{-# LANGUAGE UndecidableInstances #-}
module Agda.TypeChecking.DisplayForm (displayForm) where
import Control.Monad
import Control.Monad.Trans (lift)
import Control.Monad.Trans.Maybe
import Data.Monoid (All(..))
import Data.Map (Map)
import qualified Data.Map as Map
import qualified Data.Set as Set
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Internal.Names
import Agda.Syntax.Scope.Base (inverseScopeLookupName)
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Level
import Agda.TypeChecking.Reduce (instantiate)
import Agda.Utils.Functor
import Agda.Utils.List
import Agda.Utils.Maybe
import Agda.Syntax.Common.Pretty
import Agda.Utils.Impossible
displayFormArities :: (HasConstInfo m, ReadTCState m) => QName -> m [Int]
displayFormArities :: forall (m :: * -> *).
(HasConstInfo m, ReadTCState m) =>
QName -> m [Nat]
displayFormArities QName
q = (Open DisplayForm -> Nat) -> [Open DisplayForm] -> [Nat]
forall a b. (a -> b) -> [a] -> [b]
map ([Elim] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length ([Elim] -> Nat)
-> (Open DisplayForm -> [Elim]) -> Open DisplayForm -> Nat
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DisplayForm -> [Elim]
dfPats (DisplayForm -> [Elim])
-> (Open DisplayForm -> DisplayForm) -> Open DisplayForm -> [Elim]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Open DisplayForm -> DisplayForm
forall (t :: * -> *) a. Decoration t => t a -> a
dget) ([Open DisplayForm] -> [Nat]) -> m [Open DisplayForm] -> m [Nat]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m [Open DisplayForm]
forall (m :: * -> *).
(HasConstInfo m, ReadTCState m) =>
QName -> m [Open DisplayForm]
getDisplayForms QName
q
liftLocalDisplayForm :: Substitution -> DisplayForm -> Maybe DisplayForm
liftLocalDisplayForm :: Substitution -> DisplayForm -> Maybe DisplayForm
liftLocalDisplayForm Substitution
IdS DisplayForm
df = DisplayForm -> Maybe DisplayForm
forall a. a -> Maybe a
Just DisplayForm
df
liftLocalDisplayForm (Wk Nat
n Substitution
IdS) (Display Nat
m [Elim]
lhs DisplayTerm
rhs) =
DisplayForm -> Maybe DisplayForm
forall a. a -> Maybe a
Just (DisplayForm -> Maybe DisplayForm)
-> DisplayForm -> Maybe DisplayForm
forall a b. (a -> b) -> a -> b
$ Nat -> [Elim] -> DisplayTerm -> DisplayForm
Display (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
m) [Elim]
lhs DisplayTerm
rhs
liftLocalDisplayForm Substitution
_ DisplayForm
_ = Maybe DisplayForm
forall a. Maybe a
Nothing
type MonadDisplayForm m =
( MonadReduce m
, ReadTCState m
, HasConstInfo m
, HasBuiltins m
, MonadDebug m
)
displayForm :: MonadDisplayForm m => QName -> Elims -> m (Maybe DisplayTerm)
displayForm :: forall (m :: * -> *).
MonadDisplayForm m =>
QName -> [Elim] -> m (Maybe DisplayTerm)
displayForm QName
q [Elim]
es = do
odfs <- QName -> m [Open DisplayForm]
forall (m :: * -> *).
