  reduce' (Proj ProjOrigin
o QName
f)= Elim -> ReduceM Elim
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Elim -> ReduceM Elim) -> Elim -> ReduceM Elim
forall a b. (a -> b) -> a -> b
$ ProjOrigin -> QName -> Elim
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
o QName
f
  reduce' (IApply Term
x Term
y Term
v) = Term -> Term -> Term -> Elim
forall a. a -> a -> a -> Elim' a
IApply (Term -> Term -> Term -> Elim)
-> ReduceM Term -> ReduceM (Term -> Term -> Elim)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
x ReduceM (Term -> Term -> Elim)
-> ReduceM Term -> ReduceM (Term -> Elim)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
y ReduceM (Term -> Elim) -> ReduceM Term -> ReduceM Elim
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
v

instance Reduce Level where
  reduce' :: Level -> ReduceM Level
reduce'  (Max Integer
m [PlusLevel]
as) = Integer -> [PlusLevel] -> Level
levelMax Integer
m ([PlusLevel] -> Level) -> ReduceM [PlusLevel] -> ReduceM Level
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (PlusLevel -> ReduceM PlusLevel)
-> [PlusLevel] -> ReduceM [PlusLevel]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM PlusLevel -> ReduceM PlusLevel
forall t. Reduce t => t -> ReduceM t
reduce' [PlusLevel]
as
  reduceB' :: Level -> ReduceM (Blocked Level)
reduceB' (Max Integer
m [PlusLevel]
as) = ([PlusLevel] -> Level)
-> Blocked' Term [PlusLevel] -> Blocked Level
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Integer -> [PlusLevel] -> Level
levelMax Integer
m) (Blocked' Term [PlusLevel] -> Blocked Level)
-> ([Blocked PlusLevel] -> Blocked' Term [PlusLevel])
-> [Blocked PlusLevel]
-> Blocked Level
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Blocked PlusLevel] -> Blocked' Term [PlusLevel]
forall (f :: * -> *) a.
(Functor f, Foldable f) =>
f (Blocked a) -> Blocked (f a)
blockAny ([Blocked PlusLevel] -> Blocked Level)
-> ReduceM [Blocked PlusLevel] -> ReduceM (Blocked Level)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (PlusLevel -> ReduceM (Blocked PlusLevel))
-> [PlusLevel] -> ReduceM [Blocked PlusLevel]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse PlusLevel -> ReduceM (Blocked PlusLevel)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' [PlusLevel]
as

instance Reduce PlusLevel where
  reduceB' :: PlusLevel -> ReduceM (Blocked PlusLevel)
reduceB' (Plus Integer
n Term
l) = (Term -> PlusLevel) -> Blocked' Term Term -> Blocked PlusLevel
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Integer -> Term -> PlusLevel
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n) (Blocked' Term Term -> Blocked PlusLevel)
-> ReduceM (Blocked' Term Term) -> ReduceM (Blocked PlusLevel)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Term
l

instance (Subst a, Reduce a) => Reduce (Abs a) where
  reduceB' :: Abs a -> ReduceM (Blocked (Abs a))
reduceB' b :: Abs a
b@(Abs [Char]
x a
_) = (a -> Abs a) -> Blocked' Term a -> Blocked (Abs a)
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ([Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
Abs [Char]
x) (Blocked' Term a -> Blocked (Abs a))
-> ReduceM (Blocked' Term a) -> ReduceM (Blocked (Abs a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs a
-> (a -> ReduceM (Blocked' Term a)) -> ReduceM (Blocked' Term a)
forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Abs a -> (a -> m b) -> m b
underAbstraction_ Abs a
b a -> ReduceM (Blocked' Term a)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB'
  reduceB' (NoAbs [Char]
x a
v) = (a -> Abs a) -> Blocked' Term a -> Blocked (Abs a)
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ([Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
NoAbs [Char]
x) (Blocked' Term a -> Blocked (Abs a))
-> ReduceM (Blocked' Term a) -> ReduceM (Blocked (Abs a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM (Blocked' Term a)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' a
v

-- Lists are never blocked
instance Reduce t => Reduce [t] where
    reduce' :: [t] -> ReduceM [t]
reduce' = (t -> ReduceM t) -> [t] -> ReduceM [t]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse t -> ReduceM t
forall t. Reduce t => t -> ReduceM t
reduce'

-- Maybes are never blocked
instance Reduce t => Reduce (Maybe t) where
    reduce' :: Maybe t -> ReduceM (Maybe t)
reduce' = (t -> ReduceM t) -> Maybe t -> ReduceM (Maybe t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Maybe a -> f (Maybe b)
traverse t -> ReduceM t
forall t. Reduce t => t -> ReduceM t
reduce'

instance Reduce t => Reduce (Arg t) where
    reduce' :: Arg t -> ReduceM (Arg t)
reduce' Arg t
a = case Arg t -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Arg t
a of
      Relevance
Irrelevant -> Arg t -> ReduceM (Arg t)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Arg t
a             -- Don't reduce' irr. args!?
                                         -- Andreas, 2018-03-03, caused #2989.
      Relevance
_          -> (t -> ReduceM t) -> Arg t -> ReduceM (Arg t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Arg a -> f (Arg b)
traverse t -> ReduceM t
forall t. Reduce t => t -> ReduceM t
reduce' Arg t
a

    reduceB' :: Arg t -> ReduceM (Blocked (Arg t))
reduceB' Arg t
t = (Blocked' Term t -> Blocked' Term t)
-> Arg (Blocked' Term t) -> Blocked (Arg t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Arg a -> f (Arg b)
traverse Blocked' Term t -> Blocked' Term t
forall a. a -> a
id (Arg (Blocked' Term t) -> Blocked (Arg t))
-> ReduceM (Arg (Blocked' Term t)) -> ReduceM (Blocked (Arg t))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (t -> ReduceM (Blocked' Term t))
-> Arg t -> ReduceM (Arg (Blocked' Term t))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Arg a -> f (Arg b)
traverse t -> ReduceM (Blocked' Term t)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Arg t
t

instance Reduce t => Reduce (Dom t) where
    reduce' :: Dom t -> ReduceM (Dom t)
reduce' = (t -> ReduceM t) -> Dom t -> ReduceM (Dom t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse t -> ReduceM t
forall t. Reduce t => t -> ReduceM t
reduce'
    reduceB' :: Dom t -> ReduceM (Blocked (Dom t))
reduceB' Dom t
t = (Blocked' Term t -> Blocked' Term t)
-> Dom' Term (Blocked' Term t) -> Blocked (Dom t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse Blocked' Term t -> Blocked' Term t
forall a. a -> a
id (Dom' Term (Blocked' Term t) -> Blocked (Dom t))
-> ReduceM (Dom' Term (Blocked' Term t))
-> ReduceM (Blocked (Dom t))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (t -> ReduceM (Blocked' Term t))
-> Dom t -> ReduceM (Dom' Term (Blocked' Term t))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse t -> ReduceM (Blocked' Term t)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Dom t
t

instance (Reduce a, Reduce b) => Reduce (a,b) where
    reduce' :: (a, b) -> ReduceM (a, b)
reduce' (a
x,b
y)  = (,) (a -> b -> (a, b)) -> ReduceM a -> ReduceM (b -> (a, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Reduce t => t -> ReduceM t
reduce' a
x ReduceM (b -> (a, b)) -> ReduceM b -> ReduceM (a, b)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. Reduce t => t -> ReduceM t
reduce' b
y
    reduceB' :: (a, b) -> ReduceM (Blocked (a, b))
reduceB' (a
x,b
y) = do
      Blocked a
x <- a -> ReduceM (Blocked a)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' a
x
      Blocked b
y <- b -> ReduceM (Blocked b)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' b
y
      let blk :: Blocked_
blk = Blocked a -> Blocked_
forall (f :: * -> *) a. Functor f => f a -> f ()
void Blocked a
x Blocked_ -> Blocked_ -> Blocked_
forall a. Monoid a => a -> a -> a
`mappend` Blocked b -> Blocked_
forall (f :: * -> *) a. Functor f => f a -> f ()
void Blocked b
y
          xy :: (a, b)
xy  = (Blocked a -> a
forall t a. Blocked' t a -> a
ignoreBlocking Blocked a
x , Blocked b -> b
forall t a. Blocked' t a -> a
ignoreBlocking Blocked b
y)
      Blocked (a, b) -> ReduceM (Blocked (a, b))
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked (a, b) -> ReduceM (Blocked (a, b)))
-> Blocked (a, b) -> ReduceM (Blocked (a, b))
forall a b. (a -> b) -> a -> b
$ Blocked_
blk Blocked_ -> (a, b) -> Blocked (a, b)
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> (a, b)
xy

instance (Reduce a, Reduce b,Reduce c) => Reduce (a,b,c) where
    reduce' :: (a, b, c) -> ReduceM (a, b, c)
reduce' (a
x,b
y,c
z) = (,,) (a -> b -> c -> (a, b, c))
-> ReduceM a -> ReduceM (b -> c -> (a, b, c))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Reduce t => t -> ReduceM t
reduce' a
x ReduceM (b -> c -> (a, b, c))
-> ReduceM b -> ReduceM (c -> (a, b, c))
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. Reduce t => t -> ReduceM t
reduce' b
y ReduceM (c -> (a, b, c)) -> ReduceM c -> ReduceM (a, b, c)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> c -> ReduceM c
forall t. Reduce t => t -> ReduceM t
reduce' c
z
    reduceB' :: (a, b, c) -> ReduceM (Blocked (a, b, c))
reduceB' (a
x,b
y,c
z) = do
      Blocked a
x <- a -> ReduceM (Blocked a)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' a
x
      Blocked b
y <- b -> ReduceM (Blocked b)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' b
y
      Blocked c
z <- c -> ReduceM (Blocked c)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' c
z
      let blk :: Blocked_
blk = Blocked a -> Blocked_
forall (f :: * -> *) a. Functor f => f a -> f ()
void Blocked a
x Blocked_ -> Blocked_ -> Blocked_
forall a. Monoid a => a -> a -> a
`mappend` Blocked b -> Blocked_
forall (f :: * -> *) a. Functor f => f a -> f ()
void Blocked b
y Blocked_ -> Blocked_ -> Blocked_
forall a. Monoid a => a -> a -> a
`mappend` Blocked c -> Blocked_
forall (f :: * -> *) a. Functor f => f a -> f ()
void Blocked c
z
          xyz :: (a, b, c)
xyz = (Blocked a -> a
forall t a. Blocked' t a -> a
ignoreBlocking Blocked a
x , Blocked b -> b
forall t a. Blocked' t a -> a
ignoreBlocking Blocked b
y , Blocked c -> c
forall t a. Blocked' t a -> a
ignoreBlocking Blocked c
z)
      Blocked (a, b, c) -> ReduceM (Blocked (a, b, c))
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked (a, b, c) -> ReduceM (Blocked (a, b, c)))
-> Blocked (a, b, c) -> ReduceM (Blocked (a, b, c))
forall a b. (a -> b) -> a -> b
$ Blocked_
blk Blocked_ -> (a, b, c) -> Blocked (a, b, c)
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> (a, b, c)
xyz

reduceIApply :: ReduceM (Blocked Term) -> [Elim] -> ReduceM (Blocked Term)
reduceIApply :: ReduceM (Blocked' Term Term)
-> Elims -> ReduceM (Blocked' Term Term)
reduceIApply = (Term -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term)
-> Elims
-> ReduceM (Blocked' Term Term)
reduceIApply' Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB'

reduceIApply' :: (Term -> ReduceM (Blocked Term)) -> ReduceM (Blocked Term) -> [Elim] -> ReduceM (Blocked Term)
reduceIApply' :: (Term -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term)
-> Elims
-> ReduceM (Blocked' Term Term)
reduceIApply' Term -> ReduceM (Blocked' Term Term)
red ReduceM (Blocked' Term Term)
d (IApply Term
x Term
y Term
r : Elims
es) = do
  Term -> IntervalView
view <- ReduceM (Term -> IntervalView)
forall (m :: * -> *). HasBuiltins m => m (Term -> IntervalView)
intervalView'
  Blocked' Term Term
r <- Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Term
r
  -- We need to propagate the blocking information so that e.g.
  -- we postpone "someNeutralPath ?0 = a" rather than fail.
  case Term -> IntervalView
view (Blocked' Term Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked' Term Term
r) of
   IntervalView
IZero -> Term -> ReduceM (Blocked' Term Term)
red (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
x Elims
es)
   IntervalView
IOne  -> Term -> ReduceM (Blocked' Term Term)
red (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
y Elims
es)
   IntervalView
_     -> (Blocked' Term Term -> Blocked' Term Term)
-> ReduceM (Blocked' Term Term) -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Blocked' Term Term -> Blocked' Term Term -> Blocked' Term Term
forall a b. Blocked' Term a -> Blocked' Term b -> Blocked' Term a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* Blocked' Term Term
r) ((Term -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term)
-> Elims
-> ReduceM (Blocked' Term Term)
reduceIApply' Term -> ReduceM (Blocked' Term Term)
red ReduceM (Blocked' Term Term)
d Elims
es)
reduceIApply' Term -> ReduceM (Blocked' Term Term)
red ReduceM (Blocked' Term Term)
d (Elim
_ : Elims
es) = (Term -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term)
-> Elims
-> ReduceM (Blocked' Term Term)
reduceIApply' Term -> ReduceM (Blocked' Term Term)
red ReduceM (Blocked' Term Term)
d Elims
es
reduceIApply' Term -> ReduceM (Blocked' Term Term)
_   ReduceM (Blocked' Term Term)
d [] = ReduceM (Blocked' Term Term)
d

instance Reduce DeBruijnPattern where
  reduceB' :: DeBruijnPattern -> ReduceM (Blocked DeBruijnPattern)
reduceB' (DotP PatternInfo
o Term
v) = (Term -> DeBruijnPattern)
-> Blocked' Term Term -> Blocked DeBruijnPattern
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (PatternInfo -> Term -> DeBruijnPattern
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
o) (Blocked' Term Term -> Blocked DeBruijnPattern)
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked DeBruijnPattern)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Term
v
  reduceB' DeBruijnPattern
p          = Blocked DeBruijnPattern -> ReduceM (Blocked DeBruijnPattern)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked DeBruijnPattern -> ReduceM (Blocked DeBruijnPattern))
-> Blocked DeBruijnPattern -> ReduceM (Blocked DeBruijnPattern)
forall a b. (a -> b) -> a -> b
$ DeBruijnPattern -> Blocked DeBruijnPattern
forall a t. a -> Blocked' t a
notBlocked DeBruijnPattern
p

instance Reduce Term where
  reduceB' :: Term -> ReduceM (Blocked' Term Term)
reduceB' = {-# SCC "reduce'<Term>" #-} Term -> ReduceM (Blocked' Term Term)
maybeFastReduceTerm

shouldTryFastReduce :: ReduceM Bool
shouldTryFastReduce :: ReduceM Bool
shouldTryFastReduce = PragmaOptions -> Bool
optFastReduce (PragmaOptions -> Bool) -> ReduceM PragmaOptions -> ReduceM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReduceM PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions

maybeFastReduceTerm :: Term -> ReduceM (Blocked Term)
maybeFastReduceTerm :: Term -> ReduceM (Blocked' Term Term)
maybeFastReduceTerm Term
v = do
  let tryFast :: Bool
tryFast = case Term
v of
                  Def{}   -> Bool
True
                  Con{}   -> Bool
True
                  MetaV{} -> Bool
True
                  Term
_       -> Bool
False
  if Bool -> Bool
not Bool
tryFast then Term -> ReduceM (Blocked' Term Term)
slowReduceTerm Term
v
                 else
    case Term
v of
      MetaV MetaId
x Elims
_ -> ReduceM Bool
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (MetaId -> ReduceM Bool
forall {f :: * -> *}. ReadTCState f => MetaId -> f Bool
isOpen MetaId
x) (Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked' Term Term -> ReduceM (Blocked' Term Term))
-> Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ MetaId -> Term -> Blocked' Term Term
forall a t. MetaId -> a -> Blocked' t a
blocked MetaId
x Term
v) (Term -> ReduceM (Blocked' Term Term)
maybeFast Term
v)
      Term
_         -> Term -> ReduceM (Blocked' Term Term)
maybeFast Term
v
  where
    isOpen :: MetaId -> f Bool
isOpen MetaId
x = MetaInstantiation -> Bool
isOpenMeta (MetaInstantiation -> Bool) -> f MetaInstantiation -> f Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> f MetaInstantiation
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m MetaInstantiation
lookupMetaInstantiation MetaId
x
    maybeFast :: Term -> ReduceM (Blocked' Term Term)
maybeFast Term
v = ReduceM Bool
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM ReduceM Bool
shouldTryFastReduce (Term -> ReduceM (Blocked' Term Term)
fastReduce Term
v) (Term -> ReduceM (Blocked' Term Term)
slowReduceTerm Term
v)

slowReduceTerm :: Term -> ReduceM (Blocked Term)
slowReduceTerm :: Term -> ReduceM (Blocked' Term Term)
slowReduceTerm Term
v = do
    Term
v <- Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
v
    let done :: ReduceM (Blocked' Term Term)
done | MetaV MetaId
x Elims
_ <- Term
v = Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked' Term Term -> ReduceM (Blocked' Term Term))
-> Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ MetaId -> Term -> Blocked' Term Term
forall a t. MetaId -> a -> Blocked' t a
blocked MetaId
x Term
v
             | Bool
otherwise      = Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked' Term Term -> ReduceM (Blocked' Term Term))
-> Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked Term
v
        iapp :: Elims -> ReduceM (Blocked' Term Term)
iapp = ReduceM (Blocked' Term Term)
-> Elims -> ReduceM (Blocked' Term Term)
reduceIApply ReduceM (Blocked' Term Term)
done
    case Term
v of
--    Andreas, 2012-11-05 not reducing meta args does not destroy anything
--    and seems to save 2% sec on the standard library
--      MetaV x args -> notBlocked . MetaV x <$> reduce' args
      MetaV MetaId
x Elims
es -> Elims -> ReduceM (Blocked' Term Term)
iapp Elims
es
      Def QName
f Elims
es   -> (ReduceM (Blocked' Term Term)
 -> Elims -> ReduceM (Blocked' Term Term))
-> Elims
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
forall a b c. (a -> b -> c) -> b -> a -> c
flip ReduceM (Blocked' Term Term)
-> Elims -> ReduceM (Blocked' Term Term)
reduceIApply Elims
es (ReduceM (Blocked' Term Term) -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term) -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' (QName -> Elims -> Term
Def QName
f []) QName
f Elims
es
      Con ConHead
c ConInfo
ci Elims
es -> do
          -- Constructors can reduce' when they come from an
          -- instantiated module.
          -- also reduce when they are path constructors
          Blocked' Term Term
v <- (ReduceM (Blocked' Term Term)
 -> Elims -> ReduceM (Blocked' Term Term))
-> Elims
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
forall a b c. (a -> b -> c) -> b -> a -> c
flip ReduceM (Blocked' Term Term)
-> Elims -> ReduceM (Blocked' Term Term)
reduceIApply Elims
es
                 (ReduceM (Blocked' Term Term) -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term) -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE Term -> ReduceM (Blocked' Term Term)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' (ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci []) (ConHead -> QName
conName ConHead
c) Elims
es
          (Term -> ReduceM Term)
-> Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Blocked' Term a -> f (Blocked' Term b)
traverse Term -> ReduceM Term
reduceNat Blocked' Term Term
v
      Sort Sort
s   -> ReduceM (Blocked' Term Term)
done
      Level Level
l  -> ReduceM Bool
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
-> ReduceM (Blocked' Term Term)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
SmallSet.member AllowedReduction
LevelReductions (SmallSet AllowedReduction -> Bool)
-> ReduceM (SmallSet AllowedReduction) -> ReduceM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (TCEnv -> SmallSet AllowedReduction)
-> ReduceM (SmallSet AllowedReduction)
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> SmallSet AllowedReduction
envAllowedReductions)
                    {- then -} ((Level -> Term) -> Blocked Level -> Blocked' Term Term
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Level -> Term
levelTm (Blocked Level -> Blocked' Term Term)
-> ReduceM (Blocked Level) -> ReduceM (Blocked' Term Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM (Blocked Level)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB' Level
l)
                    {- else -} ReduceM (Blocked' Term Term)
done
      Pi Dom Type
_ Abs Type
_   -> ReduceM (Blocked' Term Term)
done
      Lit Literal
_    -> ReduceM (Blocked' Term Term)
done
      Var Int
_ Elims
es  -> Elims -> ReduceM (Blocked' Term Term)
iapp Elims
es
      Lam ArgInfo
_ Abs Term
_  -> ReduceM (Blocked' Term Term)
done
      DontCare Term
_ -> ReduceM (Blocked' Term Term)
done
      Dummy{}    -> ReduceM (Blocked' Term Term)
done
    where
      -- NOTE: reduceNat can traverse the entire term.
      reduceNat :: Term -> ReduceM Term
reduceNat v :: Term
v@(Con ConHead
c ConInfo
ci []) = do
        Maybe Term
mz  <- BuiltinId -> ReduceM (Maybe Term)
forall (m :: * -> *). HasBuiltins m => BuiltinId -> m (Maybe Term)
getBuiltin' BuiltinId
builtinZero
        case Term
v of
          Term
_ | Term -> Maybe Term
forall a. a -> Maybe a
Just Term
v Maybe Term -> Maybe Term -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe Term
mz  -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> ReduceM Term) -> Term -> ReduceM Term
forall a b. (a -> b) -> a -> b
$ Literal -> Term
Lit (Literal -> Term) -> Literal -> Term
forall a b. (a -> b) -> a -> b
$ Integer -> Literal
LitNat Integer
0
          Term
_                 -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
      reduceNat v :: Term
v@(Con ConHead
c ConInfo
ci [Apply Arg Term
a]) | Arg Term -> Bool
forall a. LensHiding a => a -> Bool
visible Arg Term
a Bool -> Bool -> Bool
&& Arg Term -> Bool
forall a. LensRelevance a => a -> Bool
isRelevant Arg Term
a = do
        Maybe Term
ms  <- BuiltinId -> ReduceM (Maybe Term)
forall (m :: * -> *). HasBuiltins m => BuiltinId -> m (Maybe Term)
getBuiltin' BuiltinId
builtinSuc
        case Term
v of
          Term
_ | Term -> Maybe Term
forall a. a -> Maybe a
Just (ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci []) Maybe Term -> Maybe Term -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe Term
ms -> Term -> Term
inc (Term -> Term) -> ReduceM Term -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a)
          Term
_                         -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
          where
            inc :: Term -> Term
inc = \case
              Lit (LitNat Integer
n) -> Literal -> Term
Lit (Literal -> Term) -> Literal -> Term
forall a b. (a -> b) -> a -> b
$ Integer -> Literal
LitNat (Integer -> Literal) -> Integer -> Literal
forall a b. (a -> b) -> a -> b
$ Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
1
              Term
w              -> ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci [Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> Arg Term -> Elim
forall a b. (a -> b) -> a -> b
$ Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
w]
      reduceNat Term
v = Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v

-- Andreas, 2013-03-20 recursive invokations of unfoldCorecursion
-- need also to instantiate metas, see Issue 826.
unfoldCorecursionE :: Elim -> ReduceM (Blocked Elim)
unfoldCorecursionE :: Elim -> ReduceM (Blocked Elim)
unfoldCorecursionE (Proj ProjOrigin
o QName
p)           = Elim -> Blocked Elim
forall a t. a -> Blocked' t a
notBlocked (Elim -> Blocked Elim) -> (QName -> Elim) -> QName -> Blocked Elim
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProjOrigin -> QName -> Elim
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
o (QName -> Blocked Elim) -> ReduceM QName -> ReduceM (Blocked Elim)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> ReduceM QName
forall (m :: * -> *). HasConstInfo m => QName -> m QName
getOriginalProjection QName
p
unfoldCorecursionE (Apply (Arg ArgInfo
info Term
v)) = (Term -> Elim) -> Blocked' Term Term -> Blocked Elim
forall a b. (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> (Term -> Arg Term) -> Term -> Elim
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info) (Blocked' Term Term -> Blocked Elim)
-> ReduceM (Blocked' Term Term) -> ReduceM (Blocked Elim)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
  Term -> ReduceM (Blocked' Term Term)
unfoldCorecursion Term
v
unfoldCorecursionE (IApply Term
x Term
y Term
r) = do -- TODO check if this makes sense
   [Blocked' Term Term
x,Blocked' Term Term
y,Blocked' Term Term
r] <- (Term -> ReduceM (Blocked' Term Term))
-> [Term] -> ReduceM [Blocked' Term Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Term -> ReduceM (Blocked' Term Term)
unfoldCorecursion [Term
x,Term
y,Term
r]
   Blocked Elim -> ReduceM (Blocked Elim)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Elim -> ReduceM (Blocked Elim))
-> Blocked Elim -> ReduceM (Blocked Elim)
forall a b. (a -> b) -> a -> b
$ Term -> Term -> Term -> Elim
forall a. a -> a -> a -> Elim' a
IApply (Term -> Term -> Term -> Elim)
-> Blocked' Term Term -> Blocked' Term (Term -> Term -> Elim)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Blocked' Term Term
x Blocked' Term (Term -> Term -> Elim)
-> Blocked' Term Term -> Blocked' Term (Term -> Elim)
forall a b.
Blocked' Term (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Blocked' Term Term
y Blocked' Term (Term -> Elim) -> Blocked' Term Term -> Blocked Elim
forall a b.
Blocked' Term (a -> b) -> Blocked' Term a -> Blocked' Term b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Blocked' Term Term
r

unfoldCorecursion :: Term -> ReduceM (Blocked Term)
unfoldCorecursion :: Term -> ReduceM (Blocked' Term Term)
unfoldCorecursion Term
v = do
  Term
v <- Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
v
  case Term
v of
    Def QName
f Elims
es -> (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE Term -> ReduceM (Blocked' Term Term)
unfoldCorecursion (QName -> Elims -> Term
Def QName
f []) QName
f Elims
es
    Term
_ -> Term -> ReduceM (Blocked' Term Term)
slowReduceTerm Term
v

