{-# LANGUAGE NondecreasingIndentation #-}
module Agda.TypeChecking.Rules.LHS.Unify
( UnificationResult
, UnificationResult'(..)
, unifyIndices ) where
import Prelude hiding (null)
import Control.Monad
import Control.Monad.State
import Control.Monad.Writer (WriterT(..), MonadWriter(..))
import Control.Monad.Except
import Data.Semigroup hiding (Arg)
import qualified Data.List as List
import qualified Data.IntSet as IntSet
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Agda.Benchmarking as Bench
import Agda.Interaction.Options (optInjectiveTypeConstructors)
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Literal
import Agda.TypeChecking.Monad
import qualified Agda.TypeChecking.Monad.Benchmark as Bench
import Agda.TypeChecking.Conversion.Pure
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Datatypes
import Agda.TypeChecking.Irrelevance
import Agda.TypeChecking.Level (reallyUnLevelView)
import Agda.TypeChecking.Reduce
import qualified Agda.TypeChecking.Patterns.Match as Match
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Free
import Agda.TypeChecking.Free.Precompute
import Agda.TypeChecking.Free.Reduce
import Agda.TypeChecking.Records
import Agda.TypeChecking.Rules.LHS.Problem
import Agda.Utils.Benchmark
import Agda.Utils.Either
import Agda.Utils.Function
import Agda.Utils.Functor
import Agda.Utils.Lens
import Agda.Utils.List
import Agda.Utils.ListT
import Agda.Utils.Maybe
import Agda.Utils.Monad
import Agda.Utils.Null
import Agda.Utils.PartialOrd
import Agda.Utils.Permutation
import Agda.Utils.Singleton
import Agda.Utils.Size
import Agda.Utils.Tuple
import Agda.Utils.Impossible
type UnificationResult = UnificationResult'
( Telescope
, PatternSubstitution
, [NamedArg DeBruijnPattern]
)
data UnificationResult' a
= Unifies a
| NoUnify NegativeUnification
| UnifyBlocked Blocker
| UnifyStuck [UnificationFailure]
deriving (Int -> UnificationResult' a -> ShowS
[UnificationResult' a] -> ShowS
UnificationResult' a -> String
(Int -> UnificationResult' a -> ShowS)
-> (UnificationResult' a -> String)
-> ([UnificationResult' a] -> ShowS)
-> Show (UnificationResult' a)
forall a. Show a => Int -> UnificationResult' a -> ShowS
forall a. Show a => [UnificationResult' a] -> ShowS
forall a. Show a => UnificationResult' a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UnificationResult' a] -> ShowS
$cshowList :: forall a. Show a => [UnificationResult' a] -> ShowS
show :: UnificationResult' a -> String
$cshow :: forall a. Show a => UnificationResult' a -> String
showsPrec :: Int -> UnificationResult' a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> UnificationResult' a -> ShowS
Show, a -> UnificationResult' b -> UnificationResult' a
(a -> b) -> UnificationResult' a -> UnificationResult' b
(forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b)
-> (forall a b. a -> UnificationResult' b -> UnificationResult' a)
-> Functor UnificationResult'
forall a b. a -> UnificationResult' b -> UnificationResult' a
forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> UnificationResult' b -> UnificationResult' a
$c<$ :: forall a b. a -> UnificationResult' b -> UnificationResult' a
fmap :: (a -> b) -> UnificationResult' a -> UnificationResult' b
$cfmap :: forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
Functor, UnificationResult' a -> Bool
(a -> m) -> UnificationResult' a -> m
(a -> b -> b) -> b -> UnificationResult' a -> b
(forall m. Monoid m => UnificationResult' m -> m)
-> (forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m)
-> (forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m)
-> (forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b)
-> (forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b)
-> (forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b)
-> (forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b)