(HasConstInfo m, ReadTCState m) =>
QName -> m [Open DisplayForm]
getDisplayForms QName
q
if (null odfs) then do
reportSLn "tc.display.top" 101 $ "no displayForm for " ++ prettyShow q
return Nothing
else do
unlessDebugPrinting $ reportSDoc "tc.display.top" 100 $ do
cps <- viewTC eCheckpoints
cxt <- getContextTelescope
return $ vcat
[ "displayForm for" <+> pretty q
, nest 2 $ "cxt =" <+> pretty cxt
, nest 2 $ "cps =" <+> vcat (map pretty (Map.toList cps))
, nest 2 $ "dfs =" <+> vcat (map pretty odfs) ]
dfs <- catMaybes <$> mapM (tryGetOpen liftLocalDisplayForm) odfs
scope <- getScope
ms <- do
ms <- mapM (runMaybeT . (`matchDisplayForm` es)) dfs
return [ m | Just (d, m) <- ms, wellScoped scope d ]
unlessDebugPrinting $ reportSDoc "tc.display.top" 100 $ return $ vcat
[ "name :" <+> pretty q
, "displayForms:" <+> pretty dfs
, "arguments :" <+> pretty es
, "matches :" <+> pretty ms
, "result :" <+> pretty (listToMaybe ms)
]
return $ listToMaybe ms
where
wellScoped :: ScopeInfo -> DisplayForm -> Bool
wellScoped ScopeInfo
scope (Display Nat
_ [Elim]
_ DisplayTerm
d)
| DisplayTerm -> Bool
isWithDisplay DisplayTerm
d = Bool
True
| Bool
otherwise = All -> Bool
getAll (All -> Bool) -> All -> Bool
forall a b. (a -> b) -> a -> b
$ (QName -> All) -> DisplayTerm -> All
forall a m. (NamesIn a, Monoid m) => (QName -> m) -> a -> m
namesIn' (Bool -> All
All (Bool -> All) -> (QName -> Bool) -> QName -> All
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ScopeInfo -> QName -> Bool
inScope ScopeInfo
scope) DisplayTerm
d
inScope :: ScopeInfo -> QName -> Bool
inScope ScopeInfo
scope QName
x = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ [QName] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([QName] -> Bool) -> [QName] -> Bool
forall a b. (a -> b) -> a -> b
$ QName -> ScopeInfo -> [QName]
inverseScopeLookupName QName
x ScopeInfo
scope
isWithDisplay :: DisplayTerm -> Bool
isWithDisplay DWithApp{} = Bool
True
isWithDisplay DisplayTerm
_ = Bool
False
matchDisplayForm :: MonadDisplayForm m
=> DisplayForm -> Elims -> MaybeT m (DisplayForm, DisplayTerm)
matchDisplayForm :: forall (m :: * -> *).
MonadDisplayForm m =>
DisplayForm -> [Elim] -> MaybeT m (DisplayForm, DisplayTerm)
matchDisplayForm d :: DisplayForm
d@(Display Nat
n [Elim]
ps DisplayTerm
v) [Elim]
es
| [Elim] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Elim]
ps Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
> [Elim] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Elim]
es = MaybeT m (DisplayForm, DisplayTerm)
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
| Bool
otherwise = do
let ([Elim]
es0, [Elim]
es1) = Nat -> [Elim] -> ([Elim], [Elim])
forall a. Nat -> [a] -> ([a], [a])
splitAt ([Elim] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Elim]
ps) [Elim]
es
mm <- Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
match (Nat -> Nat -> Window
Window Nat
0 Nat
n) [Elim]
ps [Elim]
es0
us <- forM [0 .. n - 1] $ \ Nat
i -> do
Just u <- Maybe (WithOrigin Term) -> MaybeT m (Maybe (WithOrigin Term))
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (WithOrigin Term) -> MaybeT m (Maybe (WithOrigin Term)))
-> Maybe (WithOrigin Term) -> MaybeT m (Maybe (WithOrigin Term))
forall a b. (a -> b) -> a -> b
$ Nat -> MatchResult -> Maybe (WithOrigin Term)
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup Nat
i MatchResult
mm
return u
return (d, substWithOrigin (parallelS $ map woThing us) us v `applyE` es1)
type MatchResult = Map Int (WithOrigin Term)
unionMatch :: Monad m => MatchResult -> MatchResult -> MaybeT m MatchResult
unionMatch :: forall (m :: * -> *).
Monad m =>
MatchResult -> MatchResult -> MaybeT m MatchResult
unionMatch MatchResult
m1 MatchResult
m2
| MatchResult -> Bool
forall a. Map Nat a -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null (MatchResult -> MatchResult -> MatchResult
forall k a b. Ord k => Map k a -> Map k b -> Map k a
Map.intersection MatchResult
m1 MatchResult
m2) = MatchResult -> MaybeT m MatchResult
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return (MatchResult -> MaybeT m MatchResult)
-> MatchResult -> MaybeT m MatchResult
forall a b. (a -> b) -> a -> b
$ MatchResult -> MatchResult -> MatchResult
forall k a. Ord k => Map k a -> Map k a -> Map k a
Map.union MatchResult
m1 MatchResult
m2
| Bool
otherwise = MaybeT m MatchResult
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
unionsMatch :: Monad m => [MatchResult] -> MaybeT m MatchResult
unionsMatch :: forall (m :: * -> *).