-- | If the first argument is 'True', then a single delayed clause may
-- be unfolded.
unfoldDefinition ::
  (Term -> ReduceM (Blocked Term)) ->
  Term -> QName -> Args -> ReduceM (Blocked Term)
unfoldDefinition :: (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> [Arg Term] -> ReduceM (Blocked' Term Term)
unfoldDefinition Term -> ReduceM (Blocked' Term Term)
keepGoing Term
v QName
f [Arg Term]
args =
  (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE Term -> ReduceM (Blocked' Term Term)
keepGoing Term
v QName
f ((Arg Term -> Elim) -> [Arg Term] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply [Arg Term]
args)

unfoldDefinitionE ::
  (Term -> ReduceM (Blocked Term)) ->
  Term -> QName -> Elims -> ReduceM (Blocked Term)
unfoldDefinitionE :: (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE Term -> ReduceM (Blocked' Term Term)
keepGoing Term
v QName
f Elims
es = do
  Reduced (Blocked' Term Term) Term
r <- Term
-> QName -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
unfoldDefinitionStep Term
v QName
f Elims
es
  case Reduced (Blocked' Term Term) Term
r of
    NoReduction Blocked' Term Term
v    -> Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocked' Term Term
v
    YesReduction Simplification
_ Term
v -> Term -> ReduceM (Blocked' Term Term)
keepGoing Term
v

unfoldDefinition' ::
  (Simplification -> Term -> ReduceM (Simplification, Blocked Term)) ->
  Term -> QName -> Elims -> ReduceM (Simplification, Blocked Term)
unfoldDefinition' :: (Simplification
 -> Term -> ReduceM (Simplification, Blocked' Term Term))
-> Term
-> QName
-> Elims
-> ReduceM (Simplification, Blocked' Term Term)
unfoldDefinition' Simplification
-> Term -> ReduceM (Simplification, Blocked' Term Term)
keepGoing Term
v0 QName
f Elims
es = do
  Reduced (Blocked' Term Term) Term
r <- Term
-> QName -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
unfoldDefinitionStep Term
v0 QName
f Elims
es
  case Reduced (Blocked' Term Term) Term
r of
    NoReduction Blocked' Term Term
v       -> (Simplification, Blocked' Term Term)
-> ReduceM (Simplification, Blocked' Term Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Simplification
NoSimplification, Blocked' Term Term
v)
    YesReduction Simplification
simp Term
v -> Simplification
-> Term -> ReduceM (Simplification, Blocked' Term Term)
keepGoing Simplification
simp Term
v

unfoldDefinitionStep :: Term -> QName -> Elims -> ReduceM (Reduced (Blocked Term) Term)
unfoldDefinitionStep :: Term
-> QName -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
unfoldDefinitionStep Term
v0 QName
f Elims
es =
  {-# SCC "reduceDef" #-} do
  [Char]
-> Int
-> TCMT IO Doc
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m a -> m a
traceSDoc [Char]
"tc.reduce" Int
90 (TCMT IO Doc
"unfoldDefinitionStep v0" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v0) (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ do
  Definition
info <- QName -> ReduceM Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
  [RewriteRule]
rewr <- [RewriteRule] -> ReduceM [RewriteRule]
forall (m :: * -> *).
(Functor m, HasConstInfo m, HasOptions m, ReadTCState m,
 MonadTCEnv m, MonadDebug m) =>
[RewriteRule] -> m [RewriteRule]
instantiateRewriteRules ([RewriteRule] -> ReduceM [RewriteRule])
-> ReduceM [RewriteRule] -> ReduceM [RewriteRule]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< QName -> ReduceM [RewriteRule]
forall (m :: * -> *). HasConstInfo m => QName -> m [RewriteRule]
getRewriteRulesFor QName
f
  SmallSet AllowedReduction
allowed <- (TCEnv -> SmallSet AllowedReduction)
-> ReduceM (SmallSet AllowedReduction)
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> SmallSet AllowedReduction
envAllowedReductions
  Either Blocker Bool
prp <- BlockT ReduceM Bool -> ReduceM (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (BlockT ReduceM Bool -> ReduceM (Either Blocker Bool))
-> BlockT ReduceM Bool -> ReduceM (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ Type -> BlockT ReduceM Bool
forall a (m :: * -> *).
(LensSort a, PrettyTCM a, PureTCM m, MonadBlock m) =>
a -> m Bool
isPropM (Type -> BlockT ReduceM Bool) -> Type -> BlockT ReduceM Bool
forall a b. (a -> b) -> a -> b
$ Definition -> Type
defType Definition
info
  Bool
defOk <- QName -> ReduceM Bool
forall (m :: * -> *). MonadTCEnv m => QName -> m Bool
shouldReduceDef QName
f
  let def :: Defn
def = Definition -> Defn
theDef Definition
info
      v :: Term
v   = Term
v0 Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es
      -- Non-terminating functions
      -- (i.e., those that failed the termination check)
      -- and delayed definitions
      -- are not unfolded unless explicitly permitted.
      dontUnfold :: Bool
dontUnfold = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or
        [ Definition -> Bool
defNonterminating Definition
info Bool -> Bool -> Bool
&& AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
SmallSet.notMember AllowedReduction
NonTerminatingReductions SmallSet AllowedReduction
allowed
        , Definition -> Bool
defTerminationUnconfirmed Definition
info Bool -> Bool -> Bool
&& AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
SmallSet.notMember AllowedReduction
UnconfirmedReductions SmallSet AllowedReduction
allowed
        , Either Blocker Bool
prp Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True
        , Definition -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Definition
info
        , Bool -> Bool
not Bool
defOk
        ]
      copatterns :: Bool
copatterns = Definition -> Bool
defCopatternLHS Definition
info
  case Defn
def of
    Constructor{conSrcCon :: Defn -> ConHead
conSrcCon = ConHead
c} -> do
      let hd :: Elims -> Term
hd = ConHead -> ConInfo -> Elims -> Term
Con (ConHead
c ConHead -> QName -> ConHead
forall t u. (SetRange t, HasRange u) => t -> u -> t
`withRangeOf` QName
f) ConInfo
ConOSystem
      Blocked_
-> (Elims -> Term)
-> [RewriteRule]
-> Elims
-> ReduceM (Reduced (Blocked' Term Term) Term)
rewrite (NotBlocked -> () -> Blocked_
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked NotBlocked
forall t. NotBlocked' t
ReallyNotBlocked ()) Elims -> Term
hd [RewriteRule]
rewr Elims
es
    Primitive{primAbstr :: Defn -> IsAbstract
primAbstr = IsAbstract
ConcreteDef, primName :: Defn -> PrimitiveId
primName = PrimitiveId
x, primClauses :: Defn -> [Clause]
primClauses = [Clause]
cls} -> do
      PrimFun
pf <- PrimFun -> Maybe PrimFun -> PrimFun
forall a. a -> Maybe a -> a
fromMaybe PrimFun
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe PrimFun -> PrimFun)
-> ReduceM (Maybe PrimFun) -> ReduceM PrimFun
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PrimitiveId -> ReduceM (Maybe PrimFun)
forall (m :: * -> *).
HasBuiltins m =>
PrimitiveId -> m (Maybe PrimFun)
getPrimitive' PrimitiveId
x
      if AllowedReduction
FunctionReductions AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
`SmallSet.member` SmallSet AllowedReduction
allowed
        then PrimitiveId
-> Term
-> QName
-> Elims
-> PrimFun
-> Bool
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> ReduceM (Reduced (Blocked' Term Term) Term)
reducePrimitive PrimitiveId
x Term
v0 QName
f Elims
es PrimFun
pf Bool
dontUnfold
                             [Clause]
cls (Definition -> Maybe CompiledClauses
defCompiled Definition
info) [RewriteRule]
rewr
        else Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {a} {yes}. a -> ReduceM (Reduced a yes)
noReduction (Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Blocked' Term Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked Term
v
    PrimitiveSort{ primSortSort :: Defn -> Sort
primSortSort = Sort
s } -> Simplification
-> Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {m :: * -> *} {a} {no}.
Monad m =>
Simplification -> a -> m (Reduced no a)
yesReduction Simplification
NoSimplification (Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Sort -> Term
Sort Sort
s Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es

    Defn
_  -> do
      if [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or
          [ AllowedReduction
RecursiveReductions AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
`SmallSet.member` SmallSet AllowedReduction
allowed
          , Maybe Projection -> Bool
forall a. Maybe a -> Bool
isJust (Defn -> Maybe Projection
isProjection_ Defn
def) Bool -> Bool -> Bool
&& AllowedReduction
ProjectionReductions AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
`SmallSet.member` SmallSet AllowedReduction
allowed
              -- Includes projection-like and irrelevant projections.
              -- Note: irrelevant projections lead to @dontUnfold@ and
              -- so are not actually unfolded.
          , Defn -> Bool
isInlineFun Defn
def Bool -> Bool -> Bool
&& AllowedReduction
InlineReductions AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
`SmallSet.member` SmallSet AllowedReduction
allowed
          , Defn -> Bool
definitelyNonRecursive_ Defn
def Bool -> Bool -> Bool
&& [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or
            [ Bool
copatterns Bool -> Bool -> Bool
&& AllowedReduction
CopatternReductions AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
`SmallSet.member` SmallSet AllowedReduction
allowed
            , AllowedReduction
FunctionReductions AllowedReduction -> SmallSet AllowedReduction -> Bool
forall a. SmallSetElement a => a -> SmallSet a -> Bool
`SmallSet.member` SmallSet AllowedReduction
allowed
            ]
          ]
        then
          Term
-> QName
-> [MaybeReduced Elim]
-> Bool
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> ReduceM (Reduced (Blocked' Term Term) Term)
reduceNormalE Term
v0 QName
f ((Elim -> MaybeReduced Elim) -> Elims -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map Elim -> MaybeReduced Elim
forall a. a -> MaybeReduced a
notReduced Elims
es) Bool
dontUnfold
                       (Definition -> [Clause]
defClauses Definition
info) (Definition -> Maybe CompiledClauses
defCompiled Definition
info) [RewriteRule]
rewr
        else Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {a} {yes}. a -> ReduceM (Reduced a yes)
noReduction (Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Blocked' Term Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked Term
v  -- Andrea(s), 2014-12-05 OK?

  where
    noReduction :: a -> ReduceM (Reduced a yes)
noReduction    = Reduced a yes -> ReduceM (Reduced a yes)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced a yes -> ReduceM (Reduced a yes))
-> (a -> Reduced a yes) -> a -> ReduceM (Reduced a yes)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Reduced a yes
forall no yes. no -> Reduced no yes
NoReduction
    yesReduction :: Simplification -> a -> m (Reduced no a)
yesReduction Simplification
s = Reduced no a -> m (Reduced no a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced no a -> m (Reduced no a))
-> (a -> Reduced no a) -> a -> m (Reduced no a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Simplification -> a -> Reduced no a
forall no yes. Simplification -> yes -> Reduced no yes
YesReduction Simplification
s
    reducePrimitive :: PrimitiveId
-> Term
-> QName
-> Elims
-> PrimFun
-> Bool
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> ReduceM (Reduced (Blocked' Term Term) Term)
reducePrimitive PrimitiveId
x Term
v0 QName
f Elims
es PrimFun
pf Bool
dontUnfold [Clause]
cls Maybe CompiledClauses
mcc [RewriteRule]
rewr
      | Elims -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
es Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ar
                  = Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {a} {yes}. a -> ReduceM (Reduced a yes)
noReduction (Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Blocked' Term Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ NotBlocked -> Term -> Blocked' Term Term
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked NotBlocked
forall t. NotBlocked' t
Underapplied (Term -> Blocked' Term Term) -> Term -> Blocked' Term Term
forall a b. (a -> b) -> a -> b
$ Term
v0 Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es -- not fully applied
      | Bool
otherwise = {-# SCC "reducePrimitive" #-} do
          let (Elims
es1,Elims
es2) = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
ar Elims
es
              args1 :: [Arg Term]
args1     = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ (Elim -> Maybe (Arg Term)) -> Elims -> Maybe [Arg Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Elim -> Maybe (Arg Term)
forall a. Elim' a -> Maybe (Arg a)
isApplyElim Elims
es1
          Reduced MaybeReducedArgs Term
r <- PrimFun
-> [Arg Term] -> Int -> ReduceM (Reduced MaybeReducedArgs Term)
primFunImplementation PrimFun
pf [Arg Term]
args1 (Elims -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
es2)
          case Reduced MaybeReducedArgs Term
r of
            NoReduction MaybeReducedArgs
args1' -> do
              let es1' :: [MaybeReduced Elim]
es1' = (MaybeReduced (Arg Term) -> MaybeReduced Elim)
-> MaybeReducedArgs -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map ((Arg Term -> Elim) -> MaybeReduced (Arg Term) -> MaybeReduced Elim
forall a b. (a -> b) -> MaybeReduced a -> MaybeReduced b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply) MaybeReducedArgs
args1'
              if [Clause] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Clause]
cls Bool -> Bool -> Bool
&& [RewriteRule] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [RewriteRule]
rewr then do
                Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {a} {yes}. a -> ReduceM (Reduced a yes)
noReduction (Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Blocked' Term Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE (QName -> Elims -> Term
Def QName
f []) (Elims -> Term) -> Blocked' Term Elims -> Blocked' Term Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
                  [Blocked Elim] -> Blocked' Term Elims
forall (f :: * -> *) a.
(Functor f, Foldable f) =>
f (Blocked a) -> Blocked (f a)
blockAll ([Blocked Elim] -> Blocked' Term Elims)
-> [Blocked Elim] -> Blocked' Term Elims
forall a b. (a -> b) -> a -> b
$ (MaybeReduced Elim -> Blocked Elim)
-> [MaybeReduced Elim] -> [Blocked Elim]
forall a b. (a -> b) -> [a] -> [b]
map MaybeReduced Elim -> Blocked Elim
forall t. IsMeta t => MaybeReduced t -> Blocked t
mredToBlocked [MaybeReduced Elim]
es1' [Blocked Elim] -> [Blocked Elim] -> [Blocked Elim]
forall a. [a] -> [a] -> [a]
++ (Elim -> Blocked Elim) -> Elims -> [Blocked Elim]
forall a b. (a -> b) -> [a] -> [b]
map Elim -> Blocked Elim
forall a t. a -> Blocked' t a
notBlocked Elims
es2
               else
                Term
-> QName
-> [MaybeReduced Elim]
-> Bool
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> ReduceM (Reduced (Blocked' Term Term) Term)
reduceNormalE Term
v0 QName
f ([MaybeReduced Elim]
es1' [MaybeReduced Elim] -> [MaybeReduced Elim] -> [MaybeReduced Elim]
forall a. [a] -> [a] -> [a]
++ (Elim -> MaybeReduced Elim) -> Elims -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map Elim -> MaybeReduced Elim
forall a. a -> MaybeReduced a
notReduced Elims
es2) Bool
dontUnfold [Clause]
cls Maybe CompiledClauses
mcc [RewriteRule]
rewr
            YesReduction Simplification
simpl Term
v -> Simplification
-> Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {m :: * -> *} {a} {no}.
Monad m =>
Simplification -> a -> m (Reduced no a)
yesReduction Simplification
simpl (Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Term
v Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es2
      where
          ar :: Int
ar  = PrimFun -> Int
primFunArity PrimFun
pf

          mredToBlocked :: IsMeta t => MaybeReduced t -> Blocked t
          mredToBlocked :: forall t. IsMeta t => MaybeReduced t -> Blocked t
mredToBlocked (MaybeRed IsReduced
NotReduced  t
e) = t -> Blocked' Term t
forall a t. a -> Blocked' t a
notBlocked t
e
          mredToBlocked (MaybeRed (Reduced Blocked_
b) t
e) = t
e t -> Blocked_ -> Blocked' Term t
forall a b. a -> Blocked' Term b -> Blocked' Term a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Blocked_
b

    reduceNormalE :: Term -> QName -> [MaybeReduced Elim] -> Bool -> [Clause] -> Maybe CompiledClauses -> RewriteRules -> ReduceM (Reduced (Blocked Term) Term)
    reduceNormalE :: Term
-> QName
-> [MaybeReduced Elim]
-> Bool
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> ReduceM (Reduced (Blocked' Term Term) Term)
reduceNormalE Term
v0 QName
f [MaybeReduced Elim]
es Bool
dontUnfold [Clause]
def Maybe CompiledClauses
mcc [RewriteRule]
rewr = {-# SCC "reduceNormal" #-} do
      [Char]
-> Int
-> TCMT IO Doc
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m a -> m a
traceSDoc [Char]
"tc.reduce" Int
90 (TCMT IO Doc
"reduceNormalE v0 =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v0) (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ do
      case ([Clause]
def,[RewriteRule]
rewr) of
        ([Clause], [RewriteRule])
_ | Bool
dontUnfold -> [Char]
-> Int
-> [Char]
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> [Char] -> m a -> m a
traceSLn [Char]
"tc.reduce" Int
90 [Char]
"reduceNormalE: don't unfold (non-terminating or delayed)" (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$
                          ReduceM (Reduced (Blocked' Term Term) Term)
defaultResult -- non-terminating or delayed
        ([],[])        -> [Char]
-> Int
-> [Char]
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> [Char] -> m a -> m a
traceSLn [Char]
"tc.reduce" Int
90 [Char]
"reduceNormalE: no clauses or rewrite rules" (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ do
          -- no definition for head
          Blocked_
blk <- Blocked_ -> ReduceM Blocked_
forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate (Blocked_ -> ReduceM Blocked_)
-> ReduceM Blocked_ -> ReduceM Blocked_
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do Definition -> Blocked_
defBlocked (Definition -> Blocked_) -> ReduceM Definition -> ReduceM Blocked_
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> ReduceM Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
          Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {a} {yes}. a -> ReduceM (Reduced a yes)
noReduction (Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Blocked' Term Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Blocked_
blk Blocked_ -> Term -> Blocked' Term Term
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Term
vfull
        ([Clause]
cls,[RewriteRule]
rewr)     -> do
          Reduced (Blocked' Term Term) Term
ev <- QName
-> Term
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE_ QName
f Term
v0 [Clause]
cls Maybe CompiledClauses
mcc [RewriteRule]
rewr [MaybeReduced Elim]
es
          Reduced (Blocked' Term Term) Term -> ReduceM ()
debugReduce Reduced (Blocked' Term Term) Term
ev
          Reduced (Blocked' Term Term) Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Reduced (Blocked' Term Term) Term
ev
      where
      defaultResult :: ReduceM (Reduced (Blocked' Term Term) Term)
defaultResult = Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term)
forall {a} {yes}. a -> ReduceM (Reduced a yes)
noReduction (Blocked' Term Term -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Blocked' Term Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ NotBlocked -> Term -> Blocked' Term Term
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked NotBlocked
forall t. NotBlocked' t
ReallyNotBlocked Term
vfull
      vfull :: Term
vfull         = Term
v0 Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` (MaybeReduced Elim -> Elim) -> [MaybeReduced Elim] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map MaybeReduced Elim -> Elim
forall a. MaybeReduced a -> a
ignoreReduced [MaybeReduced Elim]
es
      debugReduce :: Reduced (Blocked' Term Term) Term -> ReduceM ()
debugReduce Reduced (Blocked' Term Term) Term
ev = [Char] -> Int -> ReduceM () -> ReduceM ()
forall (m :: * -> *). MonadDebug m => [Char] -> Int -> m () -> m ()
verboseS [Char]
"tc.reduce" Int
90 (ReduceM () -> ReduceM ()) -> ReduceM () -> ReduceM ()
forall a b. (a -> b) -> a -> b
$ do
        case Reduced (Blocked' Term Term) Term
ev of
          NoReduction Blocked' Term Term
v -> do
            [Char] -> Int -> TCMT IO Doc -> ReduceM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.reduce" Int
90 (TCMT IO Doc -> ReduceM ()) -> TCMT IO Doc -> ReduceM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
              [ TCMT IO Doc
"*** tried to reduce " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty QName
f
              , TCMT IO Doc
"    es =  " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ((MaybeReduced Elim -> TCMT IO Doc)
-> [MaybeReduced Elim] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Elim -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Elim -> TCMT IO Doc)
-> (MaybeReduced Elim -> Elim) -> MaybeReduced Elim -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MaybeReduced Elim -> Elim
forall a. MaybeReduced a -> a
ignoreReduced) [MaybeReduced Elim]
es)
              -- , "*** tried to reduce " <+> pretty vfull
              , TCMT IO Doc
"    stuck on" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Blocked' Term Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked' Term Term
v)
              ]
          YesReduction Simplification
_simpl Term
v -> do
            [Char] -> Int -> TCMT IO Doc -> ReduceM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.reduce"  Int
90 (TCMT IO Doc -> ReduceM ()) -> TCMT IO Doc -> ReduceM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"*** reduced definition: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty QName
f
            [Char] -> Int -> TCMT IO Doc -> ReduceM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.reduce"  Int
95 (TCMT IO Doc -> ReduceM ()) -> TCMT IO Doc -> ReduceM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"    result" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v

-- | Specialized version to put in boot file.
reduceDefCopyTCM :: QName -> Elims -> TCM (Reduced () Term)
reduceDefCopyTCM :: QName -> Elims -> TCM (Reduced () Term)
reduceDefCopyTCM = QName -> Elims -> TCM (Reduced () Term)
forall (m :: * -> *).
PureTCM m =>
QName -> Elims -> m (Reduced () Term)
reduceDefCopy