-> (forall a. (a -> a -> a) -> UnificationResult' a -> a)
-> (forall a. (a -> a -> a) -> UnificationResult' a -> a)
-> (forall a. UnificationResult' a -> [a])
-> (forall a. UnificationResult' a -> Bool)
-> (forall a. UnificationResult' a -> Int)
-> (forall a. Eq a => a -> UnificationResult' a -> Bool)
-> (forall a. Ord a => UnificationResult' a -> a)
-> (forall a. Ord a => UnificationResult' a -> a)
-> (forall a. Num a => UnificationResult' a -> a)
-> (forall a. Num a => UnificationResult' a -> a)
-> Foldable UnificationResult'
forall a. Eq a => a -> UnificationResult' a -> Bool
forall a. Num a => UnificationResult' a -> a
forall a. Ord a => UnificationResult' a -> a
forall m. Monoid m => UnificationResult' m -> m
forall a. UnificationResult' a -> Bool
forall a. UnificationResult' a -> Int
forall a. UnificationResult' a -> [a]
forall a. (a -> a -> a) -> UnificationResult' a -> a
forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: UnificationResult' a -> a
$cproduct :: forall a. Num a => UnificationResult' a -> a
sum :: UnificationResult' a -> a
$csum :: forall a. Num a => UnificationResult' a -> a
minimum :: UnificationResult' a -> a
$cminimum :: forall a. Ord a => UnificationResult' a -> a
maximum :: UnificationResult' a -> a
$cmaximum :: forall a. Ord a => UnificationResult' a -> a
elem :: a -> UnificationResult' a -> Bool
$celem :: forall a. Eq a => a -> UnificationResult' a -> Bool
length :: UnificationResult' a -> Int
$clength :: forall a. UnificationResult' a -> Int
null :: UnificationResult' a -> Bool
$cnull :: forall a. UnificationResult' a -> Bool
toList :: UnificationResult' a -> [a]
$ctoList :: forall a. UnificationResult' a -> [a]
foldl1 :: (a -> a -> a) -> UnificationResult' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
foldr1 :: (a -> a -> a) -> UnificationResult' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
foldl' :: (b -> a -> b) -> b -> UnificationResult' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
foldl :: (b -> a -> b) -> b -> UnificationResult' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
foldr' :: (a -> b -> b) -> b -> UnificationResult' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
foldr :: (a -> b -> b) -> b -> UnificationResult' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
foldMap' :: (a -> m) -> UnificationResult' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
foldMap :: (a -> m) -> UnificationResult' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
fold :: UnificationResult' m -> m
$cfold :: forall m. Monoid m => UnificationResult' m -> m
Foldable, Functor UnificationResult'
Foldable UnificationResult'
Functor UnificationResult'
-> Foldable UnificationResult'
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b))
-> (forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b))
-> (forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a))
-> Traversable UnificationResult'
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
sequence :: UnificationResult' (m a) -> m (UnificationResult' a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
mapM :: (a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
sequenceA :: UnificationResult' (f a) -> f (UnificationResult' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
traverse :: (a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
$cp2Traversable :: Foldable UnificationResult'
$cp1Traversable :: Functor UnificationResult'
Traversable)
unifyIndices
:: (PureTCM m, MonadBench m, BenchPhase m ~ Bench.Phase)
=> Telescope
-> FlexibleVars
-> Type
-> Args
-> Args
-> m UnificationResult
unifyIndices :: Telescope
-> FlexibleVars -> Type -> Args -> Args -> m UnificationResult
unifyIndices Telescope
tel FlexibleVars
flex Type
a Args
us Args
vs =
Account (BenchPhase m)
-> m UnificationResult -> m UnificationResult
forall (m :: * -> *) c.