Monad m =>
[MatchResult] -> MaybeT m MatchResult
unionsMatch = (MatchResult -> MatchResult -> MaybeT m MatchResult)
-> MatchResult -> [MatchResult] -> MaybeT m MatchResult
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM MatchResult -> MatchResult -> MaybeT m MatchResult
forall (m :: * -> *).
Monad m =>
MatchResult -> MatchResult -> MaybeT m MatchResult
unionMatch MatchResult
forall k a. Map k a
Map.empty
data Window = Window {Window -> Nat
dbLo, Window -> Nat
dbHi :: Nat}
inWindow :: Window -> Nat -> Maybe Nat
inWindow :: Window -> Nat -> Maybe Nat
inWindow (Window Nat
lo Nat
hi) Nat
n | Nat
lo Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
<= Nat
n, Nat
n Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
< Nat
hi = Nat -> Maybe Nat
forall a. a -> Maybe a
Just (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
lo)
| Bool
otherwise = Maybe Nat
forall a. Maybe a
Nothing
shiftWindow :: Window -> Window
shiftWindow :: Window -> Window
shiftWindow (Window Nat
lo Nat
hi) = Nat -> Nat -> Window
Window (Nat
lo Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) (Nat
hi Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1)
class Match a where
match :: MonadDisplayForm m => Window -> a -> a -> MaybeT m MatchResult
instance Match a => Match [a] where
match :: forall (m :: * -> *).
MonadDisplayForm m =>
Window -> [a] -> [a] -> MaybeT m MatchResult
match Window
n [a]
xs [a]
ys = [MatchResult] -> MaybeT m MatchResult
forall (m :: * -> *).
Monad m =>
[MatchResult] -> MaybeT m MatchResult
unionsMatch ([MatchResult] -> MaybeT m MatchResult)
-> MaybeT m [MatchResult] -> MaybeT m MatchResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (a -> a -> MaybeT m MatchResult)
-> [a] -> [a] -> MaybeT m [MatchResult]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM (Window -> a -> a -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> a -> a -> MaybeT m MatchResult
match Window
n) [a]
xs [a]
ys
instance Match a => Match (Arg a) where
match :: forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Arg a -> Arg a -> MaybeT m MatchResult
match Window
n Arg a
p Arg a
v = (WithOrigin Term -> WithOrigin Term) -> MatchResult -> MatchResult
forall a b k. (a -> b) -> Map k a -> Map k b
Map.map (Origin -> WithOrigin Term -> WithOrigin Term
forall a. LensOrigin a => Origin -> a -> a
setOrigin (Arg a -> Origin
forall a. LensOrigin a => a -> Origin
getOrigin Arg a
v)) (MatchResult -> MatchResult)
-> MaybeT m MatchResult -> MaybeT m MatchResult
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Window -> a -> a -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> a -> a -> MaybeT m MatchResult
match Window
n (Arg a -> a
forall e. Arg e -> e
unArg Arg a
p) (Arg a -> a
forall e. Arg e -> e
unArg Arg a
v)
instance Match a => Match (Elim' a) where
match :: forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Elim' a -> Elim' a -> MaybeT m MatchResult
match Window
n Elim' a
p Elim' a
v =
case (Elim' a
p, Elim' a
v) of
(Proj ProjOrigin
_ QName
f, Proj ProjOrigin
_ QName
f') | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
f' -> MatchResult -> MaybeT m MatchResult
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return MatchResult
forall k a. Map k a
Map.empty
(Elim' a, Elim' a)
_ | Just Arg a
a <- Elim' a -> Maybe (Arg a)
forall a. Elim' a -> Maybe (Arg a)
isApplyElim Elim' a
p
, Just Arg a
a' <- Elim' a -> Maybe (Arg a)
forall a. Elim' a -> Maybe (Arg a)
isApplyElim Elim' a
v -> Window -> Arg a -> Arg a -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Arg a -> Arg a -> MaybeT m MatchResult
match Window
n Arg a
a Arg a
a'
(Elim' a, Elim' a)
_ -> MaybeT m MatchResult
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
instance Match Term where
match :: forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Term -> Term -> MaybeT m MatchResult
match Window
w Term
p Term
v = m Term -> MaybeT m Term
forall (m :: * -> *) a. Monad m => m a -> MaybeT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Term -> m Term
forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate Term
v) MaybeT m Term
-> (Term -> MaybeT m MatchResult) -> MaybeT m MatchResult
forall a b. MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \ Term