-- | Reduce a non-primitive definition if it is a copy linking to another def.
reduceDefCopy :: forall m. PureTCM m => QName -> Elims -> m (Reduced () Term)
reduceDefCopy :: forall (m :: * -> *).
PureTCM m =>
QName -> Elims -> m (Reduced () Term)
reduceDefCopy QName
f Elims
es = do
  Definition
info <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
  case Definition -> Defn
theDef Definition
info of
    Defn
_ | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Definition -> Bool
defCopy Definition
info     -> Reduced () Term -> m (Reduced () Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced () Term -> m (Reduced () Term))
-> Reduced () Term -> m (Reduced () Term)
forall a b. (a -> b) -> a -> b
$ () -> Reduced () Term
forall no yes. no -> Reduced no yes
NoReduction ()
    Constructor{conSrcCon :: Defn -> ConHead
conSrcCon = ConHead
c} -> Reduced () Term -> m (Reduced () Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced () Term -> m (Reduced () Term))
-> Reduced () Term -> m (Reduced () Term)
forall a b. (a -> b) -> a -> b
$ Simplification -> Term -> Reduced () Term
forall no yes. Simplification -> yes -> Reduced no yes
YesReduction Simplification
YesSimplification (ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ConOSystem Elims
es)
    Defn
_                          -> Definition -> QName -> Elims -> m (Reduced () Term)
reduceDef_ Definition
info QName
f Elims
es
  where
    reduceDef_ :: Definition -> QName -> Elims -> m (Reduced () Term)
    reduceDef_ :: Definition -> QName -> Elims -> m (Reduced () Term)
reduceDef_ Definition
info QName
f Elims
es = case Definition -> [Clause]
defClauses Definition
info of
      [Clause
cl] -> do  -- proper copies always have a single clause
        let v0 :: Term
v0 = QName -> Elims -> Term
Def QName
f [] -- TODO: could be Con
            ps :: NAPs
ps    = Clause -> NAPs
namedClausePats Clause
cl
            nargs :: Int
nargs = Elims -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
es
            -- appDefE_ cannot handle underapplied functions, so we eta-expand here if that's the
            -- case. We use this function to compute display forms from module applications and in
            -- that case we don't always have saturated applications.
            (Term -> Term
lam, Elims
es') = ([Arg [Char]] -> Term -> Term
unlamView [Arg [Char]]
xs, Elims
newes)
              where
                etaArgs :: NAPs -> [a] -> [Arg [Char]]
etaArgs [] [a]
_ = []
                etaArgs (NamedArg DeBruijnPattern
p : NAPs
ps) []
                  | VarP PatternInfo
_ DBPatVar
x <- NamedArg DeBruijnPattern -> DeBruijnPattern
forall a. NamedArg a -> a
namedArg NamedArg DeBruijnPattern
p = ArgInfo -> [Char] -> Arg [Char]
forall e. ArgInfo -> e -> Arg e
Arg (NamedArg DeBruijnPattern -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo NamedArg DeBruijnPattern
p) (DBPatVar -> [Char]
dbPatVarName DBPatVar
x) Arg [Char] -> [Arg [Char]] -> [Arg [Char]]
forall a. a -> [a] -> [a]
: NAPs -> [a] -> [Arg [Char]]
etaArgs NAPs
ps []
                  | Bool
otherwise              = []
                etaArgs (NamedArg DeBruijnPattern
_ : NAPs
ps) (a
_ : [a]
es) = NAPs -> [a] -> [Arg [Char]]
etaArgs NAPs
ps [a]
es
                xs :: [Arg [Char]]
xs  = NAPs -> Elims -> [Arg [Char]]
forall {a}. NAPs -> [a] -> [Arg [Char]]
etaArgs NAPs
ps Elims
es
                n :: Int
n   = [Arg [Char]] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Arg [Char]]
xs
                newes :: Elims
newes = Int -> Elims -> Elims
forall a. Subst a => Int -> a -> a
raise Int
n Elims
es Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ [ Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> Arg Term -> Elim
forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
i Term -> Arg [Char] -> Arg Term
forall a b. a -> Arg b -> Arg a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Arg [Char]
x | (Int
i, Arg [Char]
x) <- [Int] -> [Arg [Char]] -> [(Int, Arg [Char])]
forall a b. [a] -> [b] -> [(a, b)]
zip (Int -> [Int]
forall a. Integral a => a -> [a]
downFrom Int
n) [Arg [Char]]
xs ]
        if Definition -> Bool
defNonterminating Definition
info
         then Reduced () Term -> m (Reduced () Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced () Term -> m (Reduced () Term))
-> Reduced () Term -> m (Reduced () Term)
forall a b. (a -> b) -> a -> b
$ () -> Reduced () Term
forall no yes. no -> Reduced no yes
NoReduction ()
         else do
            Reduced (Blocked' Term Term) Term
ev <- ReduceM (Reduced (Blocked' Term Term) Term)
-> m (Reduced (Blocked' Term Term) Term)
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM (Reduced (Blocked' Term Term) Term)
 -> m (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> m (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ QName
-> Term
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE_ QName
f Term
v0 [Clause
cl] Maybe CompiledClauses
forall a. Maybe a
Nothing [RewriteRule]
forall a. Monoid a => a
mempty ([MaybeReduced Elim]
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ (Elim -> MaybeReduced Elim) -> Elims -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map Elim -> MaybeReduced Elim
forall a. a -> MaybeReduced a
notReduced Elims
es'
            case Reduced (Blocked' Term Term) Term
ev of
              YesReduction Simplification
simpl Term
t -> Reduced () Term -> m (Reduced () Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced () Term -> m (Reduced () Term))
-> Reduced () Term -> m (Reduced () Term)
forall a b. (a -> b) -> a -> b
$ Simplification -> Term -> Reduced () Term
forall no yes. Simplification -> yes -> Reduced no yes
YesReduction Simplification
simpl (Term -> Term
lam Term
t)
              NoReduction{}        -> Reduced () Term -> m (Reduced () Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced () Term -> m (Reduced () Term))
-> Reduced () Term -> m (Reduced () Term)
forall a b. (a -> b) -> a -> b
$ () -> Reduced () Term
forall no yes. no -> Reduced no yes
NoReduction ()
      []    -> Reduced () Term -> m (Reduced () Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced () Term -> m (Reduced () Term))
-> Reduced () Term -> m (Reduced () Term)
forall a b. (a -> b) -> a -> b
$ () -> Reduced () Term
forall no yes. no -> Reduced no yes
NoReduction ()  -- copies of generalizable variables have no clauses (and don't need unfolding)
      Clause
_:Clause
_:[Clause]
_ -> m (Reduced () Term)
forall a. HasCallStack => a
__IMPOSSIBLE__

-- | Reduce simple (single clause) definitions.
reduceHead :: PureTCM m => Term -> m (Blocked Term)
reduceHead :: forall (m :: * -> *). PureTCM m => Term -> m (Blocked' Term Term)
reduceHead Term
v = do -- ignoreAbstractMode $ do
  -- Andreas, 2013-02-18 ignoreAbstractMode leads to information leakage
  -- see Issue 796

  -- first, possibly rewrite literal v to constructor form
  Term
v <- Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Term
v
  [Char]
-> Int
-> TCMT IO Doc
-> m (Blocked' Term Term)
-> m (Blocked' Term Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m a -> m a
traceSDoc [Char]
"tc.inj.reduce" Int
30 (TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *) a. MonadTCEnv m => m a -> m a
ignoreAbstractMode (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"reduceHead" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v) (m (Blocked' Term Term) -> m (Blocked' Term Term))
-> m (Blocked' Term Term) -> m (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ do
  case Term
v of
    Def QName
f Elims
es -> do

      AbstractMode
abstractMode <- TCEnv -> AbstractMode
envAbstractMode (TCEnv -> AbstractMode) -> m TCEnv -> m AbstractMode
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m TCEnv
forall (m :: * -> *). MonadTCEnv m => m TCEnv
askTC
      Bool
isAbstract <- Bool -> Bool
not (Bool -> Bool) -> m Bool -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Bool
forall (m :: * -> *).
(ReadTCState m, MonadTCEnv m, HasConstInfo m) =>
QName -> m Bool
hasAccessibleDef QName
f
      [Char]
-> Int
-> [Char]
-> m (Blocked' Term Term)
-> m (Blocked' Term Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> [Char] -> m a -> m a
traceSLn [Char]
"tc.inj.reduce" Int
50 (
        [Char]
"reduceHead: we are in " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ AbstractMode -> [Char]
forall a. Show a => a -> [Char]
show AbstractMode
abstractMode[Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
"; " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
f [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++
        [Char]
" is treated " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ if Bool
isAbstract then [Char]
"abstractly" else [Char]
"concretely"
        ) (m (Blocked' Term Term) -> m (Blocked' Term Term))
-> m (Blocked' Term Term) -> m (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ do
      let v0 :: Term
v0  = QName -> Elims -> Term
Def QName
f []
          red :: m (Blocked' Term Term)
red = ReduceM (Blocked' Term Term) -> m (Blocked' Term Term)
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM (Blocked' Term Term) -> m (Blocked' Term Term))
-> ReduceM (Blocked' Term Term) -> m (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE Term -> ReduceM (Blocked' Term Term)
forall (m :: * -> *). PureTCM m => Term -> m (Blocked' Term Term)
reduceHead Term
v0 QName
f Elims
es
      Defn
def <- Definition -> Defn
theDef (Definition -> Defn) -> m Definition -> m Defn
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
      case Defn
def of
        -- Andreas, 2012-11-06 unfold aliases (single clause terminating functions)
        -- see test/succeed/Issue747
        -- We restrict this to terminating functions to not make the
        -- type checker loop here on non-terminating functions.
        -- see test/fail/TerminationInfiniteRecord
        Function{ funClauses :: Defn -> [Clause]
funClauses = [ Clause
_ ], funTerminates :: Defn -> Maybe Bool
funTerminates = Just Bool
True } -> do
          [Char]
-> Int
-> [Char]
-> m (Blocked' Term Term)
-> m (Blocked' Term Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> [Char] -> m a -> m a
traceSLn [Char]
"tc.inj.reduce" Int
50 ([Char]
"reduceHead: head " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
f [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" is Function") (m (Blocked' Term Term) -> m (Blocked' Term Term))
-> m (Blocked' Term Term) -> m (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ do
          m (Blocked' Term Term)
red
        Datatype{ dataClause :: Defn -> Maybe Clause
dataClause = Just Clause
_ } -> m (Blocked' Term Term)
red
        Record{ recClause :: Defn -> Maybe Clause
recClause = Just Clause
_ }    -> m (Blocked' Term Term)
red
        Defn
_                               -> Blocked' Term Term -> m (Blocked' Term Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked' Term Term -> m (Blocked' Term Term))
-> Blocked' Term Term -> m (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked Term
v
    Term
_ -> Blocked' Term Term -> m (Blocked' Term Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked' Term Term -> m (Blocked' Term Term))
-> Blocked' Term Term -> m (Blocked' Term Term)
forall a b. (a -> b) -> a -> b
$ Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked Term
v

-- | Unfold a single inlined function.
unfoldInlined :: PureTCM m => Term -> m Term
unfoldInlined :: forall (m :: * -> *). PureTCM m => Term -> m Term
unfoldInlined Term
v = do
  Bool
inTypes <- Lens' TCEnv Bool -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (Bool -> f Bool) -> TCEnv -> f TCEnv
Lens' TCEnv Bool
eWorkingOnTypes
  case Term
v of
    Term
_ | Bool
inTypes -> Term -> m Term
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v -- Don't inline in types (to avoid unfolding of goals)
    Def QName
f Elims
es -> do
      Definition
info <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
      let def :: Defn
def = Definition -> Defn
theDef Definition
info
          irr :: Bool
irr = ArgInfo -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant (ArgInfo -> Bool) -> ArgInfo -> Bool
forall a b. (a -> b) -> a -> b
$ Definition -> ArgInfo
defArgInfo Definition
info
      case Defn
def of
        Function{} ->
          [Char] -> Int -> [Char] -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> [Char] -> m ()
reportSLn [Char]
"tc.inline" Int
90 ([Char] -> m ()) -> [Char] -> m ()
forall a b. (a -> b) -> a -> b
$
            [Char] -> [[Char]] -> [Char]
forall a. [a] -> [[a]] -> [a]
intercalate [Char]
"\n"
            [ [Char]
"considering to inline " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
f
            , [Char]
"irr         = " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Bool -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow Bool
irr
            , [Char]
"funInline   = " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Bool -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow (Defn
def Defn -> Lens' Defn Bool -> Bool
forall o i. o -> Lens' o i -> i
^. (Bool -> f Bool) -> Defn -> f Defn
Lens' Defn Bool
funInline)
            , [Char]
"funCompiled = " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Maybe CompiledClauses -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow (Defn -> Maybe CompiledClauses
funCompiled Defn
def)
            ]
        Defn
_ -> () -> m ()
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
      case Defn
def of   -- Only for simple definitions with no pattern matching (TODO: maybe copatterns?)
        Function{ funCompiled :: Defn -> Maybe CompiledClauses
funCompiled = Just Done{} }
          | Defn
def Defn -> Lens' Defn Bool -> Bool
forall o i. o -> Lens' o i -> i
^. (Bool -> f Bool) -> Defn -> f Defn
Lens' Defn Bool
funInline , Bool -> Bool
not Bool
irr -> do
              [Char] -> Int -> [Char] -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> [Char] -> m ()
reportSLn [Char]
"tc.inline" Int
70 ([Char] -> m ()) -> [Char] -> m ()
forall a b. (a -> b) -> a -> b
$ [Char]
"asking to inline " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
f
              ReduceM Term -> m Term
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM Term -> m Term) -> ReduceM Term -> m Term
forall a b. (a -> b) -> a -> b
$
                Blocked' Term Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked' Term Term -> Term)
-> ReduceM (Blocked' Term Term) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Term -> ReduceM (Blocked' Term Term))
-> Term -> QName -> Elims -> ReduceM (Blocked' Term Term)
unfoldDefinitionE (Blocked' Term Term -> ReduceM (Blocked' Term Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked' Term Term -> ReduceM (Blocked' Term Term))
-> (Term -> Blocked' Term Term)
-> Term
-> ReduceM (Blocked' Term Term)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked) (QName -> Elims -> Term
Def QName
f []) QName
f Elims
es
        Defn
_ -> Term -> m Term
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
    Term
_ -> Term -> m Term
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v

-- | Apply a definition using the compiled clauses, or fall back to
--   ordinary clauses if no compiled clauses exist.
appDef_ :: QName -> Term -> [Clause] -> Maybe CompiledClauses -> RewriteRules -> MaybeReducedArgs -> ReduceM (Reduced (Blocked Term) Term)
appDef_ :: QName
-> Term
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> MaybeReducedArgs
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDef_ QName
f Term
v0 [Clause]
cls Maybe CompiledClauses
mcc [RewriteRule]
rewr MaybeReducedArgs
args = QName
-> Term
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE_ QName
f Term
v0 [Clause]
cls Maybe CompiledClauses
mcc [RewriteRule]
rewr ([MaybeReduced Elim]
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ (MaybeReduced (Arg Term) -> MaybeReduced Elim)
-> MaybeReducedArgs -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map ((Arg Term -> Elim) -> MaybeReduced (Arg Term) -> MaybeReduced Elim
forall a b. (a -> b) -> MaybeReduced a -> MaybeReduced b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply) MaybeReducedArgs
args

appDefE_ :: QName -> Term -> [Clause] -> Maybe CompiledClauses -> RewriteRules -> MaybeReducedElims -> ReduceM (Reduced (Blocked Term) Term)
appDefE_ :: QName
-> Term
-> [Clause]
-> Maybe CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE_ QName
f Term
v0 [Clause]
cls Maybe CompiledClauses
mcc [RewriteRule]
rewr [MaybeReduced Elim]
args =
  (TCEnv -> TCEnv)
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a. (TCEnv -> TCEnv) -> ReduceM a -> ReduceM a
forall (m :: * -> *) a.
MonadTCEnv m =>
(TCEnv -> TCEnv) -> m a -> m a
localTC (\ TCEnv
e -> TCEnv
e { envAppDef = Just f }) (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$
  ReduceM (Reduced (Blocked' Term Term) Term)
-> (CompiledClauses -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Maybe CompiledClauses
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Term
-> [Clause]
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE'' Term
v0 [Clause]
cls [RewriteRule]
rewr [MaybeReduced Elim]
args)
        (\CompiledClauses
cc -> Term
-> CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE Term
v0 CompiledClauses
cc [RewriteRule]
rewr [MaybeReduced Elim]
args) Maybe CompiledClauses
mcc


-- | Apply a defined function to it's arguments, using the compiled clauses.
--   The original term is the first argument applied to the third.
appDef :: Term -> CompiledClauses -> RewriteRules -> MaybeReducedArgs -> ReduceM (Reduced (Blocked Term) Term)
appDef :: Term
-> CompiledClauses
-> [RewriteRule]
-> MaybeReducedArgs
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDef Term
v CompiledClauses
cc [RewriteRule]
rewr MaybeReducedArgs
args = Term
-> CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE Term
v CompiledClauses
cc [RewriteRule]
rewr ([MaybeReduced Elim]
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ (MaybeReduced (Arg Term) -> MaybeReduced Elim)
-> MaybeReducedArgs -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map ((Arg Term -> Elim) -> MaybeReduced (Arg Term) -> MaybeReduced Elim
forall a b. (a -> b) -> MaybeReduced a -> MaybeReduced b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply) MaybeReducedArgs
args

appDefE :: Term -> CompiledClauses -> RewriteRules -> MaybeReducedElims -> ReduceM (Reduced (Blocked Term) Term)
appDefE :: Term
-> CompiledClauses
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE Term
v CompiledClauses
cc [RewriteRule]
rewr [MaybeReduced Elim]
es = do
  [Char]
-> Int
-> TCMT IO Doc
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m a -> m a
traceSDoc [Char]
"tc.reduce" Int
90 (TCMT IO Doc
"appDefE v = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v) (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ do
  Reduced (Blocked' Term Elims) Term
r <- CompiledClauses
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Elims) Term)
matchCompiledE CompiledClauses
cc [MaybeReduced Elim]
es
  case Reduced (Blocked' Term Elims) Term
r of
    YesReduction Simplification
simpl Term
t -> Reduced (Blocked' Term Term) Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced (Blocked' Term Term) Term
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Reduced (Blocked' Term Term) Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Simplification -> Term -> Reduced (Blocked' Term Term) Term
forall no yes. Simplification -> yes -> Reduced no yes
YesReduction Simplification
simpl Term
t
    NoReduction Blocked' Term Elims
es'      -> Blocked_
-> (Elims -> Term)
-> [RewriteRule]
-> Elims
-> ReduceM (Reduced (Blocked' Term Term) Term)
rewrite (Blocked' Term Elims -> Blocked_
forall (f :: * -> *) a. Functor f => f a -> f ()
void Blocked' Term Elims
es') (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v) [RewriteRule]
rewr (Blocked' Term Elims -> Elims
forall t a. Blocked' t a -> a
ignoreBlocking Blocked' Term Elims
es')

-- | Apply a defined function to it's arguments, using the original clauses.
appDef' :: QName -> Term -> [Clause] -> RewriteRules -> MaybeReducedArgs -> ReduceM (Reduced (Blocked Term) Term)
appDef' :: QName
-> Term
-> [Clause]
-> [RewriteRule]
-> MaybeReducedArgs
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDef' QName
f Term
v [Clause]
cls [RewriteRule]
rewr MaybeReducedArgs
args = QName
-> Term
-> [Clause]
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE' QName
f Term
v [Clause]
cls [RewriteRule]
rewr ([MaybeReduced Elim]
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ (MaybeReduced (Arg Term) -> MaybeReduced Elim)
-> MaybeReducedArgs -> [MaybeReduced Elim]
forall a b. (a -> b) -> [a] -> [b]
map ((Arg Term -> Elim) -> MaybeReduced (Arg Term) -> MaybeReduced Elim
forall a b. (a -> b) -> MaybeReduced a -> MaybeReduced b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply) MaybeReducedArgs
args

appDefE' :: QName -> Term -> [Clause] -> RewriteRules -> MaybeReducedElims -> ReduceM (Reduced (Blocked Term) Term)
appDefE' :: QName
-> Term
-> [Clause]
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE' QName
f Term
v [Clause]
cls [RewriteRule]
rewr [MaybeReduced Elim]
es =
  (TCEnv -> TCEnv)
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a. (TCEnv -> TCEnv) -> ReduceM a -> ReduceM a
forall (m :: * -> *) a.
MonadTCEnv m =>
(TCEnv -> TCEnv) -> m a -> m a
localTC (\ TCEnv
e -> TCEnv
e { envAppDef = Just f }) (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$
  Term
-> [Clause]
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE'' Term
v [Clause]
cls [RewriteRule]
rewr [MaybeReduced Elim]
es

-- | Expects @'envAppDef' = Just f@ in 'TCEnv' to be able to report @'MissingClauses' f@.
appDefE'' :: Term -> [Clause] -> RewriteRules -> MaybeReducedElims -> ReduceM (Reduced (Blocked Term) Term)
appDefE'' :: Term
-> [Clause]
-> [RewriteRule]
-> [MaybeReduced Elim]
-> ReduceM (Reduced (Blocked' Term Term) Term)
appDefE'' Term
v [Clause]
cls [RewriteRule]
rewr [MaybeReduced Elim]
es = [Char]
-> Int
-> TCMT IO Doc
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m a -> m a
traceSDoc [Char]
"tc.reduce" Int
90 (TCMT IO Doc
"appDefE' v = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v) (ReduceM (Reduced (Blocked' Term Term) Term)
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> ReduceM (Reduced (Blocked' Term Term) Term)
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ do
  [Clause] -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
goCls [Clause]
cls (Elims -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ (MaybeReduced Elim -> Elim) -> [MaybeReduced Elim] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map MaybeReduced Elim -> Elim
forall a. MaybeReduced a -> a
ignoreReduced [MaybeReduced Elim]
es
  where
    goCls :: [Clause] -> [Elim] -> ReduceM (Reduced (Blocked Term) Term)
    goCls :: [Clause] -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
goCls [Clause]
cl Elims
es = do
      case [Clause]
cl of
        -- Andreas, 2013-10-26  In case of an incomplete match,
        -- we just do not reduce.  This allows adding single function
        -- clauses after they have been type-checked, to type-check
        -- the remaining clauses (see Issue 907).
        -- Andrea(s), 2014-12-05:  We return 'MissingClauses' here, since this
        -- is the most conservative reason.
        [] -> do
          QName
f <- QName -> Maybe QName -> QName
forall a. a -> Maybe a -> a
fromMaybe QName
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe QName -> QName) -> ReduceM (Maybe QName) -> ReduceM QName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (TCEnv -> Maybe QName) -> ReduceM (Maybe QName)
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Maybe QName
envAppDef
          Blocked_
-> (Elims -> Term)
-> [RewriteRule]
-> Elims
-> ReduceM (Reduced (Blocked' Term Term) Term)
rewrite (NotBlocked -> () -> Blocked_
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked (QName -> NotBlocked
forall t. QName -> NotBlocked' t
MissingClauses QName
f) ()) (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v) [RewriteRule]
rewr Elims
es
        Clause
cl : [Clause]
cls -> do
          let pats :: NAPs
pats = Clause -> NAPs
namedClausePats Clause
cl
              body :: Maybe Term
body = Clause -> Maybe Term
clauseBody Clause
cl
              npats :: Int
npats = NAPs -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length NAPs
pats
              nvars :: Int
nvars = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int) -> Telescope -> Int
forall a b. (a -> b) -> a -> b
$ Clause -> Telescope
clauseTel Clause
cl
          -- if clause is underapplied, skip to next clause
          if Elims -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
es Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
npats then [Clause] -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
goCls [Clause]
cls Elims
es else do
            let (Elims
es0, Elims
es1) = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
npats Elims
es
            (Match Term
m, Elims
es0) <- NAPs -> Elims -> ReduceM (Match Term, Elims)
forall (m :: * -> *).
MonadMatch m =>
NAPs -> Elims -> m (Match Term, Elims)
matchCopatterns NAPs
pats Elims
es0
            let es :: Elims
es = Elims
es0 Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es1
            case Match Term
m of
              Match Term
No         -> [Clause] -> Elims -> ReduceM (Reduced (Blocked' Term Term) Term)
goCls [Clause]
cls Elims
es
              DontKnow Blocked_
b -> Blocked_
-> (Elims -> Term)
-> [RewriteRule]
-> Elims
-> ReduceM (Reduced (Blocked' Term Term) Term)
rewrite Blocked_
b (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v) [RewriteRule]
rewr Elims
es
              Yes Simplification
simpl IntMap (Arg Term)
vs -- vs is the subst. for the variables bound in body
                | Just Term
w <- Maybe Term
body -> do -- clause has body?
                    -- TODO: let matchPatterns also return the reduced forms
                    -- of the original arguments!
                    -- Andreas, 2013-05-19 isn't this done now?
                    let sigma :: Substitution' Term
sigma = Impossible -> Int -> IntMap (Arg Term) -> Substitution' Term
forall a.
DeBruijn a =>
Impossible -> Int -> IntMap (Arg a) -> Substitution' a
buildSubstitution Impossible
HasCallStack => Impossible
impossible Int
nvars IntMap (Arg Term)
vs
                    Reduced (Blocked' Term Term) Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduced (Blocked' Term Term) Term
 -> ReduceM (Reduced (Blocked' Term Term) Term))
-> Reduced (Blocked' Term Term) Term
-> ReduceM (Reduced (Blocked' Term Term) Term)
forall a b. (a -> b) -> a -> b
$ Simplification -> Term -> Reduced (Blocked' Term Term) Term
forall no yes. Simplification -> yes -> Reduced no yes
YesReduction Simplification
simpl (Term -> Reduced (Blocked' Term Term) Term)
-> Term -> Reduced (Blocked' Term Term) Term
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg Term)
sigma Term
w Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es1
                | Bool
otherwise     -> Blocked_
-> (Elims -> Term)
-> [RewriteRule]
-> Elims
-> ReduceM (Reduced (Blocked' Term Term) Term)
rewrite (NotBlocked -> () -> Blocked_
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked NotBlocked
forall t. NotBlocked' t
AbsurdMatch ()) (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v) [RewriteRule]
rewr Elims
es

instance Reduce a => Reduce (Closure a) where
    reduce' :: Closure a -> ReduceM (Closure a)
reduce' Closure a
cl = do
        a
x <- Closure a -> (a -> ReduceM a) -> ReduceM a
forall c a b. LensClosure c a => c -> (a -> ReduceM b) -> ReduceM b
enterClosure Closure a
cl a -> ReduceM a
forall t. Reduce t => t -> ReduceM t
reduce'
        Closure a -> ReduceM (Closure a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Closure a -> ReduceM (Closure a))
-> Closure a -> ReduceM (Closure a)
forall a b. (a -> b) -> a -> b
$ Closure a
cl { clValue = x }

instance Reduce Telescope where
  reduce' :: Telescope -> ReduceM Telescope
reduce' Telescope
EmptyTel          = Telescope -> ReduceM Telescope
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Telescope
forall a. Tele a
EmptyTel
  reduce' (ExtendTel Dom Type
a Abs Telescope
tel) = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Dom Type -> Abs Telescope -> Telescope)
-> ReduceM (Dom Type) -> ReduceM (Abs Telescope -> Telescope)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type -> ReduceM (Dom Type)
forall t. Reduce t => t -> ReduceM t
reduce' Dom Type
a ReduceM (Abs Telescope -> Telescope)
-> ReduceM (Abs Telescope) -> ReduceM Telescope
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs Telescope -> ReduceM (Abs Telescope)
forall t. Reduce t => t -> ReduceM t
reduce' Abs Telescope
tel