MonadBench m =>
Account (BenchPhase m) -> m c -> m c
Bench.billTo [BenchPhase m
Phase
Bench.Typing, BenchPhase m
Phase
Bench.CheckLHS, BenchPhase m
Phase
Bench.UnifyIndices] (m UnificationResult -> m UnificationResult)
-> m UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$
Telescope
-> FlexibleVars -> Type -> Args -> Args -> m UnificationResult
forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars -> Type -> Args -> Args -> m UnificationResult
unifyIndices' Telescope
tel FlexibleVars
flex Type
a Args
us Args
vs
unifyIndices'
:: (PureTCM m)
=> Telescope
-> FlexibleVars
-> Type
-> Args
-> Args
-> m UnificationResult
unifyIndices' :: Telescope
-> FlexibleVars -> Type -> Args -> Args -> m UnificationResult
unifyIndices' Telescope
tel FlexibleVars
flex Type
a [] [] = UnificationResult -> m UnificationResult
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult -> m UnificationResult)
-> UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$ (Telescope, Substitution' DeBruijnPattern,
[NamedArg DeBruijnPattern])
-> UnificationResult
forall a. a -> UnificationResult' a
Unifies (Telescope
tel, Substitution' DeBruijnPattern
forall a. Substitution' a
idS, [])
unifyIndices' Telescope
tel FlexibleVars
flex Type
a Args
us Args
vs = do
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
10 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
[TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCM Doc
"unifyIndices"
, (TCM Doc
"tel =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
tel
, (TCM Doc
"flex =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCM Doc -> TCM Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCM Doc) -> String -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [Int] -> String
forall a. Show a => a -> String
show ([Int] -> String) -> [Int] -> String
forall a b. (a -> b) -> a -> b
$ (FlexibleVar Int -> Int) -> FlexibleVars -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVars
flex
, (TCM Doc
"a =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCM Doc -> TCM Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => m Doc -> m Doc
parens (Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a)
, (TCM Doc
"us =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCM Doc -> TCM Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (Arg Term -> TCM Doc) -> Args -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
us
, (TCM Doc
"vs =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCM Doc -> TCM Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (Arg Term -> TCM Doc) -> Args -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
vs
]
UnifyState
initialState <- Telescope -> FlexibleVars -> Type -> Args -> Args -> m UnifyState
forall (m :: * -> *).
PureTCM m =>
Telescope -> FlexibleVars -> Type -> Args -> Args -> m UnifyState
initUnifyState Telescope
tel FlexibleVars
flex Type
a Args
us Args
vs
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"initial unifyState:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyState -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM UnifyState
initialState
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
70 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"initial unifyState:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (UnifyState -> String
forall a. Show a => a -> String
show UnifyState
initialState)
(UnificationResult' UnifyState
result,UnifyOutput
output) <- UnifyLogT m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState, UnifyOutput)
forall (m :: * -> *) a. UnifyLogT m a -> m (a, UnifyOutput)
runUnifyLogT (UnifyLogT m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState, UnifyOutput))
-> UnifyLogT m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState, UnifyOutput)
forall a b. (a -> b) -> a -> b
$ UnifyState
-> UnifyStrategy -> UnifyLogT m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify UnifyState
initialState UnifyStrategy
rightToLeftStrategy
let ps :: [NamedArg DeBruijnPattern]
ps = Substitution' (SubstArg [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (UnifyOutput -> Substitution' DeBruijnPattern
unifyProof UnifyOutput
output) ([NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg DeBruijnPattern]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs (UnifyState -> Telescope
eqTel UnifyState
initialState)
UnificationResult -> m UnificationResult
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult -> m UnificationResult)
-> UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$ (UnifyState
-> (Telescope, Substitution' DeBruijnPattern,
[NamedArg DeBruijnPattern]))
-> UnificationResult' UnifyState -> UnificationResult
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\UnifyState
s -> (UnifyState -> Telescope
varTel UnifyState
s , UnifyOutput -> Substitution' DeBruijnPattern
unifySubst UnifyOutput
output , [NamedArg DeBruijnPattern]
ps)) UnificationResult' UnifyState
result
data Equality = Equal
{ Equality -> Dom Type
