Safe Haskell | None |
---|---|
Language | Haskell2010 |
Kinds of standard universes: Prop
, Type
, SSet
.
Types
Flavor of standard universe (Prop < Type < SSet
,).
Instances
EmbPrj Univ Source # | |||||
NFData Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
Bounded Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
Enum Univ Source # | |||||
Generic Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ
| |||||
Show Univ Source # | |||||
Eq Univ Source # | |||||
Ord Univ Source # | |||||
type Rep Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ type Rep Univ = D1 ('MetaData "Univ" "Agda.Syntax.Internal.Univ" "Agda-2.6.20240731-inplace" 'False) (C1 ('MetaCons "UProp" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "UType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "USSet" 'PrefixI 'False) (U1 :: Type -> Type))) |
We have IsFibrant < IsStrict
.
Instances
EmbPrj IsFibrant Source # | |||||
Boolean IsFibrant Source # | |||||
IsBool IsFibrant Source # | |||||
NFData IsFibrant | |||||
Defined in Agda.Syntax.Internal | |||||
Generic IsFibrant Source # | |||||
Defined in Agda.Syntax.Internal.Univ
| |||||
Show IsFibrant Source # | |||||
Eq IsFibrant Source # | |||||
Ord IsFibrant Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
type Rep IsFibrant Source # | |||||
Defined in Agda.Syntax.Internal.Univ type Rep IsFibrant = D1 ('MetaData "IsFibrant" "Agda.Syntax.Internal.Univ" "Agda-2.6.20240731-inplace" 'False) (C1 ('MetaCons "IsFibrant" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "IsStrict" 'PrefixI 'False) (U1 :: Type -> Type)) |
Universe kind arithmetic
funUniv :: Univ -> Univ -> Univ Source #
Compute the universe type of a function space from the universe types of domain and codomain.
Inverting funUniv
:: Bool | Have |
-> Univ |
|
-> Univ |
|
-> Maybe Univ |
|
Conclude u1
from funUniv u1 u2
and u2
.
:: Univ |
|
-> Univ |
|
-> Maybe Univ |
|
Conclude u2
from funUniv u1 u2
and u1
.
Fibrancy
univFibrancy :: Univ -> IsFibrant Source #
Fibrancy of standard universes.