instance Reduce Constraint where
  reduce' :: Constraint -> ReduceM Constraint
reduce' (ValueCmp Comparison
cmp CompareAs
t Term
u Term
v) = do
    (CompareAs
t,Term
u,Term
v) <- (CompareAs, Term, Term) -> ReduceM (CompareAs, Term, Term)
forall t. Reduce t => t -> ReduceM t
reduce' (CompareAs
t,Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp CompareAs
t Term
u Term
v
  reduce' (ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v) = do
    ((Term
p,Type
t),Term
u,Term
v) <- ((Term, Type), Term, Term) -> ReduceM ((Term, Type), Term, Term)
forall t. Reduce t => t -> ReduceM t
reduce' ((Term
p,Type
t),Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Type -> Term -> Term -> Constraint
ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v
  reduce' (ElimCmp [Polarity]
cmp [IsForced]
fs Type
t Term
v Elims
as Elims
bs) =
    [Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
cmp [IsForced]
fs (Type -> Term -> Elims -> Elims -> Constraint)
-> ReduceM Type -> ReduceM (Term -> Elims -> Elims -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
t ReduceM (Term -> Elims -> Elims -> Constraint)
-> ReduceM Term -> ReduceM (Elims -> Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
v ReduceM (Elims -> Elims -> Constraint)
-> ReduceM Elims -> ReduceM (Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Reduce t => t -> ReduceM t
reduce' Elims
as ReduceM (Elims -> Constraint)
-> ReduceM Elims -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Reduce t => t -> ReduceM t
reduce' Elims
bs
  reduce' (LevelCmp Comparison
cmp Level
u Level
v)    = (Level -> Level -> Constraint) -> (Level, Level) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
cmp) ((Level, Level) -> Constraint)
-> ReduceM (Level, Level) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Level, Level) -> ReduceM (Level, Level)
forall t. Reduce t => t -> ReduceM t
reduce' (Level
u,Level
v)
  reduce' (SortCmp Comparison
cmp Sort
a Sort
b)     = (Sort -> Sort -> Constraint) -> (Sort, Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
cmp) ((Sort, Sort) -> Constraint)
-> ReduceM (Sort, Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Sort, Sort) -> ReduceM (Sort, Sort)
forall t. Reduce t => t -> ReduceM t
reduce' (Sort
a,Sort
b)
  reduce' (UnBlock MetaId
m)           = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ MetaId -> Constraint
UnBlock MetaId
m
  reduce' (FindInstance MetaId
m Maybe [Candidate]
cs)   = MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
m (Maybe [Candidate] -> Constraint)
-> ReduceM (Maybe [Candidate]) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([Candidate] -> ReduceM [Candidate])
-> Maybe [Candidate] -> ReduceM (Maybe [Candidate])
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Maybe a -> m (Maybe b)
mapM [Candidate] -> ReduceM [Candidate]
forall t. Reduce t => t -> ReduceM t
reduce' Maybe [Candidate]
cs
  reduce' (IsEmpty Range
r Type
t)         = Range -> Type -> Constraint
IsEmpty Range
r (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
t
  reduce' (CheckSizeLtSat Term
t)    = Term -> Constraint
CheckSizeLtSat (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
t
  reduce' c :: Constraint
c@CheckFunDef{}       = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  reduce' (HasBiggerSort Sort
a)     = Sort -> Constraint
HasBiggerSort (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Reduce t => t -> ReduceM t
reduce' Sort
a
  reduce' (HasPTSRule Dom Type
a Abs Sort
b)      = (Dom Type -> Abs Sort -> Constraint)
-> (Dom Type, Abs Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Sort -> Constraint
HasPTSRule ((Dom Type, Abs Sort) -> Constraint)
-> ReduceM (Dom Type, Abs Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Sort) -> ReduceM (Dom Type, Abs Sort)
forall t. Reduce t => t -> ReduceM t
reduce' (Dom Type
a,Abs Sort
b)
  reduce' (UnquoteTactic Term
t Term
h Type
g) = Term -> Term -> Type -> Constraint
UnquoteTactic (Term -> Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
t ReduceM (Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
h ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
g
  reduce' (CheckLockedVars Term
a Type
b Arg Term
c Type
d) =
    Term -> Type -> Arg Term -> Type -> Constraint
CheckLockedVars (Term -> Type -> Arg Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Arg Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
a ReduceM (Type -> Arg Term -> Type -> Constraint)
-> ReduceM Type -> ReduceM (Arg Term -> Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
b ReduceM (Arg Term -> Type -> Constraint)
-> ReduceM (Arg Term) -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Reduce t => t -> ReduceM t
reduce' Arg Term
c ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
d
  reduce' (CheckDataSort QName
q Sort
s)   = QName -> Sort -> Constraint
CheckDataSort QName
q (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Reduce t => t -> ReduceM t
reduce' Sort
s
  reduce' c :: Constraint
c@CheckMetaInst{}     = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  reduce' (CheckType Type
t)         = Type -> Constraint
CheckType (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
t
  reduce' (UsableAtModality WhyCheckModality
cc Maybe Sort
ms Modality
mod Term
t) = (Maybe Sort -> Modality -> Term -> Constraint)
-> Modality -> Maybe Sort -> Term -> Constraint
forall a b c. (a -> b -> c) -> b -> a -> c
flip (WhyCheckModality -> Maybe Sort -> Modality -> Term -> Constraint
UsableAtModality WhyCheckModality
cc) Modality
mod (Maybe Sort -> Term -> Constraint)
-> ReduceM (Maybe Sort) -> ReduceM (Term -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Sort -> ReduceM (Maybe Sort)
forall t. Reduce t => t -> ReduceM t
reduce' Maybe Sort
ms ReduceM (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
t

instance Reduce CompareAs where
  reduce' :: CompareAs -> ReduceM CompareAs
reduce' (AsTermsOf Type
a) = Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> ReduceM Type -> ReduceM CompareAs
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
a
  reduce' CompareAs
AsSizes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsSizes
  reduce' CompareAs
AsTypes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsTypes

instance Reduce e => Reduce (Map k e) where
  reduce' :: Map k e -> ReduceM (Map k e)
reduce' = (e -> ReduceM e) -> Map k e -> ReduceM (Map k e)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map k a -> f (Map k b)
traverse e -> ReduceM e
forall t. Reduce t => t -> ReduceM t
reduce'

instance Reduce Candidate where
  reduce' :: Candidate -> ReduceM Candidate
reduce' (Candidate CandidateKind
q Term
u Type
t Bool
ov) = CandidateKind -> Term -> Type -> Bool -> Candidate
Candidate CandidateKind
q (Term -> Type -> Bool -> Candidate)
-> ReduceM Term -> ReduceM (Type -> Bool -> Candidate)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
u ReduceM (Type -> Bool -> Candidate)
-> ReduceM Type -> ReduceM (Bool -> Candidate)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
t ReduceM (Bool -> Candidate) -> ReduceM Bool -> ReduceM Candidate
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
ov

instance Reduce EqualityView where
  reduce' :: EqualityView -> ReduceM EqualityView
reduce' (OtherType Type
t)            = Type -> EqualityView
OtherType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
t
  reduce' (IdiomType Type
t)            = Type -> EqualityView
IdiomType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Reduce t => t -> ReduceM t
reduce' Type
t
  reduce' (EqualityType Sort
s QName
eq [Arg Term]
l Arg Term
t Arg Term
a Arg Term
b) = Sort
-> QName
-> [Arg Term]
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
EqualityType
    (Sort
 -> QName
 -> [Arg Term]
 -> Arg Term
 -> Arg Term
 -> Arg Term
 -> EqualityView)
-> ReduceM Sort
-> ReduceM
     (QName
      -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Reduce t => t -> ReduceM t
reduce' Sort
s
    ReduceM
  (QName
   -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM QName
-> ReduceM
     ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> QName -> ReduceM QName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return QName
eq
    ReduceM
  ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM [Arg Term]
-> ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Arg Term -> ReduceM (Arg Term))
-> [Arg Term] -> ReduceM [Arg Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Arg Term -> ReduceM (Arg Term)
forall t. Reduce t => t -> ReduceM t
reduce' [Arg Term]
l
    ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term)
-> ReduceM (Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Reduce t => t -> ReduceM t
reduce' Arg Term
t
    ReduceM (Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM (Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Reduce t => t -> ReduceM t
reduce' Arg Term
a
    ReduceM (Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM EqualityView
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Reduce t => t -> ReduceM t
reduce' Arg Term
b

instance Reduce t => Reduce (IPBoundary' t) where
  reduce' :: IPBoundary' t -> ReduceM (IPBoundary' t)
reduce' = (t -> ReduceM t) -> IPBoundary' t -> ReduceM (IPBoundary' t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> IPBoundary' a -> f (IPBoundary' b)
traverse t -> ReduceM t
forall t. Reduce t => t -> ReduceM t
reduce'
  reduceB' :: IPBoundary' t -> ReduceM (Blocked (IPBoundary' t))
reduceB' = (IPBoundary' (Blocked' Term t) -> Blocked (IPBoundary' t))
-> ReduceM (IPBoundary' (Blocked' Term t))
-> ReduceM (Blocked (IPBoundary' t))
forall a b. (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap IPBoundary' (Blocked' Term t) -> Blocked (IPBoundary' t)
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a.
Applicative f =>
IPBoundary' (f a) -> f (IPBoundary' a)
sequenceA (ReduceM (IPBoundary' (Blocked' Term t))
 -> ReduceM (Blocked (IPBoundary' t)))
-> (IPBoundary' t -> ReduceM (IPBoundary' (Blocked' Term t)))
-> IPBoundary' t
-> ReduceM (Blocked (IPBoundary' t))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (t -> ReduceM (Blocked' Term t))
-> IPBoundary' t -> ReduceM (IPBoundary' (Blocked' Term t))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> IPBoundary' a -> f (IPBoundary' b)
traverse t -> ReduceM (Blocked' Term t)
forall t. Reduce t => t -> ReduceM (Blocked t)
reduceB'

---------------------------------------------------------------------------
-- * Simplification
---------------------------------------------------------------------------

-- | Only unfold definitions if this leads to simplification
--   which means that a constructor/literal pattern is matched.
--   We include reduction of IApply patterns, as `p i0` is akin to
--   matcing on the `i0` constructor of interval.
class Simplify t where
  simplify' :: t -> ReduceM t

  default simplify' :: (t ~ f a, Traversable f, Simplify a) => t -> ReduceM t
  simplify' = (a -> ReduceM a) -> f a -> ReduceM (f a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse a -> ReduceM a
forall t. Simplify t => t -> ReduceM t
simplify'

-- boring instances:

instance Simplify t => Simplify [t]
instance Simplify t => Simplify (Map k t)
instance Simplify t => Simplify (Maybe t)
instance Simplify t => Simplify (Strict.Maybe t)

instance Simplify t => Simplify (Arg t)
instance Simplify t => Simplify (Elim' t)
instance Simplify t => Simplify (Named name t)
instance Simplify t => Simplify (IPBoundary' t)

instance (Simplify a, Simplify b) => Simplify (a,b) where
    simplify' :: (a, b) -> ReduceM (a, b)
simplify' (a
x,b
y) = (,) (a -> b -> (a, b)) -> ReduceM a -> ReduceM (b -> (a, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Simplify t => t -> ReduceM t
simplify' a
x ReduceM (b -> (a, b)) -> ReduceM b -> ReduceM (a, b)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. Simplify t => t -> ReduceM t
simplify' b
y

instance (Simplify a, Simplify b, Simplify c) => Simplify (a,b,c) where
    simplify' :: (a, b, c) -> ReduceM (a, b, c)
simplify' (a
x,b
y,c
z) =
        do  (a
x,(b
y,c
z)) <- (a, (b, c)) -> ReduceM (a, (b, c))
forall t. Simplify t => t -> ReduceM t
simplify' (a
x,(b
y,c
z))
            (a, b, c) -> ReduceM (a, b, c)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x,b
y,c
z)

instance Simplify Bool where
  simplify' :: Bool -> ReduceM Bool
simplify' = Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

-- interesting instances:

instance Simplify Term where
  simplify' :: Term -> ReduceM Term
simplify' Term
v = do
    Term
v <- Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' Term
v
    let iapp :: Elims -> ReduceM Term -> ReduceM Term
iapp Elims
es ReduceM Term
m = Blocked' Term Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked' Term Term -> Term)
-> ReduceM (Blocked' Term Term) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Term -> ReduceM (Blocked' Term Term))
-> ReduceM (Blocked' Term Term)
-> Elims
-> ReduceM (Blocked' Term Term)
reduceIApply' ((Term -> Blocked' Term Term)
-> ReduceM Term -> ReduceM (Blocked' Term Term)
forall a b. (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked (ReduceM Term -> ReduceM (Blocked' Term Term))
-> (Term -> ReduceM Term) -> Term -> ReduceM (Blocked' Term Term)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify') (Term -> Blocked' Term Term
forall a t. a -> Blocked' t a
notBlocked (Term -> Blocked' Term Term)
-> ReduceM Term -> ReduceM (Blocked' Term Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReduceM Term
m) Elims
es
    case Term
v of
      Def QName
f Elims
vs   -> Elims -> ReduceM Term -> ReduceM Term
iapp Elims
vs (ReduceM Term -> ReduceM Term) -> ReduceM Term -> ReduceM Term
forall a b. (a -> b) -> a -> b
$ do
        let keepGoing :: a -> a -> m (a, Blocked' t a)
keepGoing a
simp a
v = (a, Blocked' t a) -> m (a, Blocked' t a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
simp, a -> Blocked' t a
forall a t. a -> Blocked' t a
notBlocked a
v)
        (Simplification
simpl, Blocked' Term Term
v) <- (Simplification
 -> Term -> ReduceM (Simplification, Blocked' Term Term))
-> Term
-> QName
-> Elims
-> ReduceM (Simplification, Blocked' Term Term)
unfoldDefinition' Simplification
-> Term -> ReduceM (Simplification, Blocked' Term Term)
forall {m :: * -> *} {a} {a} {t}.
Monad m =>
a -> a -> m (a, Blocked' t a)
keepGoing (QName -> Elims -> Term
Def QName
f []) QName
f Elims
vs
        Bool -> ReduceM () -> ReduceM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Simplification
simpl Simplification -> Simplification -> Bool
forall a. Eq a => a -> a -> Bool
== Simplification
YesSimplification) (ReduceM () -> ReduceM ()) -> ReduceM () -> ReduceM ()
forall a b. (a -> b) -> a -> b
$
          [Char] -> Int -> TCMT IO Doc -> ReduceM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.simplify'" Int
90 (TCMT IO Doc -> ReduceM ()) -> TCMT IO Doc -> ReduceM ()
forall a b. (a -> b) -> a -> b
$
            QName -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty QName
f TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char]
"simplify': unfolding definition returns " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Simplification -> [Char]
forall a. Show a => a -> [Char]
show Simplification
simpl) TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Blocked' Term Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked' Term Term
v)
        case Simplification
simpl of
          Simplification
YesSimplification -> Blocked' Term Term -> ReduceM Term
forall t. Simplify t => Blocked t -> ReduceM t
simplifyBlocked' Blocked' Term Term
v -- Dangerous, but if @simpl@ then @v /= Def f vs@
          Simplification
NoSimplification  -> QName -> Elims -> Term
Def QName
f (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
vs
      MetaV MetaId
x Elims
vs -> Elims -> ReduceM Term -> ReduceM Term
iapp Elims
vs (ReduceM Term -> ReduceM Term) -> ReduceM Term -> ReduceM Term
forall a b. (a -> b) -> a -> b
$ MetaId -> Elims -> Term
MetaV MetaId
x  (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
vs
      Con ConHead
c ConInfo
ci Elims
vs-> Elims -> ReduceM Term -> ReduceM Term
iapp Elims
vs (ReduceM Term -> ReduceM Term) -> ReduceM Term -> ReduceM Term
forall a b. (a -> b) -> a -> b
$ ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
vs
      Sort Sort
s     -> Sort -> Term
Sort     (Sort -> Term) -> ReduceM Sort -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s
      Level Level
l    -> Level -> Term
levelTm  (Level -> Term) -> ReduceM Level -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. Simplify t => t -> ReduceM t
simplify' Level
l
      Pi Dom Type
a Abs Type
b     -> Dom Type -> Abs Type -> Term
Pi       (Dom Type -> Abs Type -> Term)
-> ReduceM (Dom Type) -> ReduceM (Abs Type -> Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type -> ReduceM (Dom Type)
forall t. Simplify t => t -> ReduceM t
simplify' Dom Type
a ReduceM (Abs Type -> Term) -> ReduceM (Abs Type) -> ReduceM Term
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs Type -> ReduceM (Abs Type)
forall t. Simplify t => t -> ReduceM t
simplify' Abs Type
b
      Lit Literal
l      -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
      Var Int
i Elims
vs   -> Elims -> ReduceM Term -> ReduceM Term
iapp Elims
vs (ReduceM Term -> ReduceM Term) -> ReduceM Term -> ReduceM Term
forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Term
Var Int
i    (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
vs
      Lam ArgInfo
h Abs Term
v    -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
h    (Abs Term -> Term) -> ReduceM (Abs Term) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Term -> ReduceM (Abs Term)
forall t. Simplify t => t -> ReduceM t
simplify' Abs Term
v
      DontCare Term
v -> Term -> Term
dontCare (Term -> Term) -> ReduceM Term -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
v
      Dummy{}    -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v

simplifyBlocked' :: Simplify t => Blocked t -> ReduceM t
simplifyBlocked' :: forall t. Simplify t => Blocked t -> ReduceM t
simplifyBlocked' (Blocked Blocker
_ t
t) = t -> ReduceM t
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return t
t
simplifyBlocked' (NotBlocked NotBlocked
_ t
t) = t -> ReduceM t
forall t. Simplify t => t -> ReduceM t
simplify' t
t  -- Andrea(s), 2014-12-05 OK?

instance Simplify t => Simplify (Type' t) where
    simplify' :: Type' t -> ReduceM (Type' t)
simplify' (El Sort
s t
t) = Sort -> t -> Type' t
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> t -> Type' t) -> ReduceM Sort -> ReduceM (t -> Type' t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s ReduceM (t -> Type' t) -> ReduceM t -> ReduceM (Type' t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. Simplify t => t -> ReduceM t
simplify' t
t

instance Simplify Sort where
    simplify' :: Sort -> ReduceM Sort
simplify' Sort
s = do
      case Sort
s of
        PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Dom' Term Term -> Sort -> Abs Sort -> Sort
piSort (Dom' Term Term -> Sort -> Abs Sort -> Sort)
-> ReduceM (Dom' Term Term) -> ReduceM (Sort -> Abs Sort -> Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term Term -> ReduceM (Dom' Term Term)
forall t. Simplify t => t -> ReduceM t
simplify' Dom' Term Term
a ReduceM (Sort -> Abs Sort -> Sort)
-> ReduceM Sort -> ReduceM (Abs Sort -> Sort)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s1 ReduceM (Abs Sort -> Sort) -> ReduceM (Abs Sort) -> ReduceM Sort
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs Sort -> ReduceM (Abs Sort)
forall t. Simplify t => t -> ReduceM t
simplify' Abs Sort
s2
        FunSort Sort
s1 Sort
s2 -> Sort -> Sort -> Sort
funSort (Sort -> Sort -> Sort) -> ReduceM Sort -> ReduceM (Sort -> Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s1 ReduceM (Sort -> Sort) -> ReduceM Sort -> ReduceM Sort
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s2
        UnivSort Sort
s -> Sort -> Sort
univSort (Sort -> Sort) -> ReduceM Sort -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s
        Univ Univ
u Level
s   -> Univ -> Level -> Sort
forall t. Univ -> Level' t -> Sort' t
Univ Univ
u (Level -> Sort) -> ReduceM Level -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. Simplify t => t -> ReduceM t
simplify' Level
s
        Inf Univ
_ Integer
_    -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        Sort
SizeUniv   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        Sort
LockUniv   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        Sort
LevelUniv  -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        Sort
IntervalUniv -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        MetaS MetaId
x Elims
es -> MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x (Elims -> Sort) -> ReduceM Elims -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
es
        DefS QName
d Elims
es  -> QName -> Elims -> Sort
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d (Elims -> Sort) -> ReduceM Elims -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
es
        DummyS{}   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s

instance Simplify Level where
  simplify' :: Level -> ReduceM Level
simplify' (Max Integer
m [PlusLevel]
as) = Integer -> [PlusLevel] -> Level
levelMax Integer
m ([PlusLevel] -> Level) -> ReduceM [PlusLevel] -> ReduceM Level
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [PlusLevel] -> ReduceM [PlusLevel]
forall t. Simplify t => t -> ReduceM t
simplify' [PlusLevel]
as

instance Simplify PlusLevel where
  simplify' :: PlusLevel -> ReduceM PlusLevel
simplify' (Plus Integer
n Term
l) = Integer -> Term -> PlusLevel
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n (Term -> PlusLevel) -> ReduceM Term -> ReduceM PlusLevel
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
l

instance (Subst a, Simplify a) => Simplify (Abs a) where
    simplify' :: Abs a -> ReduceM (Abs a)
simplify' a :: Abs a
a@(Abs [Char]
x a
_) = [Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
Abs [Char]
x (a -> Abs a) -> ReduceM a -> ReduceM (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs a -> (a -> ReduceM a) -> ReduceM a
forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Abs a -> (a -> m b) -> m b
underAbstraction_ Abs a
a a -> ReduceM a
forall t. Simplify t => t -> ReduceM t
simplify'
    simplify' (NoAbs [Char]
x a
v) = [Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
NoAbs [Char]
x (a -> Abs a) -> ReduceM a -> ReduceM (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Simplify t => t -> ReduceM t
simplify' a
v

instance Simplify t => Simplify (Dom t) where
    simplify' :: Dom t -> ReduceM (Dom t)
simplify' = (t -> ReduceM t) -> Dom t -> ReduceM (Dom t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse t -> ReduceM t
forall t. Simplify t => t -> ReduceM t
simplify'

instance Simplify a => Simplify (Closure a) where
    simplify' :: Closure a -> ReduceM (Closure a)
simplify' Closure a
cl = do
        a
x <- Closure a -> (a -> ReduceM a) -> ReduceM a
forall c a b. LensClosure c a => c -> (a -> ReduceM b) -> ReduceM b
enterClosure Closure a
cl a -> ReduceM a
forall t. Simplify t => t -> ReduceM t
simplify'
        Closure a -> ReduceM (Closure a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Closure a -> ReduceM (Closure a))
-> Closure a -> ReduceM (Closure a)
forall a b. (a -> b) -> a -> b
$ Closure a
cl { clValue = x }

instance (Subst a, Simplify a) => Simplify (Tele a) where
  simplify' :: Tele a -> ReduceM (Tele a)
simplify' Tele a
EmptyTel        = Tele a -> ReduceM (Tele a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Tele a
forall a. Tele a
EmptyTel
  simplify' (ExtendTel a
a Abs (Tele a)
b) = (a -> Abs (Tele a) -> Tele a) -> (a, Abs (Tele a)) -> Tele a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel ((a, Abs (Tele a)) -> Tele a)
-> ReduceM (a, Abs (Tele a)) -> ReduceM (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a, Abs (Tele a)) -> ReduceM (a, Abs (Tele a))
forall t. Simplify t => t -> ReduceM t
simplify' (a
a, Abs (Tele a)
b)

instance Simplify ProblemConstraint where
  simplify' :: ProblemConstraint -> ReduceM ProblemConstraint
simplify' (PConstr Set ProblemId
pid Blocker
unblock Closure Constraint
c) = Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr Set ProblemId
pid Blocker
unblock (Closure Constraint -> ProblemConstraint)
-> ReduceM (Closure Constraint) -> ReduceM ProblemConstraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Closure Constraint -> ReduceM (Closure Constraint)
forall t. Simplify t => t -> ReduceM t
simplify' Closure Constraint
c