_eqType :: Dom Type
, Equality -> Term
_eqLeft :: Term
, Equality -> Term
_eqRight :: Term
}
instance Reduce Equality where
reduce' :: Equality -> ReduceM Equality
reduce' (Equal Dom Type
a Term
u Term
v) = Dom Type -> Term -> Term -> Equality
Equal (Dom Type -> Term -> Term -> Equality)
-> ReduceM (Dom Type) -> ReduceM (Term -> Term -> Equality)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type -> ReduceM (Dom Type)
forall t. Reduce t => t -> ReduceM t
reduce' Dom Type
a ReduceM (Term -> Term -> Equality)
-> ReduceM Term -> ReduceM (Term -> Equality)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
u ReduceM (Term -> Equality) -> ReduceM Term -> ReduceM Equality
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
v
eqConstructorForm :: HasBuiltins m => Equality -> m Equality
eqConstructorForm :: Equality -> m Equality
eqConstructorForm (Equal Dom Type
a Term
u Term
v) = Dom Type -> Term -> Term -> Equality
Equal Dom Type
a (Term -> Term -> Equality) -> m Term -> m (Term -> Equality)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Term
u m (Term -> Equality) -> m Term -> m Equality
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Term
v
eqUnLevel :: HasBuiltins m => Equality -> m Equality
eqUnLevel :: Equality -> m Equality
eqUnLevel (Equal Dom Type
a Term
u Term
v) = Dom Type -> Term -> Term -> Equality
Equal Dom Type
a (Term -> Term -> Equality) -> m Term -> m (Term -> Equality)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
unLevel Term
u m (Term -> Equality) -> m Term -> m Equality
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
unLevel Term
v
where
unLevel :: Term -> m Term
unLevel (Level Level
l) = Level -> m Term
forall (m :: * -> *). HasBuiltins m => Level -> m Term
reallyUnLevelView Level
l
unLevel Term
u = Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
u
data UnifyState = UState
{ UnifyState -> Telescope
varTel :: Telescope
, UnifyState -> FlexibleVars
flexVars :: FlexibleVars
, UnifyState -> Telescope
eqTel :: Telescope
, UnifyState -> Args
eqLHS :: [Arg Term]
, UnifyState -> Args
eqRHS :: [Arg Term]
} deriving (Int -> UnifyState -> ShowS
[UnifyState] -> ShowS
UnifyState -> String
(Int -> UnifyState -> ShowS)
-> (UnifyState -> String)
-> ([UnifyState] -> ShowS)
-> Show UnifyState
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UnifyState] -> ShowS
$cshowList :: [UnifyState] -> ShowS
show :: UnifyState -> String
$cshow :: UnifyState -> String
showsPrec :: Int -> UnifyState -> ShowS
$cshowsPrec :: Int -> UnifyState -> ShowS
Show)
lensVarTel :: Lens' Telescope UnifyState
lensVarTel :: (Telescope -> f Telescope) -> UnifyState -> f UnifyState
lensVarTel Telescope -> f Telescope
f UnifyState
s = Telescope -> f Telescope
f (UnifyState -> Telescope
varTel UnifyState
s) f Telescope -> (Telescope -> UnifyState) -> f UnifyState
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Telescope
tel -> UnifyState
s { varTel :: Telescope
varTel = Telescope
tel }
lensEqTel :: Lens' Telescope UnifyState
lensEqTel :: (Telescope -> f Telescope) -> UnifyState -> f UnifyState
lensEqTel Telescope -> f Telescope
f UnifyState
s = Telescope -> f Telescope
f (UnifyState -> Telescope
eqTel UnifyState
s) f Telescope -> (Telescope -> UnifyState) -> f UnifyState
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Telescope
x -> UnifyState
s { eqTel :: Telescope
eqTel = Telescope
x }
instance Reduce UnifyState where
reduce' :: UnifyState -> ReduceM UnifyState
reduce' = UnifyState -> ReduceM UnifyState
forall a. HasCallStack => a
__IMPOSSIBLE__
instance PrettyTCM UnifyState where
prettyTCM :: UnifyState -> m Doc
prettyTCM UnifyState
state = m Doc
"UnifyState" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"variable tel: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Telescope -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
gamma
, m Doc
"flexible vars: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [(Int, IsForced)] -> m Doc
forall (m :: * -> *) a. (Applicative m, Show a) => a -> m Doc
pshow ((FlexibleVar Int -> (Int, IsForced))
-> FlexibleVars -> [(Int, IsForced)]
forall a b. (a -> b) -> [a] -> [b]
map FlexibleVar Int -> (Int, IsForced)
forall a. FlexibleVar a -> (a, IsForced)
flexVarF (FlexibleVars -> [(Int, IsForced)])
-> FlexibleVars -> [(Int, IsForced)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> FlexibleVars
flexVars UnifyState
state)
, m Doc
"equation tel: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Telescope -> m Doc -> m Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
gamma (Telescope -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
delta)
, m Doc
"equations: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Telescope -> m Doc -> m Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
gamma ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> Arg Term -> m Doc) -> Args -> Args -> [m Doc]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Arg Term -> Arg Term -> m Doc
forall (m :: * -> *) a a.