v -> case (Term -> Term
unSpine Term
p, Term -> Term
unSpine Term
v) of
(Var Nat
i [], Term
v) | Just Nat
j <- Window -> Nat -> Maybe Nat
inWindow Window
w Nat
i -> MatchResult -> MaybeT m MatchResult
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return (MatchResult -> MaybeT m MatchResult)
-> MatchResult -> MaybeT m MatchResult
forall a b. (a -> b) -> a -> b
$ Nat -> WithOrigin Term -> MatchResult
forall k a. k -> a -> Map k a
Map.singleton Nat
j (Origin -> Term -> WithOrigin Term
forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted Term
v)
(Var Nat
i (Elim
_:[Elim]
_), Term
v) | Just{} <- Window -> Nat -> Maybe Nat
inWindow Window
w Nat
i -> MaybeT m MatchResult
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
(Var Nat
i [Elim]
ps, Var Nat
j [Elim]
vs) | Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
j -> Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
match Window
w [Elim]
ps [Elim]
vs
(Def QName
c [Elim]
ps, Def QName
d [Elim]
vs) | QName
c QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d -> Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
match Window
w [Elim]
ps [Elim]
vs
(Con ConHead
c ConInfo
_ [Elim]
ps, Con ConHead
d ConInfo
_ [Elim]
vs) | ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
d -> Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> [Elim] -> [Elim] -> MaybeT m MatchResult
match Window
w [Elim]
ps [Elim]
vs
(Lit Literal
l, Lit Literal
l') | Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l' -> MatchResult -> MaybeT m MatchResult
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return MatchResult
forall k a. Map k a
Map.empty
(Lam ArgInfo
h Abs Term
p, Lam ArgInfo
h' Abs Term
v) | ArgInfo
h ArgInfo -> ArgInfo -> Bool
forall a. Eq a => a -> a -> Bool
== ArgInfo
h' -> Window -> Term -> Term -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Term -> Term -> MaybeT m MatchResult
match (Window -> Window
shiftWindow Window
w) (Abs Term -> Term
forall a. Abs a -> a
unAbs Abs Term
p) (Abs Term -> Term
forall a. Abs a -> a
unAbs Abs Term
v)
(Term
p, Term
v) | Term
p Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
v -> MatchResult -> MaybeT m MatchResult
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return MatchResult
forall k a. Map k a
Map.empty
(Term
p, Level Level
l) -> Window -> Term -> Term -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Term -> Term -> MaybeT m MatchResult
match Window
w Term
p (Term -> MaybeT m MatchResult)
-> MaybeT m Term -> MaybeT m MatchResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Level -> MaybeT m Term
forall (m :: * -> *). HasBuiltins m => Level -> m Term
reallyUnLevelView Level
l
(Sort Sort
ps, Sort Sort
pv) -> Window -> Sort -> Sort -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Sort -> Sort -> MaybeT m MatchResult
match Window
w Sort
ps Sort
pv
(Term
p, Sort (Type Level
v)) -> Window -> Term -> Term -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Term -> Term -> MaybeT m MatchResult
match Window
w Term
p (Term -> MaybeT m MatchResult)
-> MaybeT m Term -> MaybeT m MatchResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Level -> MaybeT m Term
forall (m :: * -> *). HasBuiltins m => Level -> m Term
reallyUnLevelView Level
v
(Term, Term)
_ -> MaybeT m MatchResult
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
instance Match Sort where
match :: forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Sort -> Sort -> MaybeT m MatchResult
match Window
w Sort
p Sort
v = case (Sort
p, Sort
v) of
(Type Level
pl, Type Level
vl) -> Window -> Level -> Level -> MaybeT m MatchResult
forall a (m :: * -> *).
(Match a, MonadDisplayForm m) =>
Window -> a -> a -> MaybeT m MatchResult
forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Level -> Level -> MaybeT m MatchResult
match Window
w Level
pl Level
vl
(Sort, Sort)
_ | Sort
p Sort -> Sort -> Bool
forall a. Eq a => a -> a -> Bool
== Sort
v -> MatchResult -> MaybeT m MatchResult
forall a. a -> MaybeT m a
forall (m :: * -> *) a. Monad m => a -> m a
return MatchResult
forall k a. Map k a
Map.empty
(Sort, Sort)
_ -> MaybeT m MatchResult
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
instance Match Level where
match :: forall (m :: * -> *).