instance Simplify Constraint where
  simplify' :: Constraint -> ReduceM Constraint
simplify' (ValueCmp Comparison
cmp CompareAs
t Term
u Term
v) = do
    (CompareAs
t,Term
u,Term
v) <- (CompareAs, Term, Term) -> ReduceM (CompareAs, Term, Term)
forall t. Simplify t => t -> ReduceM t
simplify' (CompareAs
t,Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp CompareAs
t Term
u Term
v
  simplify' (ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v) = do
    ((Term
p,Type
t),Term
u,Term
v) <- ((Term, Type), Term, Term) -> ReduceM ((Term, Type), Term, Term)
forall t. Simplify t => t -> ReduceM t
simplify' ((Term
p,Type
t),Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp (Type -> CompareAs
AsTermsOf Type
t) Term
u Term
v
  simplify' (ElimCmp [Polarity]
cmp [IsForced]
fs Type
t Term
v Elims
as Elims
bs) =
    [Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
cmp [IsForced]
fs (Type -> Term -> Elims -> Elims -> Constraint)
-> ReduceM Type -> ReduceM (Term -> Elims -> Elims -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
t ReduceM (Term -> Elims -> Elims -> Constraint)
-> ReduceM Term -> ReduceM (Elims -> Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
v ReduceM (Elims -> Elims -> Constraint)
-> ReduceM Elims -> ReduceM (Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
as ReduceM (Elims -> Constraint)
-> ReduceM Elims -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
bs
  simplify' (LevelCmp Comparison
cmp Level
u Level
v)    = (Level -> Level -> Constraint) -> (Level, Level) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
cmp) ((Level, Level) -> Constraint)
-> ReduceM (Level, Level) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Level, Level) -> ReduceM (Level, Level)
forall t. Simplify t => t -> ReduceM t
simplify' (Level
u,Level
v)
  simplify' (SortCmp Comparison
cmp Sort
a Sort
b)     = (Sort -> Sort -> Constraint) -> (Sort, Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
cmp) ((Sort, Sort) -> Constraint)
-> ReduceM (Sort, Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Sort, Sort) -> ReduceM (Sort, Sort)
forall t. Simplify t => t -> ReduceM t
simplify' (Sort
a,Sort
b)
  simplify' (UnBlock MetaId
m)           = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ MetaId -> Constraint
UnBlock MetaId
m
  simplify' (FindInstance MetaId
m Maybe [Candidate]
cs)   = MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
m (Maybe [Candidate] -> Constraint)
-> ReduceM (Maybe [Candidate]) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([Candidate] -> ReduceM [Candidate])
-> Maybe [Candidate] -> ReduceM (Maybe [Candidate])
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Maybe a -> m (Maybe b)
mapM [Candidate] -> ReduceM [Candidate]
forall t. Simplify t => t -> ReduceM t
simplify' Maybe [Candidate]
cs
  simplify' (IsEmpty Range
r Type
t)         = Range -> Type -> Constraint
IsEmpty Range
r (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
t
  simplify' (CheckSizeLtSat Term
t)    = Term -> Constraint
CheckSizeLtSat (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
t
  simplify' c :: Constraint
c@CheckFunDef{}       = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  simplify' (HasBiggerSort Sort
a)     = Sort -> Constraint
HasBiggerSort (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
a
  simplify' (HasPTSRule Dom Type
a Abs Sort
b)      = (Dom Type -> Abs Sort -> Constraint)
-> (Dom Type, Abs Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Sort -> Constraint
HasPTSRule ((Dom Type, Abs Sort) -> Constraint)
-> ReduceM (Dom Type, Abs Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Sort) -> ReduceM (Dom Type, Abs Sort)
forall t. Simplify t => t -> ReduceM t
simplify' (Dom Type
a,Abs Sort
b)
  simplify' (UnquoteTactic Term
t Term
h Type
g) = Term -> Term -> Type -> Constraint
UnquoteTactic (Term -> Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
t ReduceM (Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
h ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
g
  simplify' (CheckLockedVars Term
a Type
b Arg Term
c Type
d) =
    Term -> Type -> Arg Term -> Type -> Constraint
CheckLockedVars (Term -> Type -> Arg Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Arg Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
a ReduceM (Type -> Arg Term -> Type -> Constraint)
-> ReduceM Type -> ReduceM (Arg Term -> Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
b ReduceM (Arg Term -> Type -> Constraint)
-> ReduceM (Arg Term) -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Simplify t => t -> ReduceM t
simplify' Arg Term
c ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
d
  simplify' (CheckDataSort QName
q Sort
s)   = QName -> Sort -> Constraint
CheckDataSort QName
q (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s
  simplify' c :: Constraint
c@CheckMetaInst{}     = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  simplify' (CheckType Type
t)         = Type -> Constraint
CheckType (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
t
  simplify' (UsableAtModality WhyCheckModality
cc Maybe Sort
ms Modality
mod Term
t) = (Maybe Sort -> Modality -> Term -> Constraint)
-> Modality -> Maybe Sort -> Term -> Constraint
forall a b c. (a -> b -> c) -> b -> a -> c
flip (WhyCheckModality -> Maybe Sort -> Modality -> Term -> Constraint
UsableAtModality WhyCheckModality
cc) Modality
mod (Maybe Sort -> Term -> Constraint)
-> ReduceM (Maybe Sort) -> ReduceM (Term -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Sort -> ReduceM (Maybe Sort)
forall t. Simplify t => t -> ReduceM t
simplify' Maybe Sort
ms ReduceM (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
t

instance Simplify CompareAs where
  simplify' :: CompareAs -> ReduceM CompareAs
simplify' (AsTermsOf Type
a) = Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> ReduceM Type -> ReduceM CompareAs
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
a
  simplify' CompareAs
AsSizes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsSizes
  simplify' CompareAs
AsTypes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsTypes

-- UNUSED
-- instance Simplify ConPatternInfo where
--   simplify' (ConPatternInfo mr mt) = ConPatternInfo mr <$> simplify' mt

-- UNUSED
-- instance Simplify Pattern where
--   simplify' p = case p of
--     VarP _       -> return p
--     LitP _       -> return p
--     ConP c ci ps -> ConP c <$> simplify' ci <*> simplify' ps
--     DotP v       -> DotP <$> simplify' v
--     ProjP _      -> return p

instance Simplify DisplayForm where
  simplify' :: DisplayForm -> ReduceM DisplayForm
simplify' (Display Int
n Elims
ps DisplayTerm
v) = Int -> Elims -> DisplayTerm -> DisplayForm
Display Int
n (Elims -> DisplayTerm -> DisplayForm)
-> ReduceM Elims -> ReduceM (DisplayTerm -> DisplayForm)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Simplify t => t -> ReduceM t
simplify' Elims
ps ReduceM (DisplayTerm -> DisplayForm)
-> ReduceM DisplayTerm -> ReduceM DisplayForm
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> DisplayTerm -> ReduceM DisplayTerm
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return DisplayTerm
v

instance Simplify Candidate where
  simplify' :: Candidate -> ReduceM Candidate
simplify' (Candidate CandidateKind
q Term
u Type
t Bool
ov) = CandidateKind -> Term -> Type -> Bool -> Candidate
Candidate CandidateKind
q (Term -> Type -> Bool -> Candidate)
-> ReduceM Term -> ReduceM (Type -> Bool -> Candidate)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Simplify t => t -> ReduceM t
simplify' Term
u ReduceM (Type -> Bool -> Candidate)
-> ReduceM Type -> ReduceM (Bool -> Candidate)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
t ReduceM (Bool -> Candidate) -> ReduceM Bool -> ReduceM Candidate
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
ov

instance Simplify EqualityView where
  simplify' :: EqualityView -> ReduceM EqualityView
simplify' (OtherType Type
t)            = Type -> EqualityView
OtherType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
t
  simplify' (IdiomType Type
t)            = Type -> EqualityView
IdiomType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Simplify t => t -> ReduceM t
simplify' Type
t
  simplify' (EqualityType Sort
s QName
eq [Arg Term]
l Arg Term
t Arg Term
a Arg Term
b) = Sort
-> QName
-> [Arg Term]
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
EqualityType
    (Sort
 -> QName
 -> [Arg Term]
 -> Arg Term
 -> Arg Term
 -> Arg Term
 -> EqualityView)
-> ReduceM Sort
-> ReduceM
     (QName
      -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Simplify t => t -> ReduceM t
simplify' Sort
s
    ReduceM
  (QName
   -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM QName
-> ReduceM
     ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> QName -> ReduceM QName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return QName
eq
    ReduceM
  ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM [Arg Term]
-> ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Arg Term -> ReduceM (Arg Term))
-> [Arg Term] -> ReduceM [Arg Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Arg Term -> ReduceM (Arg Term)
forall t. Simplify t => t -> ReduceM t
simplify' [Arg Term]
l
    ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term)
-> ReduceM (Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Simplify t => t -> ReduceM t
simplify' Arg Term
t
    ReduceM (Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM (Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Simplify t => t -> ReduceM t
simplify' Arg Term
a
    ReduceM (Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM EqualityView
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Simplify t => t -> ReduceM t
simplify' Arg Term
b

---------------------------------------------------------------------------
-- * Normalisation
---------------------------------------------------------------------------

class Normalise t where
  normalise' :: t -> ReduceM t

  default normalise' :: (t ~ f a, Traversable f, Normalise a) => t -> ReduceM t
  normalise' = (a -> ReduceM a) -> f a -> ReduceM (f a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise'

-- boring instances:

instance Normalise t => Normalise [t]
instance Normalise t => Normalise (Map k t)
instance Normalise t => Normalise (Maybe t)
instance Normalise t => Normalise (Strict.Maybe t)

-- Arg not included since we do not normalize irrelevant subterms
-- Elim' not included since it contains Arg
instance Normalise t => Normalise (Named name t)
instance Normalise t => Normalise (IPBoundary' t)
instance Normalise t => Normalise (WithHiding t)

instance (Normalise a, Normalise b) => Normalise (a,b) where
    normalise' :: (a, b) -> ReduceM (a, b)
normalise' (a
x,b
y) = (,) (a -> b -> (a, b)) -> ReduceM a -> ReduceM (b -> (a, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise' a
x ReduceM (b -> (a, b)) -> ReduceM b -> ReduceM (a, b)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. Normalise t => t -> ReduceM t
normalise' b
y

instance (Normalise a, Normalise b, Normalise c) => Normalise (a,b,c) where
    normalise' :: (a, b, c) -> ReduceM (a, b, c)
normalise' (a
x,b
y,c
z) =
        do  (a
x,(b
y,c
z)) <- (a, (b, c)) -> ReduceM (a, (b, c))
forall t. Normalise t => t -> ReduceM t
normalise' (a
x,(b
y,c
z))
            (a, b, c) -> ReduceM (a, b, c)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x,b
y,c
z)

instance Normalise Bool where
  normalise' :: Bool -> ReduceM Bool
normalise' = Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance Normalise Char where
  normalise' :: Char -> ReduceM Char
normalise' = Char -> ReduceM Char
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance Normalise Int where
  normalise' :: Int -> ReduceM Int
normalise' = Int -> ReduceM Int
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance Normalise DBPatVar where
  normalise' :: DBPatVar -> ReduceM DBPatVar
normalise' = DBPatVar -> ReduceM DBPatVar
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

-- interesting instances:

instance Normalise Sort where
    normalise' :: Sort -> ReduceM Sort
normalise' Sort
s = do
      Sort
s <- Sort -> ReduceM Sort
forall t. Reduce t => t -> ReduceM t
reduce' Sort
s
      case Sort
s of
        PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Dom' Term Term -> Sort -> Abs Sort -> Sort
piSort (Dom' Term Term -> Sort -> Abs Sort -> Sort)
-> ReduceM (Dom' Term Term) -> ReduceM (Sort -> Abs Sort -> Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term Term -> ReduceM (Dom' Term Term)
forall t. Normalise t => t -> ReduceM t
normalise' Dom' Term Term
a ReduceM (Sort -> Abs Sort -> Sort)
-> ReduceM Sort -> ReduceM (Abs Sort -> Sort)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s1 ReduceM (Abs Sort -> Sort) -> ReduceM (Abs Sort) -> ReduceM Sort
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs Sort -> ReduceM (Abs Sort)
forall t. Normalise t => t -> ReduceM t
normalise' Abs Sort
s2
        FunSort Sort
s1 Sort
s2 -> Sort -> Sort -> Sort
funSort (Sort -> Sort -> Sort) -> ReduceM Sort -> ReduceM (Sort -> Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s1 ReduceM (Sort -> Sort) -> ReduceM Sort -> ReduceM Sort
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s2
        UnivSort Sort
s -> Sort -> Sort
univSort (Sort -> Sort) -> ReduceM Sort -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s
        Univ Univ
u Level
s   -> Univ -> Level -> Sort
forall t. Univ -> Level' t -> Sort' t
Univ Univ
u (Level -> Sort) -> ReduceM Level -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. Normalise t => t -> ReduceM t
normalise' Level
s
        Inf Univ
_ Integer
_    -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        Sort
SizeUniv   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
forall t. Sort' t
SizeUniv
        Sort
LockUniv   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
forall t. Sort' t
LockUniv
        Sort
LevelUniv  -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
forall t. Sort' t
LevelUniv
        Sort
IntervalUniv -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
forall t. Sort' t
IntervalUniv
        MetaS MetaId
x Elims
es -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        DefS QName
d Elims
es  -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
        DummyS{}   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s

instance Normalise t => Normalise (Type' t) where
    normalise' :: Type' t -> ReduceM (Type' t)
normalise' (El Sort
s t
t) = Sort -> t -> Type' t
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> t -> Type' t) -> ReduceM Sort -> ReduceM (t -> Type' t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s ReduceM (t -> Type' t) -> ReduceM t -> ReduceM (Type' t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. Normalise t => t -> ReduceM t
normalise' t
t

instance Normalise Term where
    normalise' :: Term -> ReduceM Term
normalise' Term
v = ReduceM Bool -> ReduceM Term -> ReduceM Term -> ReduceM Term
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM ReduceM Bool
shouldTryFastReduce (Term -> ReduceM Term
fastNormalise Term
v) (Term -> ReduceM Term
slowNormaliseArgs (Term -> ReduceM Term) -> ReduceM Term -> ReduceM Term
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
v)

slowNormaliseArgs :: Term -> ReduceM Term
slowNormaliseArgs :: Term -> ReduceM Term
slowNormaliseArgs = \case
  Var Int
n Elims
vs    -> Int -> Elims -> Term
Var Int
n      (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
vs
  Con ConHead
c ConInfo
ci Elims
vs -> ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci   (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
vs
  Def QName
f Elims
vs    -> QName -> Elims -> Term
Def QName
f      (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
vs
  MetaV MetaId
x Elims
vs  -> MetaId -> Elims -> Term
MetaV MetaId
x    (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
vs
  v :: Term
v@(Lit Literal
_)   -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
  Level Level
l     -> Level -> Term
levelTm    (Level -> Term) -> ReduceM Level -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. Normalise t => t -> ReduceM t
normalise' Level
l
  Lam ArgInfo
h Abs Term
b     -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
h      (Abs Term -> Term) -> ReduceM (Abs Term) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Term -> ReduceM (Abs Term)
forall t. Normalise t => t -> ReduceM t
normalise' Abs Term
b
  Sort Sort
s      -> Sort -> Term
Sort       (Sort -> Term) -> ReduceM Sort -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s
  Pi Dom Type
a Abs Type
b      -> (Dom Type -> Abs Type -> Term) -> (Dom Type, Abs Type) -> Term
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Type -> Term
Pi ((Dom Type, Abs Type) -> Term)
-> ReduceM (Dom Type, Abs Type) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Type) -> ReduceM (Dom Type, Abs Type)
forall t. Normalise t => t -> ReduceM t
normalise' (Dom Type
a, Abs Type
b)
  v :: Term
v@DontCare{}-> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
  v :: Term
v@Dummy{}   -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v

-- Note: not the default instance for Elim' since we do something special for Arg.
instance Normalise t => Normalise (Elim' t) where
  normalise' :: Elim' t -> ReduceM (Elim' t)
normalise' (Apply Arg t
v) = Arg t -> Elim' t
forall a. Arg a -> Elim' a
Apply (Arg t -> Elim' t) -> ReduceM (Arg t) -> ReduceM (Elim' t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg t -> ReduceM (Arg t)
forall t. Normalise t => t -> ReduceM t
normalise' Arg t
v  -- invokes Normalise Arg here
  normalise' (Proj ProjOrigin
o QName
f)= Elim' t -> ReduceM (Elim' t)
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Elim' t -> ReduceM (Elim' t)) -> Elim' t -> ReduceM (Elim' t)
forall a b. (a -> b) -> a -> b
$ ProjOrigin -> QName -> Elim' t
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
o QName
f
  normalise' (IApply t
x t
y t
v) = t -> t -> t -> Elim' t
forall a. a -> a -> a -> Elim' a
IApply (t -> t -> t -> Elim' t)
-> ReduceM t -> ReduceM (t -> t -> Elim' t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> t -> ReduceM t
forall t. Normalise t => t -> ReduceM t
normalise' t
x ReduceM (t -> t -> Elim' t) -> ReduceM t -> ReduceM (t -> Elim' t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. Normalise t => t -> ReduceM t
normalise' t
y ReduceM (t -> Elim' t) -> ReduceM t -> ReduceM (Elim' t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. Normalise t => t -> ReduceM t
normalise' t
v

instance Normalise Level where
  normalise' :: Level -> ReduceM Level
normalise' (Max Integer
m [PlusLevel]
as) = Integer -> [PlusLevel] -> Level
levelMax Integer
m ([PlusLevel] -> Level) -> ReduceM [PlusLevel] -> ReduceM Level
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [PlusLevel] -> ReduceM [PlusLevel]
forall t. Normalise t => t -> ReduceM t
normalise' [PlusLevel]
as

instance Normalise PlusLevel where
  normalise' :: PlusLevel -> ReduceM PlusLevel
normalise' (Plus Integer
n Term
l) = Integer -> Term -> PlusLevel
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n (Term -> PlusLevel) -> ReduceM Term -> ReduceM PlusLevel
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
l

instance (Subst a, Normalise a) => Normalise (Abs a) where
    normalise' :: Abs a -> ReduceM (Abs a)
normalise' a :: Abs a
a@(Abs [Char]
x a
_) = [Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
Abs [Char]
x (a -> Abs a) -> ReduceM a -> ReduceM (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs a -> (a -> ReduceM a) -> ReduceM a
forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Abs a -> (a -> m b) -> m b
underAbstraction_ Abs a
a a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise'
    normalise' (NoAbs [Char]
x a
v) = [Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
NoAbs [Char]
x (a -> Abs a) -> ReduceM a -> ReduceM (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise' a
v

instance Normalise t => Normalise (Arg t) where
    normalise' :: Arg t -> ReduceM (Arg t)
normalise' Arg t
a
      | Arg t -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Arg t
a = Arg t -> ReduceM (Arg t)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Arg t
a -- Andreas, 2012-04-02: Do not normalize irrelevant terms!?
      | Bool
otherwise      = (t -> ReduceM t) -> Arg t -> ReduceM (Arg t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Arg a -> f (Arg b)
traverse t -> ReduceM t
forall t. Normalise t => t -> ReduceM t
normalise' Arg t
a

instance Normalise t => Normalise (Dom t) where
    normalise' :: Dom t -> ReduceM (Dom t)
normalise' = (t -> ReduceM t) -> Dom t -> ReduceM (Dom t)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse t -> ReduceM t
forall t. Normalise t => t -> ReduceM t
normalise'

instance Normalise a => Normalise (Closure a) where
    normalise' :: Closure a -> ReduceM (Closure a)
normalise' Closure a
cl = do
        a
x <- Closure a -> (a -> ReduceM a) -> ReduceM a
forall c a b. LensClosure c a => c -> (a -> ReduceM b) -> ReduceM b
enterClosure Closure a
cl a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise'
        Closure a -> ReduceM (Closure a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Closure a -> ReduceM (Closure a))
-> Closure a -> ReduceM (Closure a)
forall a b. (a -> b) -> a -> b
$ Closure a
cl { clValue = x }

instance (Subst a, Normalise a) => Normalise (Tele a) where
  normalise' :: Tele a -> ReduceM (Tele a)
normalise' Tele a
EmptyTel        = Tele a -> ReduceM (Tele a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Tele a
forall a. Tele a
EmptyTel
  normalise' (ExtendTel a
a Abs (Tele a)
b) = (a -> Abs (Tele a) -> Tele a) -> (a, Abs (Tele a)) -> Tele a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel ((a, Abs (Tele a)) -> Tele a)
-> ReduceM (a, Abs (Tele a)) -> ReduceM (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a, Abs (Tele a)) -> ReduceM (a, Abs (Tele a))
forall t. Normalise t => t -> ReduceM t
normalise' (a
a, Abs (Tele a)
b)

instance Normalise ProblemConstraint where
  normalise' :: ProblemConstraint -> ReduceM ProblemConstraint
normalise' (PConstr Set ProblemId
pid Blocker
unblock Closure Constraint
c) = Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr Set ProblemId
pid Blocker
unblock (Closure Constraint -> ProblemConstraint)
-> ReduceM (Closure Constraint) -> ReduceM ProblemConstraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Closure Constraint -> ReduceM (Closure Constraint)
forall t. Normalise t => t -> ReduceM t
normalise' Closure Constraint
c

instance Normalise Constraint where
  normalise' :: Constraint -> ReduceM Constraint
normalise' (ValueCmp Comparison
cmp CompareAs
t Term
u Term
v) = do
    (CompareAs
t,Term
u,Term
v) <- (CompareAs, Term, Term) -> ReduceM (CompareAs, Term, Term)
forall t. Normalise t => t -> ReduceM t
normalise' (CompareAs
t,Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp CompareAs
t Term
u Term
v
  normalise' (ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v) = do
    ((Term
p,Type
t),Term
u,Term
v) <- ((Term, Type), Term, Term) -> ReduceM ((Term, Type), Term, Term)
forall t. Normalise t => t -> ReduceM t
normalise' ((Term
p,Type
t),Term
u,Term
v)
    Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Type -> Term -> Term -> Constraint
ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v
  normalise' (ElimCmp [Polarity]
cmp [IsForced]
fs Type
t Term
v Elims
as Elims
bs) =
    [Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
cmp [IsForced]
fs (Type -> Term -> Elims -> Elims -> Constraint)
-> ReduceM Type -> ReduceM (Term -> Elims -> Elims -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
t ReduceM (Term -> Elims -> Elims -> Constraint)
-> ReduceM Term -> ReduceM (Elims -> Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
v ReduceM (Elims -> Elims -> Constraint)
-> ReduceM Elims -> ReduceM (Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
as ReduceM (Elims -> Constraint)
-> ReduceM Elims -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
bs
  normalise' (LevelCmp Comparison
cmp Level
u Level
v)    = (Level -> Level -> Constraint) -> (Level, Level) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
cmp) ((Level, Level) -> Constraint)
-> ReduceM (Level, Level) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Level, Level) -> ReduceM (Level, Level)
forall t. Normalise t => t -> ReduceM t
normalise' (Level
u,Level
v)
  normalise' (SortCmp Comparison
cmp Sort
a Sort
b)     = (Sort -> Sort -> Constraint) -> (Sort, Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
cmp) ((Sort, Sort) -> Constraint)
-> ReduceM (Sort, Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Sort, Sort) -> ReduceM (Sort, Sort)
forall t. Normalise t => t -> ReduceM t
normalise' (Sort
a,Sort
b)
  normalise' (UnBlock MetaId
m)           = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ MetaId -> Constraint
UnBlock MetaId
m
  normalise' (FindInstance MetaId
m Maybe [Candidate]
cs)   = MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
m (Maybe [Candidate] -> Constraint)
-> ReduceM (Maybe [Candidate]) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([Candidate] -> ReduceM [Candidate])
-> Maybe [Candidate] -> ReduceM (Maybe [Candidate])
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Maybe a -> m (Maybe b)
mapM [Candidate] -> ReduceM [Candidate]
forall t. Normalise t => t -> ReduceM t
normalise' Maybe [Candidate]
cs
  normalise' (IsEmpty Range
r Type
t)         = Range -> Type -> Constraint
IsEmpty Range
r (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
t
  normalise' (CheckSizeLtSat Term
t)    = Term -> Constraint
CheckSizeLtSat (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
t
  normalise' c :: Constraint
c@CheckFunDef{}       = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  normalise' (HasBiggerSort Sort
a)     = Sort -> Constraint
HasBiggerSort (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
a
  normalise' (HasPTSRule Dom Type
a Abs Sort
b)      = (Dom Type -> Abs Sort -> Constraint)
-> (Dom Type, Abs Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Sort -> Constraint
HasPTSRule ((Dom Type, Abs Sort) -> Constraint)
-> ReduceM (Dom Type, Abs Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Sort) -> ReduceM (Dom Type, Abs Sort)
forall t. Normalise t => t -> ReduceM t
normalise' (Dom Type
a,Abs Sort
b)
  normalise' (UnquoteTactic Term
t Term
h Type
g) = Term -> Term -> Type -> Constraint
UnquoteTactic (Term -> Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
t ReduceM (Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
h ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
g
  normalise' (CheckLockedVars Term
a Type
b Arg Term
c Type
d) =
    Term -> Type -> Arg Term -> Type -> Constraint
CheckLockedVars (Term -> Type -> Arg Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Arg Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
a ReduceM (Type -> Arg Term -> Type -> Constraint)
-> ReduceM Type -> ReduceM (Arg Term -> Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
b ReduceM (Arg Term -> Type -> Constraint)
-> ReduceM (Arg Term) -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Normalise t => t -> ReduceM t
normalise' Arg Term
c ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
d
  normalise' (CheckDataSort QName
q Sort
s)   = QName -> Sort -> Constraint
CheckDataSort QName
q (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s
  normalise' c :: Constraint
c@CheckMetaInst{}     = Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
  normalise' (CheckType Type
t)         = Type -> Constraint
CheckType (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
t
  normalise' (UsableAtModality WhyCheckModality
cc Maybe Sort
ms Modality
mod Term
t) = (Maybe Sort -> Modality -> Term -> Constraint)
-> Modality -> Maybe Sort -> Term -> Constraint
forall a b c. (a -> b -> c) -> b -> a -> c
flip (WhyCheckModality -> Maybe Sort -> Modality -> Term -> Constraint
UsableAtModality WhyCheckModality
cc) Modality
mod (Maybe Sort -> Term -> Constraint)
-> ReduceM (Maybe Sort) -> ReduceM (Term -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Sort -> ReduceM (Maybe Sort)
forall t. Normalise t => t -> ReduceM t
normalise' Maybe Sort
ms ReduceM (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
t