(PureTCM m, MonadInteractionPoints m, MonadFresh NameId m,
MonadStConcreteNames m, IsString (m Doc), Null (m Doc),
Semigroup (m Doc), PrettyTCM a, PrettyTCM a) =>
a -> a -> m Doc
prettyEquality (UnifyState -> Args
eqLHS UnifyState
state) (UnifyState -> Args
eqRHS UnifyState
state)))
])
where
flexVarF :: FlexibleVar a -> (a, IsForced)
flexVarF FlexibleVar a
fi = (FlexibleVar a -> a
forall a. FlexibleVar a -> a
flexVar FlexibleVar a
fi, FlexibleVar a -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar a
fi)
gamma :: Telescope
gamma = UnifyState -> Telescope
varTel UnifyState
state
delta :: Telescope
delta = UnifyState -> Telescope
eqTel UnifyState
state
prettyEquality :: a -> a -> m Doc
prettyEquality a
x a
y = a -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
x m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> m Doc
"=?=" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> a -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
y
initUnifyState
:: PureTCM m
=> Telescope -> FlexibleVars -> Type -> Args -> Args -> m UnifyState
initUnifyState :: Telescope -> FlexibleVars -> Type -> Args -> Args -> m UnifyState
initUnifyState Telescope
tel FlexibleVars
flex Type
a Args
lhs Args
rhs = do
(Telescope
tel, Type
a, Args
lhs, Args
rhs) <- (Telescope, Type, Args, Args) -> m (Telescope, Type, Args, Args)
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull (Telescope
tel, Type
a, Args
lhs, Args
rhs)
let n :: Int
n = Args -> Int
forall a. Sized a => a -> Int
size Args
lhs
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Args -> Int
forall a. Sized a => a -> Int
size Args
rhs) m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
TelV Telescope
eqTel Type
_ <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
a
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel) m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
UnifyState -> m UnifyState
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope
-> FlexibleVars -> Telescope -> Args -> Args -> UnifyState
UState Telescope
tel FlexibleVars
flex Telescope
eqTel Args
lhs Args
rhs
isUnifyStateSolved :: UnifyState -> Bool
isUnifyStateSolved :: UnifyState -> Bool
isUnifyStateSolved = Telescope -> Bool
forall a. Null a => a -> Bool
null (Telescope -> Bool)
-> (UnifyState -> Telescope) -> UnifyState -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnifyState -> Telescope
eqTel
varCount :: UnifyState -> Int
varCount :: UnifyState -> Int
varCount = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int)
-> (UnifyState -> Telescope) -> UnifyState -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnifyState -> Telescope
varTel
getVarType :: Int -> UnifyState -> Dom Type
getVarType :: Int -> UnifyState -> Dom Type
getVarType Int
i UnifyState
s = Dom Type -> [Dom Type] -> Int -> Dom Type
forall a. a -> [a] -> Int -> a
indexWithDefault Dom Type
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (Telescope -> [Dom Type]) -> Telescope -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
varTel UnifyState
s) Int
i
getVarTypeUnraised :: Int -> UnifyState -> Dom Type
getVarTypeUnraised :: Int -> UnifyState -> Dom Type
getVarTypeUnraised Int
i UnifyState
s = (String, Type) -> Type
forall a b. (a, b) -> b
snd ((String, Type) -> Type) -> Dom' Term (String, Type) -> Dom Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (String, Type)
-> [Dom' Term (String, Type)] -> Int -> Dom' Term (String, Type)
forall a. a -> [a] -> Int -> a
indexWithDefault Dom' Term (String, Type)
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> [Dom' Term (String, Type)])