MonadDisplayForm m =>
Window -> Level -> Level -> MaybeT m MatchResult
match Window
w Level
p Level
v = do
p <- Level -> MaybeT m Term
forall (m :: * -> *). HasBuiltins m => Level -> m Term
reallyUnLevelView Level
p
v <- reallyUnLevelView v
match w p v
class SubstWithOrigin a where
substWithOrigin :: Substitution -> [WithOrigin Term] -> a -> a
instance SubstWithOrigin a => SubstWithOrigin [a] where
substWithOrigin :: Substitution -> [WithOrigin Term] -> [a] -> [a]
substWithOrigin Substitution
rho [WithOrigin Term]
ots = (a -> a) -> [a] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map (Substitution -> [WithOrigin Term] -> a -> a
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots)
instance (SubstWithOrigin a, SubstWithOrigin (Arg a)) => SubstWithOrigin (Elim' a) where
substWithOrigin :: Substitution -> [WithOrigin Term] -> Elim' a -> Elim' a
substWithOrigin Substitution
rho [WithOrigin Term]
ots (Apply Arg a
arg) = Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply (Arg a -> Elim' a) -> Arg a -> Elim' a
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> Arg a -> Arg a
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots Arg a
arg
substWithOrigin Substitution
rho [WithOrigin Term]
ots e :: Elim' a
e@Proj{} = Elim' a
e
substWithOrigin Substitution
rho [WithOrigin Term]
ots (IApply a
u a
v a
w) = a -> a -> a -> Elim' a
forall a. a -> a -> a -> Elim' a
IApply
(Substitution -> [WithOrigin Term] -> a -> a
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots a
u)
(Substitution -> [WithOrigin Term] -> a -> a
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots a
v)
(Substitution -> [WithOrigin Term] -> a -> a
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots a
w)
instance SubstWithOrigin (Arg Term) where
substWithOrigin :: Substitution -> [WithOrigin Term] -> Arg Term -> Arg Term
substWithOrigin Substitution
rho [WithOrigin Term]
ots (Arg ArgInfo
ai Term
v) =
case Term
v of
Var Nat
x [] -> case [WithOrigin Term]
ots [WithOrigin Term] -> Nat -> Maybe (WithOrigin Term)
forall a. [a] -> Nat -> Maybe a
!!! Nat
x of
Just (WithOrigin Origin
o Term
u) -> ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ((Origin -> Origin) -> ArgInfo -> ArgInfo
forall a. LensOrigin a => (Origin -> Origin) -> a -> a
mapOrigin (Origin -> Origin -> Origin
replaceOrigin Origin
o) ArgInfo
ai) Term
u
Maybe (WithOrigin Term)
Nothing -> ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
rho Term
v
Con ConHead
c ConInfo
ci [Elim]
args -> ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ ConHead -> ConInfo -> [Elim] -> Term
Con ConHead
c ConInfo
ci ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
args
Def QName
q [Elim]
es -> ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ QName -> [Elim] -> Term
Def QName
q ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es
Term
_ -> ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
rho Term
v
where
replaceOrigin :: Origin -> Origin -> Origin
replaceOrigin Origin
_ Origin
UserWritten = Origin
UserWritten
replaceOrigin Origin
o Origin
_ = Origin
o
instance SubstWithOrigin Term where
substWithOrigin :: Substitution -> [WithOrigin Term] -> Term -> Term
substWithOrigin Substitution
rho [WithOrigin Term]
ots Term
v =
case Term
v of
Con ConHead
c ConInfo
ci [Elim]
args -> ConHead -> ConInfo -> [Elim] -> Term
Con ConHead
c ConInfo
ci ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
args
Def QName
q [Elim]
es -> QName -> [Elim] -> Term
Def QName
q ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es
Term
_ -> Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
rho Term
v
instance SubstWithOrigin DisplayTerm where
substWithOrigin :: Substitution -> [WithOrigin Term] -> DisplayTerm -> DisplayTerm
substWithOrigin Substitution
rho [WithOrigin Term]
ots =
\case
DTerm' Term
v [Elim]
es -> Term -> [Elim] -> DisplayTerm
DTerm' (Substitution -> [WithOrigin Term] -> Term -> Term
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots Term
v) ([Elim] -> DisplayTerm) -> [Elim] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es
DDot' Term
v [Elim]
es -> Term -> [Elim] -> DisplayTerm
DDot' (Substitution -> [WithOrigin Term] -> Term -> Term
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots Term