instance Normalise CompareAs where
  normalise' :: CompareAs -> ReduceM CompareAs
normalise' (AsTermsOf Type
a) = Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> ReduceM Type -> ReduceM CompareAs
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
a
  normalise' CompareAs
AsSizes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsSizes
  normalise' CompareAs
AsTypes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsTypes

instance Normalise ConPatternInfo where
  normalise' :: ConPatternInfo -> ReduceM ConPatternInfo
normalise' ConPatternInfo
i = Maybe (Arg Type) -> ReduceM (Maybe (Arg Type))
forall t. Normalise t => t -> ReduceM t
normalise' (ConPatternInfo -> Maybe (Arg Type)
conPType ConPatternInfo
i) ReduceM (Maybe (Arg Type))
-> (Maybe (Arg Type) -> ConPatternInfo) -> ReduceM ConPatternInfo
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Maybe (Arg Type)
t -> ConPatternInfo
i { conPType = t }

instance Normalise a => Normalise (Pattern' a) where
  normalise' :: Pattern' a -> ReduceM (Pattern' a)
normalise' Pattern' a
p = case Pattern' a
p of
    VarP PatternInfo
o a
x     -> PatternInfo -> a -> Pattern' a
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
o (a -> Pattern' a) -> ReduceM a -> ReduceM (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise' a
x
    LitP{}       -> Pattern' a -> ReduceM (Pattern' a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Pattern' a
p
    ConP ConHead
c ConPatternInfo
mt [NamedArg (Pattern' a)]
ps -> ConHead -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c (ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a)
-> ReduceM ConPatternInfo
-> ReduceM ([NamedArg (Pattern' a)] -> Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ConPatternInfo -> ReduceM ConPatternInfo
forall t. Normalise t => t -> ReduceM t
normalise' ConPatternInfo
mt ReduceM ([NamedArg (Pattern' a)] -> Pattern' a)
-> ReduceM [NamedArg (Pattern' a)] -> ReduceM (Pattern' a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [NamedArg (Pattern' a)] -> ReduceM [NamedArg (Pattern' a)]
forall t. Normalise t => t -> ReduceM t
normalise' [NamedArg (Pattern' a)]
ps
    DefP PatternInfo
o QName
q [NamedArg (Pattern' a)]
ps  -> PatternInfo -> QName -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
o QName
q ([NamedArg (Pattern' a)] -> Pattern' a)
-> ReduceM [NamedArg (Pattern' a)] -> ReduceM (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [NamedArg (Pattern' a)] -> ReduceM [NamedArg (Pattern' a)]
forall t. Normalise t => t -> ReduceM t
normalise' [NamedArg (Pattern' a)]
ps
    DotP PatternInfo
o Term
v     -> PatternInfo -> Term -> Pattern' a
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
o (Term -> Pattern' a) -> ReduceM Term -> ReduceM (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
v
    ProjP{}      -> Pattern' a -> ReduceM (Pattern' a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Pattern' a
p
    IApplyP PatternInfo
o Term
t Term
u a
x -> PatternInfo -> Term -> Term -> a -> Pattern' a
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
o (Term -> Term -> a -> Pattern' a)
-> ReduceM Term -> ReduceM (Term -> a -> Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
t ReduceM (Term -> a -> Pattern' a)
-> ReduceM Term -> ReduceM (a -> Pattern' a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
u ReduceM (a -> Pattern' a) -> ReduceM a -> ReduceM (Pattern' a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> ReduceM a
forall t. Normalise t => t -> ReduceM t
normalise' a
x

instance Normalise DisplayForm where
  normalise' :: DisplayForm -> ReduceM DisplayForm
normalise' (Display Int
n Elims
ps DisplayTerm
v) = Int -> Elims -> DisplayTerm -> DisplayForm
Display Int
n (Elims -> DisplayTerm -> DisplayForm)
-> ReduceM Elims -> ReduceM (DisplayTerm -> DisplayForm)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. Normalise t => t -> ReduceM t
normalise' Elims
ps ReduceM (DisplayTerm -> DisplayForm)
-> ReduceM DisplayTerm -> ReduceM DisplayForm
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> DisplayTerm -> ReduceM DisplayTerm
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return DisplayTerm
v

instance Normalise Candidate where
  normalise' :: Candidate -> ReduceM Candidate
normalise' (Candidate CandidateKind
q Term
u Type
t Bool
ov) = CandidateKind -> Term -> Type -> Bool -> Candidate
Candidate CandidateKind
q (Term -> Type -> Bool -> Candidate)
-> ReduceM Term -> ReduceM (Type -> Bool -> Candidate)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. Normalise t => t -> ReduceM t
normalise' Term
u ReduceM (Type -> Bool -> Candidate)
-> ReduceM Type -> ReduceM (Bool -> Candidate)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
t ReduceM (Bool -> Candidate) -> ReduceM Bool -> ReduceM Candidate
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
ov

instance Normalise EqualityView where
  normalise' :: EqualityView -> ReduceM EqualityView
normalise' (OtherType Type
t)            = Type -> EqualityView
OtherType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
t
  normalise' (IdiomType Type
t)            = Type -> EqualityView
IdiomType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. Normalise t => t -> ReduceM t
normalise' Type
t
  normalise' (EqualityType Sort
s QName
eq [Arg Term]
l Arg Term
t Arg Term
a Arg Term
b) = Sort
-> QName
-> [Arg Term]
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
EqualityType
    (Sort
 -> QName
 -> [Arg Term]
 -> Arg Term
 -> Arg Term
 -> Arg Term
 -> EqualityView)
-> ReduceM Sort
-> ReduceM
     (QName
      -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. Normalise t => t -> ReduceM t
normalise' Sort
s
    ReduceM
  (QName
   -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM QName
-> ReduceM
     ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> QName -> ReduceM QName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return QName
eq
    ReduceM
  ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM [Arg Term]
-> ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Arg Term -> ReduceM (Arg Term))
-> [Arg Term] -> ReduceM [Arg Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Arg Term -> ReduceM (Arg Term)
forall t. Normalise t => t -> ReduceM t
normalise' [Arg Term]
l
    ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term)
-> ReduceM (Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Normalise t => t -> ReduceM t
normalise' Arg Term
t
    ReduceM (Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM (Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Normalise t => t -> ReduceM t
normalise' Arg Term
a
    ReduceM (Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM EqualityView
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. Normalise t => t -> ReduceM t
normalise' Arg Term
b

---------------------------------------------------------------------------
-- * Full instantiation
---------------------------------------------------------------------------

-- | @instantiateFull'@ 'instantiate's metas everywhere (and recursively)
--   but does not 'reduce'.
class InstantiateFull t where
  instantiateFull' :: t -> ReduceM t

  default instantiateFull' :: (t ~ f a, Traversable f, InstantiateFull a) => t -> ReduceM t
  instantiateFull' = (a -> ReduceM a) -> f a -> ReduceM (f a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull'

-- Traversables (doesn't include binders like Abs, Tele):

instance InstantiateFull t => InstantiateFull [t]
instance InstantiateFull t => InstantiateFull (HashMap k t)
instance InstantiateFull t => InstantiateFull (Map k t)
instance InstantiateFull t => InstantiateFull (Maybe t)
instance InstantiateFull t => InstantiateFull (Strict.Maybe t)

instance InstantiateFull t => InstantiateFull (Arg t)
instance InstantiateFull t => InstantiateFull (Elim' t)
instance InstantiateFull t => InstantiateFull (Named name t)
instance InstantiateFull t => InstantiateFull (WithArity t)
instance InstantiateFull t => InstantiateFull (IPBoundary' t)

-- Tuples:

instance (InstantiateFull a, InstantiateFull b) => InstantiateFull (a,b) where
    instantiateFull' :: (a, b) -> ReduceM (a, b)
instantiateFull' (a
x,b
y) = (,) (a -> b -> (a, b)) -> ReduceM a -> ReduceM (b -> (a, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' a
x ReduceM (b -> (a, b)) -> ReduceM b -> ReduceM (a, b)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> ReduceM b
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' b
y

instance (InstantiateFull a, InstantiateFull b, InstantiateFull c) => InstantiateFull (a,b,c) where
    instantiateFull' :: (a, b, c) -> ReduceM (a, b, c)
instantiateFull' (a
x,b
y,c
z) =
        do  (a
x,(b
y,c
z)) <- (a, (b, c)) -> ReduceM (a, (b, c))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (a
x,(b
y,c
z))
            (a, b, c) -> ReduceM (a, b, c)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x,b
y,c
z)

instance (InstantiateFull a, InstantiateFull b, InstantiateFull c, InstantiateFull d) => InstantiateFull (a,b,c,d) where
    instantiateFull' :: (a, b, c, d) -> ReduceM (a, b, c, d)
instantiateFull' (a
x,b
y,c
z,d
w) =
        do  (a
x,(b
y,c
z,d
w)) <- (a, (b, c, d)) -> ReduceM (a, (b, c, d))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (a
x,(b
y,c
z,d
w))
            (a, b, c, d) -> ReduceM (a, b, c, d)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x,b
y,c
z,d
w)

-- Base types:

instance InstantiateFull Bool where
    instantiateFull' :: Bool -> ReduceM Bool
instantiateFull' = Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull Char where
    instantiateFull' :: Char -> ReduceM Char
instantiateFull' = Char -> ReduceM Char
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull Int where
    instantiateFull' :: Int -> ReduceM Int
instantiateFull' = Int -> ReduceM Int
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull ModuleName where
    instantiateFull' :: ModuleName -> ReduceM ModuleName
instantiateFull' = ModuleName -> ReduceM ModuleName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull Name where
    instantiateFull' :: Name -> ReduceM Name
instantiateFull' = Name -> ReduceM Name
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull QName where
  instantiateFull' :: QName -> ReduceM QName
instantiateFull' = QName -> ReduceM QName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull Scope where
    instantiateFull' :: Scope -> ReduceM Scope
instantiateFull' = Scope -> ReduceM Scope
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull ConHead where
  instantiateFull' :: ConHead -> ReduceM ConHead
instantiateFull' = ConHead -> ReduceM ConHead
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull DBPatVar where
    instantiateFull' :: DBPatVar -> ReduceM DBPatVar
instantiateFull' = DBPatVar -> ReduceM DBPatVar
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

instance InstantiateFull PrimitiveId where
  instantiateFull' :: PrimitiveId -> ReduceM PrimitiveId
instantiateFull' = PrimitiveId -> ReduceM PrimitiveId
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return

-- Rest:

instance InstantiateFull Sort where
    instantiateFull' :: Sort -> ReduceM Sort
instantiateFull' Sort
s = do
        Sort
s <- Sort -> ReduceM Sort
forall t. Instantiate t => t -> ReduceM t
instantiate' Sort
s
        case Sort
s of
            Univ Univ
u Level
n   -> Univ -> Level -> Sort
forall t. Univ -> Level' t -> Sort' t
Univ Univ
u (Level -> Sort) -> ReduceM Level -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Level
n
            PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Dom' Term Term -> Sort -> Abs Sort -> Sort
piSort (Dom' Term Term -> Sort -> Abs Sort -> Sort)
-> ReduceM (Dom' Term Term) -> ReduceM (Sort -> Abs Sort -> Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term Term -> ReduceM (Dom' Term Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Dom' Term Term
a ReduceM (Sort -> Abs Sort -> Sort)
-> ReduceM Sort -> ReduceM (Abs Sort -> Sort)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s1 ReduceM (Abs Sort -> Sort) -> ReduceM (Abs Sort) -> ReduceM Sort
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs Sort -> ReduceM (Abs Sort)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Abs Sort
s2
            FunSort Sort
s1 Sort
s2 -> Sort -> Sort -> Sort
funSort (Sort -> Sort -> Sort) -> ReduceM Sort -> ReduceM (Sort -> Sort)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s1 ReduceM (Sort -> Sort) -> ReduceM Sort -> ReduceM Sort
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s2
            UnivSort Sort
s -> Sort -> Sort
univSort (Sort -> Sort) -> ReduceM Sort -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s
            Inf Univ
_ Integer
_    -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
            Sort
SizeUniv   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
            Sort
LockUniv   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
            Sort
LevelUniv  -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
            Sort
IntervalUniv -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s
            MetaS MetaId
x Elims
es -> MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x (Elims -> Sort) -> ReduceM Elims -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
es
            DefS QName
d Elims
es  -> QName -> Elims -> Sort
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d (Elims -> Sort) -> ReduceM Elims -> ReduceM Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
es
            DummyS{}   -> Sort -> ReduceM Sort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort
s

instance InstantiateFull t => InstantiateFull (Type' t) where
    instantiateFull' :: Type' t -> ReduceM (Type' t)
instantiateFull' (El Sort
s t
t) =
      Sort -> t -> Type' t
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> t -> Type' t) -> ReduceM Sort -> ReduceM (t -> Type' t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s ReduceM (t -> Type' t) -> ReduceM t -> ReduceM (Type' t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' t
t

instance InstantiateFull Term where
    instantiateFull' :: Term -> ReduceM Term
instantiateFull' = Term -> ReduceM Term
forall t. Instantiate t => t -> ReduceM t
instantiate' (Term -> ReduceM Term)
-> (Term -> ReduceM Term) -> Term -> ReduceM Term
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> Term -> ReduceM Term
recurse (Term -> ReduceM Term)
-> (Term -> ReduceM Term) -> Term -> ReduceM Term
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> Term -> ReduceM Term
forall (m :: * -> *).
(MonadTCEnv m, HasConstInfo m, HasOptions m) =>
Term -> m Term
etaOnce
      -- Andreas, 2010-11-12 DONT ETA!? eta-reduction breaks subject reduction
      -- but removing etaOnce now breaks everything
      where
        recurse :: Term -> ReduceM Term
recurse = \case
          Var Int
n Elims
vs    -> Int -> Elims -> Term
Var Int
n (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
vs
          Con ConHead
c ConInfo
ci Elims
vs -> ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
vs
          Def QName
f Elims
vs    -> QName -> Elims -> Term
Def QName
f (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
vs
          MetaV MetaId
x Elims
vs  -> MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> ReduceM Elims -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
vs
          v :: Term
v@Lit{}     -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
          Level Level
l     -> Level -> Term
levelTm (Level -> Term) -> ReduceM Level -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> ReduceM Level
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Level
l
          Lam ArgInfo
h Abs Term
b     -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
h (Abs Term -> Term) -> ReduceM (Abs Term) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Term -> ReduceM (Abs Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Abs Term
b
          Sort Sort
s      -> Sort -> Term
Sort (Sort -> Term) -> ReduceM Sort -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s
          Pi Dom Type
a Abs Type
b      -> (Dom Type -> Abs Type -> Term) -> (Dom Type, Abs Type) -> Term
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Type -> Term
Pi ((Dom Type, Abs Type) -> Term)
-> ReduceM (Dom Type, Abs Type) -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Type) -> ReduceM (Dom Type, Abs Type)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Dom Type
a,Abs Type
b)
          DontCare Term
v  -> Term -> Term
dontCare (Term -> Term) -> ReduceM Term -> ReduceM Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
v
          v :: Term
v@Dummy{}   -> Term -> ReduceM Term
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v

instance InstantiateFull Level where
  instantiateFull' :: Level -> ReduceM Level
instantiateFull' (Max Integer
m [PlusLevel]
as) = Integer -> [PlusLevel] -> Level
levelMax Integer
m ([PlusLevel] -> Level) -> ReduceM [PlusLevel] -> ReduceM Level
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [PlusLevel] -> ReduceM [PlusLevel]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [PlusLevel]
as

instance InstantiateFull PlusLevel where
  instantiateFull' :: PlusLevel -> ReduceM PlusLevel
instantiateFull' (Plus Integer
n Term
l) = Integer -> Term -> PlusLevel
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n (Term -> PlusLevel) -> ReduceM Term -> ReduceM PlusLevel
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
l

instance InstantiateFull Substitution where
  instantiateFull' :: Substitution' Term -> ReduceM (Substitution' Term)
instantiateFull' Substitution' Term
sigma =
    case Substitution' Term
sigma of
      Substitution' Term
IdS                    -> Substitution' Term -> ReduceM (Substitution' Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Substitution' Term
forall a. Substitution' a
IdS
      EmptyS Impossible
err             -> Substitution' Term -> ReduceM (Substitution' Term)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Substitution' Term -> ReduceM (Substitution' Term))
-> Substitution' Term -> ReduceM (Substitution' Term)
forall a b. (a -> b) -> a -> b
$ Impossible -> Substitution' Term
forall a. Impossible -> Substitution' a
EmptyS Impossible
err
      Wk   Int
n Substitution' Term
sigma           -> Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
Wk   Int
n           (Substitution' Term -> Substitution' Term)
-> ReduceM (Substitution' Term) -> ReduceM (Substitution' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Substitution' Term -> ReduceM (Substitution' Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Substitution' Term
sigma
      Lift Int
n Substitution' Term
sigma           -> Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
Lift Int
n           (Substitution' Term -> Substitution' Term)
-> ReduceM (Substitution' Term) -> ReduceM (Substitution' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Substitution' Term -> ReduceM (Substitution' Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Substitution' Term
sigma
      Strengthen Impossible
bot Int
n Substitution' Term
sigma -> Impossible -> Int -> Substitution' Term -> Substitution' Term
forall a. Impossible -> Int -> Substitution' a -> Substitution' a
Strengthen Impossible
bot Int
n (Substitution' Term -> Substitution' Term)
-> ReduceM (Substitution' Term) -> ReduceM (Substitution' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Substitution' Term -> ReduceM (Substitution' Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Substitution' Term
sigma
      Term
t :# Substitution' Term
sigma             -> Term -> Substitution' Term -> Substitution' Term
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS (Term -> Substitution' Term -> Substitution' Term)
-> ReduceM Term
-> ReduceM (Substitution' Term -> Substitution' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t
                                      ReduceM (Substitution' Term -> Substitution' Term)
-> ReduceM (Substitution' Term) -> ReduceM (Substitution' Term)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Substitution' Term -> ReduceM (Substitution' Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Substitution' Term
sigma

instance InstantiateFull ConPatternInfo where
    instantiateFull' :: ConPatternInfo -> ReduceM ConPatternInfo
instantiateFull' ConPatternInfo
i = Maybe (Arg Type) -> ReduceM (Maybe (Arg Type))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (ConPatternInfo -> Maybe (Arg Type)
conPType ConPatternInfo
i) ReduceM (Maybe (Arg Type))
-> (Maybe (Arg Type) -> ConPatternInfo) -> ReduceM ConPatternInfo
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Maybe (Arg Type)
t -> ConPatternInfo
i { conPType = t }

instance InstantiateFull a => InstantiateFull (Pattern' a) where
    instantiateFull' :: Pattern' a -> ReduceM (Pattern' a)
instantiateFull' (VarP PatternInfo
o a
x)     = PatternInfo -> a -> Pattern' a
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
o (a -> Pattern' a) -> ReduceM a -> ReduceM (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' a
x
    instantiateFull' (DotP PatternInfo
o Term
t)     = PatternInfo -> Term -> Pattern' a
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
o (Term -> Pattern' a) -> ReduceM Term -> ReduceM (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t
    instantiateFull' (ConP ConHead
n ConPatternInfo
mt [NamedArg (Pattern' a)]
ps) = ConHead -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
n (ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a)
-> ReduceM ConPatternInfo
-> ReduceM ([NamedArg (Pattern' a)] -> Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ConPatternInfo -> ReduceM ConPatternInfo
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' ConPatternInfo
mt ReduceM ([NamedArg (Pattern' a)] -> Pattern' a)
-> ReduceM [NamedArg (Pattern' a)] -> ReduceM (Pattern' a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [NamedArg (Pattern' a)] -> ReduceM [NamedArg (Pattern' a)]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [NamedArg (Pattern' a)]
ps
    instantiateFull' (DefP PatternInfo
o QName
q [NamedArg (Pattern' a)]
ps) = PatternInfo -> QName -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
o QName
q ([NamedArg (Pattern' a)] -> Pattern' a)
-> ReduceM [NamedArg (Pattern' a)] -> ReduceM (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [NamedArg (Pattern' a)] -> ReduceM [NamedArg (Pattern' a)]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [NamedArg (Pattern' a)]
ps
    instantiateFull' l :: Pattern' a
l@LitP{}       = Pattern' a -> ReduceM (Pattern' a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Pattern' a
l
    instantiateFull' p :: Pattern' a
p@ProjP{}      = Pattern' a -> ReduceM (Pattern' a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Pattern' a
p
    instantiateFull' (IApplyP PatternInfo
o Term
t Term
u a
x) = PatternInfo -> Term -> Term -> a -> Pattern' a
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
o (Term -> Term -> a -> Pattern' a)
-> ReduceM Term -> ReduceM (Term -> a -> Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t ReduceM (Term -> a -> Pattern' a)
-> ReduceM Term -> ReduceM (a -> Pattern' a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
u ReduceM (a -> Pattern' a) -> ReduceM a -> ReduceM (Pattern' a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' a
x

instance (Subst a, InstantiateFull a) => InstantiateFull (Abs a) where
    instantiateFull' :: Abs a -> ReduceM (Abs a)
instantiateFull' a :: Abs a
a@(Abs [Char]
x a
_) = [Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
Abs [Char]
x (a -> Abs a) -> ReduceM a -> ReduceM (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs a -> (a -> ReduceM a) -> ReduceM a
forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Abs a -> (a -> m b) -> m b
underAbstraction_ Abs a
a a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull'
    instantiateFull' (NoAbs [Char]
x a
a) = [Char] -> a -> Abs a
forall a. [Char] -> a -> Abs a
NoAbs [Char]
x (a -> Abs a) -> ReduceM a -> ReduceM (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' a
a

instance (InstantiateFull t, InstantiateFull e) => InstantiateFull (Dom' t e) where
    instantiateFull' :: Dom' t e -> ReduceM (Dom' t e)
instantiateFull' (Dom ArgInfo
i Maybe NamedName
n Bool
b Maybe t
tac e
x) = ArgInfo -> Maybe NamedName -> Bool -> Maybe t -> e -> Dom' t e
forall t e.
ArgInfo -> Maybe NamedName -> Bool -> Maybe t -> e -> Dom' t e
Dom ArgInfo
i Maybe NamedName
n Bool
b (Maybe t -> e -> Dom' t e)
-> ReduceM (Maybe t) -> ReduceM (e -> Dom' t e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe t -> ReduceM (Maybe t)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe t
tac ReduceM (e -> Dom' t e) -> ReduceM e -> ReduceM (Dom' t e)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> e -> ReduceM e
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' e
x

instance InstantiateFull LetBinding where
  instantiateFull' :: LetBinding -> ReduceM LetBinding
instantiateFull' (LetBinding Origin
o Term
v Dom Type
t) = Origin -> Term -> Dom Type -> LetBinding
LetBinding Origin
o (Term -> Dom Type -> LetBinding)
-> ReduceM Term -> ReduceM (Dom Type -> LetBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
v ReduceM (Dom Type -> LetBinding)
-> ReduceM (Dom Type) -> ReduceM LetBinding
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Dom Type -> ReduceM (Dom Type)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Dom Type
t