-> Telescope -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
varTel UnifyState
s) Int
i
eqCount :: UnifyState -> Int
eqCount :: UnifyState -> Int
eqCount = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int)
-> (UnifyState -> Telescope) -> UnifyState -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnifyState -> Telescope
eqTel
getEquality :: Int -> UnifyState -> Equality
getEquality :: Int -> UnifyState -> Equality
getEquality Int
k UState { eqTel :: UnifyState -> Telescope
eqTel = Telescope
eqs, eqLHS :: UnifyState -> Args
eqLHS = Args
lhs, eqRHS :: UnifyState -> Args
eqRHS = Args
rhs } =
Dom Type -> Term -> Term -> Equality
Equal (Dom Type -> [Dom Type] -> Int -> Dom Type
forall a. a -> [a] -> Int -> a
indexWithDefault Dom Type
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
eqs) Int
k)
(Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Args -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ Args
lhs Int
k)
(Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Args -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ Args
rhs Int
k)
getEqualityUnraised :: Int -> UnifyState -> Equality
getEqualityUnraised :: Int -> UnifyState -> Equality
getEqualityUnraised Int
k UState { eqTel :: UnifyState -> Telescope
eqTel = Telescope
eqs, eqLHS :: UnifyState -> Args
eqLHS = Args
lhs, eqRHS :: UnifyState -> Args
eqRHS = Args
rhs } =
Dom Type -> Term -> Term -> Equality
Equal ((String, Type) -> Type
forall a b. (a, b) -> b
snd ((String, Type) -> Type) -> Dom' Term (String, Type) -> Dom Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (String, Type)
-> [Dom' Term (String, Type)] -> Int -> Dom' Term (String, Type)
forall a. a -> [a] -> Int -> a
indexWithDefault Dom' Term (String, Type)
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
eqs) Int
k)
(Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Args -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ Args
lhs Int
k)
(Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Args -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ Args
rhs Int
k)
solveVar :: Int
-> DeBruijnPattern
-> UnifyState -> Maybe (UnifyState, PatternSubstitution)
solveVar :: Int
-> DeBruijnPattern
-> UnifyState
-> Maybe (UnifyState, Substitution' DeBruijnPattern)
solveVar Int
k DeBruijnPattern
u UnifyState
s = case Telescope
-> Int
-> DeBruijnPattern
-> Maybe (Telescope, Substitution' DeBruijnPattern, Permutation)
instantiateTelescope (UnifyState -> Telescope
varTel UnifyState
s) Int
k DeBruijnPattern
u of
Maybe (Telescope, Substitution' DeBruijnPattern, Permutation)
Nothing -> Maybe (UnifyState, Substitution' DeBruijnPattern)
forall a. Maybe a
Nothing
Just (Telescope
tel' , Substitution' DeBruijnPattern
sigma , Permutation
rho) -> (UnifyState, Substitution' DeBruijnPattern)
-> Maybe (UnifyState, Substitution' DeBruijnPattern)
forall a. a -> Maybe a
Just ((UnifyState, Substitution' DeBruijnPattern)
-> Maybe (UnifyState, Substitution' DeBruijnPattern))
-> (UnifyState, Substitution' DeBruijnPattern)
-> Maybe (UnifyState, Substitution' DeBruijnPattern)
forall a b. (a -> b) -> a -> b
$ (,Substitution' DeBruijnPattern
sigma) (UnifyState -> (UnifyState, Substitution' DeBruijnPattern))
-> UnifyState -> (UnifyState, Substitution' DeBruijnPattern)
forall a b. (a -> b) -> a -> b
$ UState :: Telescope
-> FlexibleVars -> Telescope -> Args -> Args -> UnifyState
UState
{ varTel :: Telescope
varTel = Telescope
tel'
, flexVars :: FlexibleVars
flexVars = Permutation -> FlexibleVars -> FlexibleVars
permuteFlex (Permutation -> Permutation
reverseP Permutation
rho) (FlexibleVars -> FlexibleVars) -> FlexibleVars -> FlexibleVars
forall a b. (a -> b) -> a -> b