v) ([Elim] -> DisplayTerm) -> [Elim] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es
DDef QName
q [Elim' DisplayTerm]
es -> QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
q ([Elim' DisplayTerm] -> DisplayTerm)
-> [Elim' DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution
-> [WithOrigin Term] -> [Elim' DisplayTerm] -> [Elim' DisplayTerm]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim' DisplayTerm]
es
DCon ConHead
c ConInfo
ci [Arg DisplayTerm]
args -> ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
c ConInfo
ci ([Arg DisplayTerm] -> DisplayTerm)
-> [Arg DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution
-> [WithOrigin Term] -> [Arg DisplayTerm] -> [Arg DisplayTerm]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Arg DisplayTerm]
args
DWithApp DisplayTerm
t [DisplayTerm]
ts [Elim]
es -> DisplayTerm -> [DisplayTerm] -> [Elim] -> DisplayTerm
DWithApp
(Substitution -> [WithOrigin Term] -> DisplayTerm -> DisplayTerm
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots DisplayTerm
t)
(Substitution -> [WithOrigin Term] -> [DisplayTerm] -> [DisplayTerm]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [DisplayTerm]
ts)
(Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es)
instance SubstWithOrigin (Arg DisplayTerm) where
substWithOrigin :: Substitution
-> [WithOrigin Term] -> Arg DisplayTerm -> Arg DisplayTerm
substWithOrigin Substitution
rho [WithOrigin Term]
ots (Arg ArgInfo
ai DisplayTerm
dt) =
case DisplayTerm
dt of
DTerm' Term
v [Elim]
es -> Substitution -> [WithOrigin Term] -> Arg Term -> Arg Term
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots (ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai Term
v) Arg Term -> (Term -> DisplayTerm) -> Arg DisplayTerm
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> (Term -> [Elim] -> DisplayTerm
`DTerm'` Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es)
DDot' Term
v [Elim]
es -> ArgInfo -> DisplayTerm -> Arg DisplayTerm
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (DisplayTerm -> Arg DisplayTerm) -> DisplayTerm -> Arg DisplayTerm
forall a b. (a -> b) -> a -> b
$ Term -> [Elim] -> DisplayTerm
DDot' (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
rho Term
v) ([Elim] -> DisplayTerm) -> [Elim] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es
DDef QName
q [Elim' DisplayTerm]
es -> ArgInfo -> DisplayTerm -> Arg DisplayTerm
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (DisplayTerm -> Arg DisplayTerm) -> DisplayTerm -> Arg DisplayTerm
forall a b. (a -> b) -> a -> b
$ QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
q ([Elim' DisplayTerm] -> DisplayTerm)
-> [Elim' DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution
-> [WithOrigin Term] -> [Elim' DisplayTerm] -> [Elim' DisplayTerm]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim' DisplayTerm]
es
DCon ConHead
c ConInfo
ci [Arg DisplayTerm]
args -> ArgInfo -> DisplayTerm -> Arg DisplayTerm
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (DisplayTerm -> Arg DisplayTerm) -> DisplayTerm -> Arg DisplayTerm
forall a b. (a -> b) -> a -> b
$ ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
c ConInfo
ci ([Arg DisplayTerm] -> DisplayTerm)
-> [Arg DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution
-> [WithOrigin Term] -> [Arg DisplayTerm] -> [Arg DisplayTerm]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Arg DisplayTerm]
args
DWithApp DisplayTerm
t [DisplayTerm]
ts [Elim]
es -> ArgInfo -> DisplayTerm -> Arg DisplayTerm
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai (DisplayTerm -> Arg DisplayTerm) -> DisplayTerm -> Arg DisplayTerm
forall a b. (a -> b) -> a -> b
$ DisplayTerm -> [DisplayTerm] -> [Elim] -> DisplayTerm
DWithApp
(Substitution -> [WithOrigin Term] -> DisplayTerm -> DisplayTerm
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots DisplayTerm
t)
(Substitution -> [WithOrigin Term] -> [DisplayTerm] -> [DisplayTerm]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [DisplayTerm]
ts)
(Substitution -> [WithOrigin Term] -> [Elim] -> [Elim]
forall a.
SubstWithOrigin a =>
Substitution -> [WithOrigin Term] -> a -> a
substWithOrigin Substitution
rho [WithOrigin Term]
ots [Elim]
es)