-- Andreas, 2021-09-13, issue #5544, need to traverse @checkpoints@ map
instance InstantiateFull t => InstantiateFull (Open t) where
  instantiateFull' :: Open t -> ReduceM (Open t)
instantiateFull' (OpenThing CheckpointId
checkpoint Map CheckpointId (Substitution' Term)
checkpoints ModuleNameHash
modl t
t) =
    CheckpointId
-> Map CheckpointId (Substitution' Term)
-> ModuleNameHash
-> t
-> Open t
forall a.
CheckpointId
-> Map CheckpointId (Substitution' Term)
-> ModuleNameHash
-> a
-> Open a
OpenThing CheckpointId
checkpoint
    (Map CheckpointId (Substitution' Term)
 -> ModuleNameHash -> t -> Open t)
-> ReduceM (Map CheckpointId (Substitution' Term))
-> ReduceM (ModuleNameHash -> t -> Open t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Map CheckpointId (Substitution' Term)
-> ReduceM (Map CheckpointId (Substitution' Term))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Map CheckpointId (Substitution' Term)
 -> ReduceM (Map CheckpointId (Substitution' Term)))
-> ReduceM (Map CheckpointId (Substitution' Term))
-> ReduceM (Map CheckpointId (Substitution' Term))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Map CheckpointId (Substitution' Term)
-> ReduceM (Map CheckpointId (Substitution' Term))
forall {m :: * -> *} {a}.
MonadTCEnv m =>
Map CheckpointId a -> m (Map CheckpointId a)
prune Map CheckpointId (Substitution' Term)
checkpoints)
    ReduceM (ModuleNameHash -> t -> Open t)
-> ReduceM ModuleNameHash -> ReduceM (t -> Open t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ModuleNameHash -> ReduceM ModuleNameHash
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ModuleNameHash
modl
    ReduceM (t -> Open t) -> ReduceM t -> ReduceM (Open t)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> ReduceM t
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' t
t
    where
      -- Ulf, 2021-11-17, #5544
      --  Remove checkpoints that are no longer in scope, since they can
      --  mention functions that deadcode elimination will get rid of.
      prune :: Map CheckpointId a -> m (Map CheckpointId a)
prune Map CheckpointId a
cps = do
        Map CheckpointId (Substitution' Term)
inscope <- Lens' TCEnv (Map CheckpointId (Substitution' Term))
-> m (Map CheckpointId (Substitution' Term))
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (Map CheckpointId (Substitution' Term)
 -> f (Map CheckpointId (Substitution' Term)))
-> TCEnv -> f TCEnv
Lens' TCEnv (Map CheckpointId (Substitution' Term))
eCheckpoints
        Map CheckpointId a -> m (Map CheckpointId a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Map CheckpointId a -> m (Map CheckpointId a))
-> Map CheckpointId a -> m (Map CheckpointId a)
forall a b. (a -> b) -> a -> b
$ Map CheckpointId a
cps Map CheckpointId a
-> Map CheckpointId (Substitution' Term) -> Map CheckpointId a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
`Map.intersection` Map CheckpointId (Substitution' Term)
inscope

instance InstantiateFull a => InstantiateFull (Closure a) where
    instantiateFull' :: Closure a -> ReduceM (Closure a)
instantiateFull' Closure a
cl = do
        a
x <- Closure a -> (a -> ReduceM a) -> ReduceM a
forall c a b. LensClosure c a => c -> (a -> ReduceM b) -> ReduceM b
enterClosure Closure a
cl a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull'
        Closure a -> ReduceM (Closure a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Closure a -> ReduceM (Closure a))
-> Closure a -> ReduceM (Closure a)
forall a b. (a -> b) -> a -> b
$ Closure a
cl { clValue = x }

instance InstantiateFull ProblemConstraint where
  instantiateFull' :: ProblemConstraint -> ReduceM ProblemConstraint
instantiateFull' (PConstr Set ProblemId
p Blocker
u Closure Constraint
c) = Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr Set ProblemId
p Blocker
u (Closure Constraint -> ProblemConstraint)
-> ReduceM (Closure Constraint) -> ReduceM ProblemConstraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Closure Constraint -> ReduceM (Closure Constraint)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Closure Constraint
c

instance InstantiateFull Constraint where
  instantiateFull' :: Constraint -> ReduceM Constraint
instantiateFull' = \case
    ValueCmp Comparison
cmp CompareAs
t Term
u Term
v -> do
      (CompareAs
t,Term
u,Term
v) <- (CompareAs, Term, Term) -> ReduceM (CompareAs, Term, Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (CompareAs
t,Term
u,Term
v)
      Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp CompareAs
t Term
u Term
v
    ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v -> do
      ((Term
p,Type
t),Term
u,Term
v) <- ((Term, Type), Term, Term) -> ReduceM ((Term, Type), Term, Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' ((Term
p,Type
t),Term
u,Term
v)
      Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Type -> Term -> Term -> Constraint
ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v
    ElimCmp [Polarity]
cmp [IsForced]
fs Type
t Term
v Elims
as Elims
bs ->
      [Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
cmp [IsForced]
fs (Type -> Term -> Elims -> Elims -> Constraint)
-> ReduceM Type -> ReduceM (Term -> Elims -> Elims -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t ReduceM (Term -> Elims -> Elims -> Constraint)
-> ReduceM Term -> ReduceM (Elims -> Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
v ReduceM (Elims -> Elims -> Constraint)
-> ReduceM Elims -> ReduceM (Elims -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
as ReduceM (Elims -> Constraint)
-> ReduceM Elims -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
bs
    LevelCmp Comparison
cmp Level
u Level
v    -> (Level -> Level -> Constraint) -> (Level, Level) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
cmp) ((Level, Level) -> Constraint)
-> ReduceM (Level, Level) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Level, Level) -> ReduceM (Level, Level)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Level
u,Level
v)
    SortCmp Comparison
cmp Sort
a Sort
b     -> (Sort -> Sort -> Constraint) -> (Sort, Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
cmp) ((Sort, Sort) -> Constraint)
-> ReduceM (Sort, Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Sort, Sort) -> ReduceM (Sort, Sort)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Sort
a,Sort
b)
    UnBlock MetaId
m           -> Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Constraint -> ReduceM Constraint)
-> Constraint -> ReduceM Constraint
forall a b. (a -> b) -> a -> b
$ MetaId -> Constraint
UnBlock MetaId
m
    FindInstance MetaId
m Maybe [Candidate]
cs   -> MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
m (Maybe [Candidate] -> Constraint)
-> ReduceM (Maybe [Candidate]) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([Candidate] -> ReduceM [Candidate])
-> Maybe [Candidate] -> ReduceM (Maybe [Candidate])
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Maybe a -> m (Maybe b)
mapM [Candidate] -> ReduceM [Candidate]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe [Candidate]
cs
    IsEmpty Range
r Type
t         -> Range -> Type -> Constraint
IsEmpty Range
r (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t
    CheckSizeLtSat Term
t    -> Term -> Constraint
CheckSizeLtSat (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t
    c :: Constraint
c@CheckFunDef{}     -> Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
    HasBiggerSort Sort
a     -> Sort -> Constraint
HasBiggerSort (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
a
    HasPTSRule Dom Type
a Abs Sort
b      -> (Dom Type -> Abs Sort -> Constraint)
-> (Dom Type, Abs Sort) -> Constraint
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Sort -> Constraint
HasPTSRule ((Dom Type, Abs Sort) -> Constraint)
-> ReduceM (Dom Type, Abs Sort) -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Dom Type, Abs Sort) -> ReduceM (Dom Type, Abs Sort)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Dom Type
a,Abs Sort
b)
    UnquoteTactic Term
t Term
g Type
h -> Term -> Term -> Type -> Constraint
UnquoteTactic (Term -> Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t ReduceM (Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
g ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
h
    CheckLockedVars Term
a Type
b Arg Term
c Type
d ->
      Term -> Type -> Arg Term -> Type -> Constraint
CheckLockedVars (Term -> Type -> Arg Term -> Type -> Constraint)
-> ReduceM Term -> ReduceM (Type -> Arg Term -> Type -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
a ReduceM (Type -> Arg Term -> Type -> Constraint)
-> ReduceM Type -> ReduceM (Arg Term -> Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
b ReduceM (Arg Term -> Type -> Constraint)
-> ReduceM (Arg Term) -> ReduceM (Type -> Constraint)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Arg Term
c ReduceM (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
d
    CheckDataSort QName
q Sort
s   -> QName -> Sort -> Constraint
CheckDataSort QName
q (Sort -> Constraint) -> ReduceM Sort -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s
    c :: Constraint
c@CheckMetaInst{}   -> Constraint -> ReduceM Constraint
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Constraint
c
    CheckType Type
t         -> Type -> Constraint
CheckType (Type -> Constraint) -> ReduceM Type -> ReduceM Constraint
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t
    UsableAtModality WhyCheckModality
cc Maybe Sort
ms Modality
mod Term
t -> (Maybe Sort -> Modality -> Term -> Constraint)
-> Modality -> Maybe Sort -> Term -> Constraint
forall a b c. (a -> b -> c) -> b -> a -> c
flip (WhyCheckModality -> Maybe Sort -> Modality -> Term -> Constraint
UsableAtModality WhyCheckModality
cc) Modality
mod (Maybe Sort -> Term -> Constraint)
-> ReduceM (Maybe Sort) -> ReduceM (Term -> Constraint)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Sort -> ReduceM (Maybe Sort)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe Sort
ms ReduceM (Term -> Constraint) -> ReduceM Term -> ReduceM Constraint
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t

instance InstantiateFull CompareAs where
  instantiateFull' :: CompareAs -> ReduceM CompareAs
instantiateFull' (AsTermsOf Type
a) = Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> ReduceM Type -> ReduceM CompareAs
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
a
  instantiateFull' CompareAs
AsSizes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsSizes
  instantiateFull' CompareAs
AsTypes       = CompareAs -> ReduceM CompareAs
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return CompareAs
AsTypes

instance InstantiateFull Signature where
  instantiateFull' :: Signature -> ReduceM Signature
instantiateFull' (Sig Sections
a Definitions
b RewriteRuleMap
c) = (Sections -> Definitions -> RewriteRuleMap -> Signature)
-> (Sections, Definitions, RewriteRuleMap) -> Signature
forall a b c d. (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 Sections -> Definitions -> RewriteRuleMap -> Signature
Sig ((Sections, Definitions, RewriteRuleMap) -> Signature)
-> ReduceM (Sections, Definitions, RewriteRuleMap)
-> ReduceM Signature
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Sections, Definitions, RewriteRuleMap)
-> ReduceM (Sections, Definitions, RewriteRuleMap)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Sections
a, Definitions
b, RewriteRuleMap
c)

instance InstantiateFull Section where
  instantiateFull' :: Section -> ReduceM Section
instantiateFull' (Section Telescope
tel) = Telescope -> Section
Section (Telescope -> Section) -> ReduceM Telescope -> ReduceM Section
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope -> ReduceM Telescope
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Telescope
tel

instance (Subst a, InstantiateFull a) => InstantiateFull (Tele a) where
  instantiateFull' :: Tele a -> ReduceM (Tele a)
instantiateFull' Tele a
EmptyTel = Tele a -> ReduceM (Tele a)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Tele a
forall a. Tele a
EmptyTel
  instantiateFull' (ExtendTel a
a Abs (Tele a)
b) = (a -> Abs (Tele a) -> Tele a) -> (a, Abs (Tele a)) -> Tele a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel ((a, Abs (Tele a)) -> Tele a)
-> ReduceM (a, Abs (Tele a)) -> ReduceM (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a, Abs (Tele a)) -> ReduceM (a, Abs (Tele a))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (a
a, Abs (Tele a)
b)

instance InstantiateFull Definition where
    instantiateFull' :: Definition -> ReduceM Definition
instantiateFull' def :: Definition
def@Defn{ defType :: Definition -> Type
defType = Type
t ,defDisplay :: Definition -> [LocalDisplayForm]
defDisplay = [LocalDisplayForm]
df, theDef :: Definition -> Defn
theDef = Defn
d } = do
      (Type
t, [LocalDisplayForm]
df, Defn
d) <- (Type, [LocalDisplayForm], Defn)
-> ReduceM (Type, [LocalDisplayForm], Defn)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Type
t, [LocalDisplayForm]
df, Defn
d)
      Definition -> ReduceM Definition
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Definition -> ReduceM Definition)
-> Definition -> ReduceM Definition
forall a b. (a -> b) -> a -> b
$ Definition
def{ defType = t, defDisplay = df, theDef = d }

instance InstantiateFull NLPat where
  instantiateFull' :: NLPat -> ReduceM NLPat
instantiateFull' (PVar Int
x [Arg Int]
y) = NLPat -> ReduceM NLPat
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (NLPat -> ReduceM NLPat) -> NLPat -> ReduceM NLPat
forall a b. (a -> b) -> a -> b
$ Int -> [Arg Int] -> NLPat
PVar Int
x [Arg Int]
y
  instantiateFull' (PDef QName
x PElims
y) = QName -> PElims -> NLPat
PDef (QName -> PElims -> NLPat)
-> ReduceM QName -> ReduceM (PElims -> NLPat)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> ReduceM QName
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' QName
x ReduceM (PElims -> NLPat) -> ReduceM PElims -> ReduceM NLPat
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PElims -> ReduceM PElims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' PElims
y
  instantiateFull' (PLam ArgInfo
x Abs NLPat
y) = ArgInfo -> Abs NLPat -> NLPat
PLam ArgInfo
x (Abs NLPat -> NLPat) -> ReduceM (Abs NLPat) -> ReduceM NLPat
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs NLPat -> ReduceM (Abs NLPat)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Abs NLPat
y
  instantiateFull' (PPi Dom NLPType
x Abs NLPType
y)  = Dom NLPType -> Abs NLPType -> NLPat
PPi (Dom NLPType -> Abs NLPType -> NLPat)
-> ReduceM (Dom NLPType) -> ReduceM (Abs NLPType -> NLPat)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom NLPType -> ReduceM (Dom NLPType)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Dom NLPType
x ReduceM (Abs NLPType -> NLPat)
-> ReduceM (Abs NLPType) -> ReduceM NLPat
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs NLPType -> ReduceM (Abs NLPType)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Abs NLPType
y
  instantiateFull' (PSort NLPSort
x)  = NLPSort -> NLPat
PSort (NLPSort -> NLPat) -> ReduceM NLPSort -> ReduceM NLPat
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NLPSort -> ReduceM NLPSort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' NLPSort
x
  instantiateFull' (PBoundVar Int
x PElims
y) = Int -> PElims -> NLPat
PBoundVar Int
x (PElims -> NLPat) -> ReduceM PElims -> ReduceM NLPat
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PElims -> ReduceM PElims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' PElims
y
  instantiateFull' (PTerm Term
x)  = Term -> NLPat
PTerm (Term -> NLPat) -> ReduceM Term -> ReduceM NLPat
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
x

instance InstantiateFull NLPType where
  instantiateFull' :: NLPType -> ReduceM NLPType
instantiateFull' (NLPType NLPSort
s NLPat
a) = NLPSort -> NLPat -> NLPType
NLPType
    (NLPSort -> NLPat -> NLPType)
-> ReduceM NLPSort -> ReduceM (NLPat -> NLPType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NLPSort -> ReduceM NLPSort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' NLPSort
s
    ReduceM (NLPat -> NLPType) -> ReduceM NLPat -> ReduceM NLPType
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NLPat -> ReduceM NLPat
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' NLPat
a

instance InstantiateFull NLPSort where
  instantiateFull' :: NLPSort -> ReduceM NLPSort
instantiateFull' (PUniv Univ
u NLPat
x) = Univ -> NLPat -> NLPSort
PUniv Univ
u (NLPat -> NLPSort) -> ReduceM NLPat -> ReduceM NLPSort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NLPat -> ReduceM NLPat
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' NLPat
x
  instantiateFull' (PInf Univ
f Integer
n) = NLPSort -> ReduceM NLPSort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (NLPSort -> ReduceM NLPSort) -> NLPSort -> ReduceM NLPSort
forall a b. (a -> b) -> a -> b
$ Univ -> Integer -> NLPSort
PInf Univ
f Integer
n
  instantiateFull' NLPSort
PSizeUniv = NLPSort -> ReduceM NLPSort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return NLPSort
PSizeUniv
  instantiateFull' NLPSort
PLockUniv = NLPSort -> ReduceM NLPSort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return NLPSort
PLockUniv
  instantiateFull' NLPSort
PLevelUniv = NLPSort -> ReduceM NLPSort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return NLPSort
PLevelUniv
  instantiateFull' NLPSort
PIntervalUniv = NLPSort -> ReduceM NLPSort
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return NLPSort
PIntervalUniv

instance InstantiateFull RewriteRule where
  instantiateFull' :: RewriteRule -> ReduceM RewriteRule
instantiateFull' (RewriteRule QName
q Telescope
gamma QName
f PElims
ps Term
rhs Type
t Bool
c) =
    QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule
RewriteRule QName
q
      (Telescope
 -> QName -> PElims -> Term -> Type -> Bool -> RewriteRule)
-> ReduceM Telescope
-> ReduceM (QName -> PElims -> Term -> Type -> Bool -> RewriteRule)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope -> ReduceM Telescope
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Telescope
gamma
      ReduceM (QName -> PElims -> Term -> Type -> Bool -> RewriteRule)
-> ReduceM QName
-> ReduceM (PElims -> Term -> Type -> Bool -> RewriteRule)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> QName -> ReduceM QName
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure QName
f
      ReduceM (PElims -> Term -> Type -> Bool -> RewriteRule)
-> ReduceM PElims -> ReduceM (Term -> Type -> Bool -> RewriteRule)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PElims -> ReduceM PElims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' PElims
ps
      ReduceM (Term -> Type -> Bool -> RewriteRule)
-> ReduceM Term -> ReduceM (Type -> Bool -> RewriteRule)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
rhs
      ReduceM (Type -> Bool -> RewriteRule)
-> ReduceM Type -> ReduceM (Bool -> RewriteRule)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t
      ReduceM (Bool -> RewriteRule)
-> ReduceM Bool -> ReduceM RewriteRule
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
c

instance InstantiateFull DisplayForm where
  instantiateFull' :: DisplayForm -> ReduceM DisplayForm
instantiateFull' (Display Int
n Elims
ps DisplayTerm
v) = (Elims -> DisplayTerm -> DisplayForm)
-> (Elims, DisplayTerm) -> DisplayForm
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Int -> Elims -> DisplayTerm -> DisplayForm
Display Int
n) ((Elims, DisplayTerm) -> DisplayForm)
-> ReduceM (Elims, DisplayTerm) -> ReduceM DisplayForm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Elims, DisplayTerm) -> ReduceM (Elims, DisplayTerm)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Elims
ps, DisplayTerm
v)

instance InstantiateFull DisplayTerm where
  instantiateFull' :: DisplayTerm -> ReduceM DisplayTerm
instantiateFull' (DTerm' Term
v Elims
es)   = Term -> Elims -> DisplayTerm
DTerm' (Term -> Elims -> DisplayTerm)
-> ReduceM Term -> ReduceM (Elims -> DisplayTerm)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
v ReduceM (Elims -> DisplayTerm)
-> ReduceM Elims -> ReduceM DisplayTerm
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
es
  instantiateFull' (DDot' Term
v Elims
es)    = Term -> Elims -> DisplayTerm
DDot'  (Term -> Elims -> DisplayTerm)
-> ReduceM Term -> ReduceM (Elims -> DisplayTerm)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
v ReduceM (Elims -> DisplayTerm)
-> ReduceM Elims -> ReduceM DisplayTerm
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Elims -> ReduceM Elims
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Elims
es
  instantiateFull' (DCon ConHead
c ConInfo
ci [Arg DisplayTerm]
vs)  = ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
c ConInfo
ci ([Arg DisplayTerm] -> DisplayTerm)
-> ReduceM [Arg DisplayTerm] -> ReduceM DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Arg DisplayTerm] -> ReduceM [Arg DisplayTerm]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [Arg DisplayTerm]
vs
  instantiateFull' (DDef QName
c [Elim' DisplayTerm]
es)     = QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
c ([Elim' DisplayTerm] -> DisplayTerm)
-> ReduceM [Elim' DisplayTerm] -> ReduceM DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Elim' DisplayTerm] -> ReduceM [Elim' DisplayTerm]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [Elim' DisplayTerm]
es
  instantiateFull' (DWithApp DisplayTerm
v [DisplayTerm]
vs Elims
ws) = (DisplayTerm -> [DisplayTerm] -> Elims -> DisplayTerm)
-> (DisplayTerm, [DisplayTerm], Elims) -> DisplayTerm
forall a b c d. (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 DisplayTerm -> [DisplayTerm] -> Elims -> DisplayTerm
DWithApp ((DisplayTerm, [DisplayTerm], Elims) -> DisplayTerm)
-> ReduceM (DisplayTerm, [DisplayTerm], Elims)
-> ReduceM DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (DisplayTerm, [DisplayTerm], Elims)
-> ReduceM (DisplayTerm, [DisplayTerm], Elims)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (DisplayTerm
v, [DisplayTerm]
vs, Elims
ws)

instance InstantiateFull Defn where
    instantiateFull' :: Defn -> ReduceM Defn
instantiateFull' Defn
d = case Defn
d of
      Axiom{} -> Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Defn
d
      DataOrRecSig{} -> Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Defn
d
      GeneralizableVar{} -> Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Defn
d
      AbstractDefn Defn
d -> Defn -> Defn
AbstractDefn (Defn -> Defn) -> ReduceM Defn -> ReduceM Defn
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Defn -> ReduceM Defn
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Defn
d
      Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause]
cs, funCompiled :: Defn -> Maybe CompiledClauses
funCompiled = Maybe CompiledClauses
cc, funCovering :: Defn -> [Clause]
funCovering = [Clause]
cov, funInv :: Defn -> FunctionInverse
funInv = FunctionInverse
inv, funExtLam :: Defn -> Maybe ExtLamInfo
funExtLam = Maybe ExtLamInfo
extLam } -> do
        ([Clause]
cs, Maybe CompiledClauses
cc, [Clause]
cov, FunctionInverse
inv) <- ([Clause], Maybe CompiledClauses, [Clause], FunctionInverse)
-> ReduceM
     ([Clause], Maybe CompiledClauses, [Clause], FunctionInverse)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' ([Clause]
cs, Maybe CompiledClauses
cc, [Clause]
cov, FunctionInverse
inv)
        Maybe ExtLamInfo
extLam <- Maybe ExtLamInfo -> ReduceM (Maybe ExtLamInfo)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe ExtLamInfo
extLam
        Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Defn -> ReduceM Defn) -> Defn -> ReduceM Defn
forall a b. (a -> b) -> a -> b
$ Defn
d { funClauses = cs, funCompiled = cc, funCovering = cov, funInv = inv, funExtLam = extLam }
      Datatype{ dataSort :: Defn -> Sort
dataSort = Sort
s, dataClause :: Defn -> Maybe Clause
dataClause = Maybe Clause
cl } -> do
        Sort
s  <- Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s
        Maybe Clause
cl <- Maybe Clause -> ReduceM (Maybe Clause)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe Clause
cl
        Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Defn -> ReduceM Defn) -> Defn -> ReduceM Defn
forall a b. (a -> b) -> a -> b
$ Defn
d { dataSort = s, dataClause = cl }
      Record{ recClause :: Defn -> Maybe Clause
recClause = Maybe Clause
cl, recTel :: Defn -> Telescope
recTel = Telescope
tel } -> do
        Maybe Clause
cl  <- Maybe Clause -> ReduceM (Maybe Clause)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe Clause
cl
        Telescope
tel <- Telescope -> ReduceM Telescope
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Telescope
tel
        Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Defn -> ReduceM Defn) -> Defn -> ReduceM Defn
forall a b. (a -> b) -> a -> b
$ Defn
d { recClause = cl, recTel = tel }
      Constructor{} -> Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Defn
d
      Primitive{ primClauses :: Defn -> [Clause]
primClauses = [Clause]
cs } -> do
        [Clause]
cs <- [Clause] -> ReduceM [Clause]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [Clause]
cs
        Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Defn -> ReduceM Defn) -> Defn -> ReduceM Defn
forall a b. (a -> b) -> a -> b
$ Defn
d { primClauses = cs }
      PrimitiveSort{} -> Defn -> ReduceM Defn
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Defn
d

instance InstantiateFull ExtLamInfo where
  instantiateFull' :: ExtLamInfo -> ReduceM ExtLamInfo
instantiateFull' e :: ExtLamInfo
e@(ExtLamInfo { extLamSys :: ExtLamInfo -> Maybe System
extLamSys = Maybe System
sys}) = do
    Maybe System
sys <- Maybe System -> ReduceM (Maybe System)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe System
sys
    ExtLamInfo -> ReduceM ExtLamInfo
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (ExtLamInfo -> ReduceM ExtLamInfo)
-> ExtLamInfo -> ReduceM ExtLamInfo
forall a b. (a -> b) -> a -> b
$ ExtLamInfo
e { extLamSys = sys}

instance InstantiateFull System where
  instantiateFull' :: System -> ReduceM System
instantiateFull' (System Telescope
tel [(Face, Term)]
sys) = Telescope -> [(Face, Term)] -> System
System (Telescope -> [(Face, Term)] -> System)
-> ReduceM Telescope -> ReduceM ([(Face, Term)] -> System)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope -> ReduceM Telescope
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Telescope
tel ReduceM ([(Face, Term)] -> System)
-> ReduceM [(Face, Term)] -> ReduceM System
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [(Face, Term)] -> ReduceM [(Face, Term)]
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [(Face, Term)]
sys

instance InstantiateFull FunctionInverse where
  instantiateFull' :: FunctionInverse -> ReduceM FunctionInverse
instantiateFull' FunctionInverse
NotInjective = FunctionInverse -> ReduceM FunctionInverse
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return FunctionInverse
forall c. FunctionInverse' c
NotInjective
  instantiateFull' (Inverse InversionMap Clause
inv) = InversionMap Clause -> FunctionInverse
forall c. InversionMap c -> FunctionInverse' c
Inverse (InversionMap Clause -> FunctionInverse)
-> ReduceM (InversionMap Clause) -> ReduceM FunctionInverse
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InversionMap Clause -> ReduceM (InversionMap Clause)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' InversionMap Clause
inv

instance InstantiateFull a => InstantiateFull (Case a) where
  instantiateFull' :: Case a -> ReduceM (Case a)
instantiateFull' (Branches Bool
cop Map QName (WithArity a)
cs Maybe (ConHead, WithArity a)
eta Map Literal a
ls Maybe a
m Maybe Bool
b Bool
lz) =
    Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a
forall c.
Bool
-> Map QName (WithArity c)
-> Maybe (ConHead, WithArity c)
-> Map Literal c
-> Maybe c
-> Maybe Bool
-> Bool
-> Case c
Branches Bool
cop
      (Map QName (WithArity a)
 -> Maybe (ConHead, WithArity a)
 -> Map Literal a
 -> Maybe a
 -> Maybe Bool
 -> Bool
 -> Case a)
-> ReduceM (Map QName (WithArity a))
-> ReduceM
     (Maybe (ConHead, WithArity a)
      -> Map Literal a -> Maybe a -> Maybe Bool -> Bool -> Case a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Map QName (WithArity a) -> ReduceM (Map QName (WithArity a))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Map QName (WithArity a)
cs
      ReduceM
  (Maybe (ConHead, WithArity a)
   -> Map Literal a -> Maybe a -> Maybe Bool -> Bool -> Case a)
-> ReduceM (Maybe (ConHead, WithArity a))
-> ReduceM
     (Map Literal a -> Maybe a -> Maybe Bool -> Bool -> Case a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe (ConHead, WithArity a)
-> ReduceM (Maybe (ConHead, WithArity a))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe (ConHead, WithArity a)
eta
      ReduceM (Map Literal a -> Maybe a -> Maybe Bool -> Bool -> Case a)
-> ReduceM (Map Literal a)
-> ReduceM (Maybe a -> Maybe Bool -> Bool -> Case a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Map Literal a -> ReduceM (Map Literal a)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Map Literal a
ls
      ReduceM (Maybe a -> Maybe Bool -> Bool -> Case a)
-> ReduceM (Maybe a) -> ReduceM (Maybe Bool -> Bool -> Case a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe a -> ReduceM (Maybe a)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe a
m
      ReduceM (Maybe Bool -> Bool -> Case a)
-> ReduceM (Maybe Bool) -> ReduceM (Bool -> Case a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Bool -> ReduceM (Maybe Bool)
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe Bool
b
      ReduceM (Bool -> Case a) -> ReduceM Bool -> ReduceM (Case a)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
lz

instance InstantiateFull CompiledClauses where
  instantiateFull' :: CompiledClauses -> ReduceM CompiledClauses
instantiateFull' (Fail [Arg [Char]]
xs)   = CompiledClauses -> ReduceM CompiledClauses
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return (CompiledClauses -> ReduceM CompiledClauses)
-> CompiledClauses -> ReduceM CompiledClauses
forall a b. (a -> b) -> a -> b
$ [Arg [Char]] -> CompiledClauses
forall a. [Arg [Char]] -> CompiledClauses' a
Fail [Arg [Char]]
xs
  instantiateFull' (Done [Arg [Char]]
m Term
t)  = [Arg [Char]] -> Term -> CompiledClauses
forall a. [Arg [Char]] -> a -> CompiledClauses' a
Done [Arg [Char]]
m (Term -> CompiledClauses)
-> ReduceM Term -> ReduceM CompiledClauses
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t
  instantiateFull' (Case Arg Int
n Case CompiledClauses
bs) = Arg Int -> Case CompiledClauses -> CompiledClauses
forall a.
Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a
Case Arg Int
n (Case CompiledClauses -> CompiledClauses)
-> ReduceM (Case CompiledClauses) -> ReduceM CompiledClauses
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Case CompiledClauses -> ReduceM (Case CompiledClauses)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Case CompiledClauses
bs

instance InstantiateFull Clause where
    instantiateFull' :: Clause -> ReduceM Clause
instantiateFull' (Clause Range
rl Range
rf Telescope
tel NAPs
ps Maybe Term
b Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell Maybe ModuleName
wm) =
       Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Maybe ModuleName
-> Clause
Clause Range
rl Range
rf (Telescope
 -> NAPs
 -> Maybe Term
 -> Maybe (Arg Type)
 -> Bool
 -> Maybe Bool
 -> Maybe Bool
 -> Maybe Bool
 -> ExpandedEllipsis
 -> Maybe ModuleName
 -> Clause)
-> ReduceM Telescope
-> ReduceM
     (NAPs
      -> Maybe Term
      -> Maybe (Arg Type)
      -> Bool
      -> Maybe Bool
      -> Maybe Bool
      -> Maybe Bool
      -> ExpandedEllipsis
      -> Maybe ModuleName
      -> Clause)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope -> ReduceM Telescope
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Telescope
tel
       ReduceM
  (NAPs
   -> Maybe Term
   -> Maybe (Arg Type)
   -> Bool
   -> Maybe Bool
   -> Maybe Bool
   -> Maybe Bool
   -> ExpandedEllipsis
   -> Maybe ModuleName
   -> Clause)
-> ReduceM NAPs
-> ReduceM
     (Maybe Term
      -> Maybe (Arg Type)
      -> Bool
      -> Maybe Bool
      -> Maybe Bool
      -> Maybe Bool
      -> ExpandedEllipsis
      -> Maybe ModuleName
      -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NAPs -> ReduceM NAPs
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' NAPs
ps
       ReduceM
  (Maybe Term
   -> Maybe (Arg Type)
   -> Bool
   -> Maybe Bool
   -> Maybe Bool
   -> Maybe Bool
   -> ExpandedEllipsis
   -> Maybe ModuleName
   -> Clause)
-> ReduceM (Maybe Term)
-> ReduceM
     (Maybe (Arg Type)
      -> Bool
      -> Maybe Bool
      -> Maybe Bool
      -> Maybe Bool
      -> ExpandedEllipsis
      -> Maybe ModuleName
      -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Term -> ReduceM (Maybe Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe Term
b
       ReduceM
  (Maybe (Arg Type)
   -> Bool
   -> Maybe Bool
   -> Maybe Bool
   -> Maybe Bool
   -> ExpandedEllipsis
   -> Maybe ModuleName
   -> Clause)
-> ReduceM (Maybe (Arg Type))
-> ReduceM
     (Bool
      -> Maybe Bool
      -> Maybe Bool
      -> Maybe Bool
      -> ExpandedEllipsis
      -> Maybe ModuleName
      -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe (Arg Type) -> ReduceM (Maybe (Arg Type))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Maybe (Arg Type)
t
       ReduceM
  (Bool
   -> Maybe Bool
   -> Maybe Bool
   -> Maybe Bool
   -> ExpandedEllipsis
   -> Maybe ModuleName
   -> Clause)
-> ReduceM Bool
-> ReduceM
     (Maybe Bool
      -> Maybe Bool
      -> Maybe Bool
      -> ExpandedEllipsis
      -> Maybe ModuleName
      -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
catchall
       ReduceM
  (Maybe Bool
   -> Maybe Bool
   -> Maybe Bool
   -> ExpandedEllipsis
   -> Maybe ModuleName
   -> Clause)
-> ReduceM (Maybe Bool)
-> ReduceM
     (Maybe Bool
      -> Maybe Bool -> ExpandedEllipsis -> Maybe ModuleName -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Bool -> ReduceM (Maybe Bool)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Bool
exact
       ReduceM
  (Maybe Bool
   -> Maybe Bool -> ExpandedEllipsis -> Maybe ModuleName -> Clause)
-> ReduceM (Maybe Bool)
-> ReduceM
     (Maybe Bool -> ExpandedEllipsis -> Maybe ModuleName -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Bool -> ReduceM (Maybe Bool)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Bool
recursive
       ReduceM
  (Maybe Bool -> ExpandedEllipsis -> Maybe ModuleName -> Clause)
-> ReduceM (Maybe Bool)
-> ReduceM (ExpandedEllipsis -> Maybe ModuleName -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Bool -> ReduceM (Maybe Bool)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Bool
unreachable
       ReduceM (ExpandedEllipsis -> Maybe ModuleName -> Clause)
-> ReduceM ExpandedEllipsis -> ReduceM (Maybe ModuleName -> Clause)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ExpandedEllipsis -> ReduceM ExpandedEllipsis
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return ExpandedEllipsis
ell
       ReduceM (Maybe ModuleName -> Clause)
-> ReduceM (Maybe ModuleName) -> ReduceM Clause
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe ModuleName -> ReduceM (Maybe ModuleName)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe ModuleName
wm

instance InstantiateFull Instantiation where
  instantiateFull' :: Instantiation -> ReduceM Instantiation
instantiateFull' (Instantiation [Arg [Char]]
a Term
b) =
    [Arg [Char]] -> Term -> Instantiation
Instantiation [Arg [Char]]
a (Term -> Instantiation) -> ReduceM Term -> ReduceM Instantiation
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
b

instance InstantiateFull (Judgement MetaId) where
  instantiateFull' :: Judgement MetaId -> ReduceM (Judgement MetaId)
instantiateFull' (HasType MetaId
a Comparison
b Type
c) =
    MetaId -> Comparison -> Type -> Judgement MetaId
forall a. a -> Comparison -> Type -> Judgement a
HasType MetaId
a Comparison
b (Type -> Judgement MetaId)
-> ReduceM Type -> ReduceM (Judgement MetaId)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
c
  instantiateFull' (IsSort MetaId
a Type
b) =
    MetaId -> Type -> Judgement MetaId
forall a. a -> Type -> Judgement a
IsSort MetaId
a (Type -> Judgement MetaId)
-> ReduceM Type -> ReduceM (Judgement MetaId)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
b

instance InstantiateFull RemoteMetaVariable where
  instantiateFull' :: RemoteMetaVariable -> ReduceM RemoteMetaVariable
instantiateFull' (RemoteMetaVariable Instantiation
a Modality
b Judgement MetaId
c) = Instantiation -> Modality -> Judgement MetaId -> RemoteMetaVariable
RemoteMetaVariable
    (Instantiation
 -> Modality -> Judgement MetaId -> RemoteMetaVariable)
-> ReduceM Instantiation
-> ReduceM (Modality -> Judgement MetaId -> RemoteMetaVariable)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Instantiation -> ReduceM Instantiation
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Instantiation
a
    ReduceM (Modality -> Judgement MetaId -> RemoteMetaVariable)
-> ReduceM Modality
-> ReduceM (Judgement MetaId -> RemoteMetaVariable)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Modality -> ReduceM Modality
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Modality
b
    ReduceM (Judgement MetaId -> RemoteMetaVariable)
-> ReduceM (Judgement MetaId) -> ReduceM RemoteMetaVariable
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Judgement MetaId -> ReduceM (Judgement MetaId)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Judgement MetaId
c

instance InstantiateFull Interface where
  instantiateFull' :: Interface -> ReduceM Interface
instantiateFull' Interface
i = do
    Definitions
defs <- Definitions -> ReduceM Definitions
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Interface
i Interface -> Lens' Interface Definitions -> Definitions
forall o i. o -> Lens' o i -> i
^. (Signature -> f Signature) -> Interface -> f Interface
Lens' Interface Signature
intSignature ((Signature -> f Signature) -> Interface -> f Interface)
-> ((Definitions -> f Definitions) -> Signature -> f Signature)
-> (Definitions -> f Definitions)
-> Interface
-> f Interface
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Definitions -> f Definitions) -> Signature -> f Signature
Lens' Signature Definitions
sigDefinitions)
    Interface -> ReduceM Interface
instantiateFullExceptForDefinitions'
      (Lens' Interface Definitions -> LensSet Interface Definitions
forall o i. Lens' o i -> LensSet o i
set ((Signature -> f Signature) -> Interface -> f Interface
Lens' Interface Signature
intSignature ((Signature -> f Signature) -> Interface -> f Interface)
-> ((Definitions -> f Definitions) -> Signature -> f Signature)
-> (Definitions -> f Definitions)
-> Interface
-> f Interface
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Definitions -> f Definitions) -> Signature -> f Signature
Lens' Signature Definitions
sigDefinitions) Definitions
defs Interface
i)

-- | Instantiates everything except for definitions in the signature.

instantiateFullExceptForDefinitions' :: Interface -> ReduceM Interface
instantiateFullExceptForDefinitions' :: Interface -> ReduceM Interface
instantiateFullExceptForDefinitions'
  (Interface Hash
h Text
s FileType
ft [(TopLevelModuleName, Hash)]
ms ModuleName
mod TopLevelModuleName
tlmod Map ModuleName Scope
scope ScopeInfo
inside Signature
sig RemoteMetaStore
metas DisplayForms
display Map QName Text
userwarn
     Maybe Text
importwarn BuiltinThings (PrimitiveId, QName)
b Map [Char] ForeignCodeStack
foreignCode HighlightingInfo
highlighting [OptionsPragma]
libPragmas [OptionsPragma]
filePragmas
     PragmaOptions
usedOpts PatternSynDefns
patsyns [TCWarning]
warnings Set QName
partialdefs Map OpaqueId OpaqueBlock
oblocks Map QName OpaqueId
onames) =
  Hash
-> Text
-> FileType
-> [(TopLevelModuleName, Hash)]
-> ModuleName
-> TopLevelModuleName
-> Map ModuleName Scope
-> ScopeInfo
-> Signature
-> RemoteMetaStore
-> DisplayForms
-> Map QName Text
-> Maybe Text
-> BuiltinThings (PrimitiveId, QName)
-> Map [Char] ForeignCodeStack
-> HighlightingInfo
-> [OptionsPragma]
-> [OptionsPragma]
-> PragmaOptions
-> PatternSynDefns
-> [TCWarning]
-> Set QName
-> Map OpaqueId OpaqueBlock
-> Map QName OpaqueId
-> Interface
Interface Hash
h Text
s FileType
ft [(TopLevelModuleName, Hash)]
ms ModuleName
mod TopLevelModuleName
tlmod Map ModuleName Scope
scope ScopeInfo
inside
    (Signature
 -> RemoteMetaStore
 -> DisplayForms
 -> Map QName Text
 -> Maybe Text
 -> BuiltinThings (PrimitiveId, QName)
 -> Map [Char] ForeignCodeStack
 -> HighlightingInfo
 -> [OptionsPragma]
 -> [OptionsPragma]
 -> PragmaOptions
 -> PatternSynDefns
 -> [TCWarning]
 -> Set QName
 -> Map OpaqueId OpaqueBlock
 -> Map QName OpaqueId
 -> Interface)
-> ReduceM Signature
-> ReduceM
     (RemoteMetaStore
      -> DisplayForms
      -> Map QName Text
      -> Maybe Text
      -> BuiltinThings (PrimitiveId, QName)
      -> Map [Char] ForeignCodeStack
      -> HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((\Sections
s RewriteRuleMap
r -> Sig { _sigSections :: Sections
_sigSections     = Sections
s
                      , _sigDefinitions :: Definitions
_sigDefinitions  = Signature
sig Signature -> Lens' Signature Definitions -> Definitions
forall o i. o -> Lens' o i -> i
^. (Definitions -> f Definitions) -> Signature -> f Signature
Lens' Signature Definitions
sigDefinitions
                      , _sigRewriteRules :: RewriteRuleMap
_sigRewriteRules = RewriteRuleMap
r
                      })
         (Sections -> RewriteRuleMap -> Signature)
-> ReduceM Sections -> ReduceM (RewriteRuleMap -> Signature)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sections -> ReduceM Sections
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Signature
sig Signature -> Lens' Signature Sections -> Sections
forall o i. o -> Lens' o i -> i
^. (Sections -> f Sections) -> Signature -> f Signature
Lens' Signature Sections
sigSections)
         ReduceM (RewriteRuleMap -> Signature)
-> ReduceM RewriteRuleMap -> ReduceM Signature
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> RewriteRuleMap -> ReduceM RewriteRuleMap
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' (Signature
sig Signature -> Lens' Signature RewriteRuleMap -> RewriteRuleMap
forall o i. o -> Lens' o i -> i
^. (RewriteRuleMap -> f RewriteRuleMap) -> Signature -> f Signature
Lens' Signature RewriteRuleMap
sigRewriteRules))
    ReduceM
  (RemoteMetaStore
   -> DisplayForms
   -> Map QName Text
   -> Maybe Text
   -> BuiltinThings (PrimitiveId, QName)
   -> Map [Char] ForeignCodeStack
   -> HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM RemoteMetaStore
-> ReduceM
     (DisplayForms
      -> Map QName Text
      -> Maybe Text
      -> BuiltinThings (PrimitiveId, QName)
      -> Map [Char] ForeignCodeStack
      -> HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> RemoteMetaStore -> ReduceM RemoteMetaStore
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' RemoteMetaStore
metas
    ReduceM
  (DisplayForms
   -> Map QName Text
   -> Maybe Text
   -> BuiltinThings (PrimitiveId, QName)
   -> Map [Char] ForeignCodeStack
   -> HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM DisplayForms
-> ReduceM
     (Map QName Text
      -> Maybe Text
      -> BuiltinThings (PrimitiveId, QName)
      -> Map [Char] ForeignCodeStack
      -> HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> DisplayForms -> ReduceM DisplayForms
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' DisplayForms
display
    ReduceM
  (Map QName Text
   -> Maybe Text
   -> BuiltinThings (PrimitiveId, QName)
   -> Map [Char] ForeignCodeStack
   -> HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM (Map QName Text)
-> ReduceM
     (Maybe Text
      -> BuiltinThings (PrimitiveId, QName)
      -> Map [Char] ForeignCodeStack
      -> HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Map QName Text -> ReduceM (Map QName Text)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Map QName Text
userwarn
    ReduceM
  (Maybe Text
   -> BuiltinThings (PrimitiveId, QName)
   -> Map [Char] ForeignCodeStack
   -> HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM (Maybe Text)
-> ReduceM
     (BuiltinThings (PrimitiveId, QName)
      -> Map [Char] ForeignCodeStack
      -> HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Text -> ReduceM (Maybe Text)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Text
importwarn
    ReduceM
  (BuiltinThings (PrimitiveId, QName)
   -> Map [Char] ForeignCodeStack
   -> HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM (BuiltinThings (PrimitiveId, QName))
-> ReduceM
     (Map [Char] ForeignCodeStack
      -> HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> BuiltinThings (PrimitiveId, QName)
-> ReduceM (BuiltinThings (PrimitiveId, QName))
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' BuiltinThings (PrimitiveId, QName)
b
    ReduceM
  (Map [Char] ForeignCodeStack
   -> HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM (Map [Char] ForeignCodeStack)
-> ReduceM
     (HighlightingInfo
      -> [OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Map [Char] ForeignCodeStack
-> ReduceM (Map [Char] ForeignCodeStack)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Map [Char] ForeignCodeStack
foreignCode
    ReduceM
  (HighlightingInfo
   -> [OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM HighlightingInfo
-> ReduceM
     ([OptionsPragma]
      -> [OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> HighlightingInfo -> ReduceM HighlightingInfo
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return HighlightingInfo
highlighting
    ReduceM
  ([OptionsPragma]
   -> [OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM [OptionsPragma]
-> ReduceM
     ([OptionsPragma]
      -> PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [OptionsPragma] -> ReduceM [OptionsPragma]
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return [OptionsPragma]
libPragmas
    ReduceM
  ([OptionsPragma]
   -> PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM [OptionsPragma]
-> ReduceM
     (PragmaOptions
      -> PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [OptionsPragma] -> ReduceM [OptionsPragma]
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return [OptionsPragma]
filePragmas
    ReduceM
  (PragmaOptions
   -> PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM PragmaOptions
-> ReduceM
     (PatternSynDefns
      -> [TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PragmaOptions -> ReduceM PragmaOptions
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return PragmaOptions
usedOpts
    ReduceM
  (PatternSynDefns
   -> [TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM PatternSynDefns
-> ReduceM
     ([TCWarning]
      -> Set QName
      -> Map OpaqueId OpaqueBlock
      -> Map QName OpaqueId
      -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PatternSynDefns -> ReduceM PatternSynDefns
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return PatternSynDefns
patsyns
    ReduceM
  ([TCWarning]
   -> Set QName
   -> Map OpaqueId OpaqueBlock
   -> Map QName OpaqueId
   -> Interface)
-> ReduceM [TCWarning]
-> ReduceM
     (Set QName
      -> Map OpaqueId OpaqueBlock -> Map QName OpaqueId -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [TCWarning] -> ReduceM [TCWarning]
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return [TCWarning]
warnings
    ReduceM
  (Set QName
   -> Map OpaqueId OpaqueBlock -> Map QName OpaqueId -> Interface)
-> ReduceM (Set QName)
-> ReduceM
     (Map OpaqueId OpaqueBlock -> Map QName OpaqueId -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Set QName -> ReduceM (Set QName)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Set QName
partialdefs
    ReduceM
  (Map OpaqueId OpaqueBlock -> Map QName OpaqueId -> Interface)
-> ReduceM (Map OpaqueId OpaqueBlock)
-> ReduceM (Map QName OpaqueId -> Interface)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Map OpaqueId OpaqueBlock -> ReduceM (Map OpaqueId OpaqueBlock)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Map OpaqueId OpaqueBlock
oblocks
    ReduceM (Map QName OpaqueId -> Interface)
-> ReduceM (Map QName OpaqueId) -> ReduceM Interface
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Map QName OpaqueId -> ReduceM (Map QName OpaqueId)
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Map QName OpaqueId
onames

-- | Instantiates everything except for definitions in the signature.

instantiateFullExceptForDefinitions ::
  MonadReduce m => Interface -> m Interface
instantiateFullExceptForDefinitions :: forall (m :: * -> *). MonadReduce m => Interface -> m Interface
instantiateFullExceptForDefinitions =
  ReduceM Interface -> m Interface
forall a. ReduceM a -> m a
forall (m :: * -> *) a. MonadReduce m => ReduceM a -> m a
liftReduce (ReduceM Interface -> m Interface)
-> (Interface -> ReduceM Interface) -> Interface -> m Interface
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Interface -> ReduceM Interface
instantiateFullExceptForDefinitions'

instance InstantiateFull a => InstantiateFull (Builtin a) where
    instantiateFull' :: Builtin a -> ReduceM (Builtin a)
instantiateFull' (Builtin Term
t) = Term -> Builtin a
forall pf. Term -> Builtin pf
Builtin (Term -> Builtin a) -> ReduceM Term -> ReduceM (Builtin a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
t
    instantiateFull' (Prim a
x)   = a -> Builtin a
forall pf. pf -> Builtin pf
Prim (a -> Builtin a) -> ReduceM a -> ReduceM (Builtin a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> ReduceM a
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' a
x
    instantiateFull' b :: Builtin a
b@(BuiltinRewriteRelations Set QName
xs) = Builtin a -> ReduceM (Builtin a)
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Builtin a
b

instance InstantiateFull Candidate where
  instantiateFull' :: Candidate -> ReduceM Candidate
instantiateFull' (Candidate CandidateKind
q Term
u Type
t Bool
ov) =
    CandidateKind -> Term -> Type -> Bool -> Candidate
Candidate CandidateKind
q (Term -> Type -> Bool -> Candidate)
-> ReduceM Term -> ReduceM (Type -> Bool -> Candidate)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> ReduceM Term
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Term
u ReduceM (Type -> Bool -> Candidate)
-> ReduceM Type -> ReduceM (Bool -> Candidate)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t ReduceM (Bool -> Candidate) -> ReduceM Bool -> ReduceM Candidate
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
ov

instance InstantiateFull EqualityView where
  instantiateFull' :: EqualityView -> ReduceM EqualityView
instantiateFull' (OtherType Type
t)            = Type -> EqualityView
OtherType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t
  instantiateFull' (IdiomType Type
t)            = Type -> EqualityView
IdiomType
    (Type -> EqualityView) -> ReduceM Type -> ReduceM EqualityView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ReduceM Type
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Type
t
  instantiateFull' (EqualityType Sort
s QName
eq [Arg Term]
l Arg Term
t Arg Term
a Arg Term
b) = Sort
-> QName
-> [Arg Term]
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
EqualityType
    (Sort
 -> QName
 -> [Arg Term]
 -> Arg Term
 -> Arg Term
 -> Arg Term
 -> EqualityView)
-> ReduceM Sort
-> ReduceM
     (QName
      -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort -> ReduceM Sort
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Sort
s
    ReduceM
  (QName
   -> [Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM QName
-> ReduceM
     ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> QName -> ReduceM QName
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return QName
eq
    ReduceM
  ([Arg Term] -> Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM [Arg Term]
-> ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Arg Term -> ReduceM (Arg Term))
-> [Arg Term] -> ReduceM [Arg Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Arg Term -> ReduceM (Arg Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' [Arg Term]
l
    ReduceM (Arg Term -> Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term)
-> ReduceM (Arg Term -> Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Arg Term
t
    ReduceM (Arg Term -> Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM (Arg Term -> EqualityView)
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Arg Term
a
    ReduceM (Arg Term -> EqualityView)
-> ReduceM (Arg Term) -> ReduceM EqualityView
forall a b. ReduceM (a -> b) -> ReduceM a -> ReduceM b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Arg Term -> ReduceM (Arg Term)
forall t. InstantiateFull t => t -> ReduceM t
instantiateFull' Arg Term
b