$ UnifyState -> FlexibleVars
flexVars UnifyState
s
, eqTel :: Telescope
eqTel = Substitution' DeBruijnPattern -> Telescope -> Telescope
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
sigma (Telescope -> Telescope) -> Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
, eqLHS :: Args
eqLHS = Substitution' DeBruijnPattern -> Args -> Args
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
sigma (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
, eqRHS :: Args
eqRHS = Substitution' DeBruijnPattern -> Args -> Args
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
sigma (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
}
where
permuteFlex :: Permutation -> FlexibleVars -> FlexibleVars
permuteFlex :: Permutation -> FlexibleVars -> FlexibleVars
permuteFlex Permutation
perm =
(FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars -> FlexibleVars
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe ((FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars -> FlexibleVars)
-> (FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars
-> FlexibleVars
forall a b. (a -> b) -> a -> b
$ \(FlexibleVar ArgInfo
ai IsForced
fc FlexibleVarKind
k Maybe Int
p Int
x) ->
ArgInfo
-> IsForced
-> FlexibleVarKind
-> Maybe Int
-> Int
-> FlexibleVar Int
forall a.
ArgInfo
-> IsForced -> FlexibleVarKind -> Maybe Int -> a -> FlexibleVar a
FlexibleVar ArgInfo
ai IsForced
fc FlexibleVarKind
k Maybe Int
p (Int -> FlexibleVar Int) -> Maybe Int -> Maybe (FlexibleVar Int)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> [Int] -> Maybe Int
forall a. Eq a => a -> [a] -> Maybe Int
List.elemIndex Int
x (Permutation -> [Int]
permPicks Permutation
perm)
applyUnder :: Int -> Telescope -> Term -> Telescope
applyUnder :: Int -> Telescope -> Term -> Telescope
applyUnder Int
k Telescope
tel Term
u
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Telescope
tel Telescope -> Term -> Telescope
forall t. Apply t => t -> Term -> t
`apply1` Term
u
| Bool
otherwise = case Telescope
tel of
Telescope
EmptyTel -> Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
ExtendTel Dom Type
a Abs Telescope
tel' -> Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$
String -> Telescope -> Abs Telescope
forall a. String -> a -> Abs a
Abs (Abs Telescope -> String
forall a. Abs a -> String
absName Abs Telescope
tel') (Telescope -> Abs Telescope) -> Telescope -> Abs Telescope
forall a b. (a -> b) -> a -> b
$ Int -> Telescope -> Term -> Telescope
applyUnder (Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Abs Telescope -> Telescope
forall a. Subst a => Abs a -> a
absBody Abs Telescope
tel') Term
u
dropAt :: Int -> [a] -> [a]
dropAt :: Int -> [a] -> [a]
dropAt Int
_ [] = [a]
forall a. HasCallStack => a
__IMPOSSIBLE__
dropAt Int
k (a
x:[a]
xs)
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = [a]
forall a. HasCallStack => a
__IMPOSSIBLE__
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = [a]
xs
| Bool
otherwise = a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
dropAt (Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) [a]
xs
solveEq :: Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq :: Int
-> Term
-> UnifyState
-> (UnifyState, Substitution' DeBruijnPattern)
solveEq Int
k Term
u UnifyState
s = (,Substitution' DeBruijnPattern
sigma) (UnifyState -> (UnifyState, Substitution' DeBruijnPattern))
-> UnifyState -> (UnifyState, Substitution' DeBruijnPattern)
forall a b. (a -> b) -> a -> b
$ UnifyState
s
{ eqTel :: Telescope
eqTel = Int -> Telescope -> Term -> Telescope
applyUnder Int
k (UnifyState -> Telescope
eqTel UnifyState
s) Term
u'
, eqLHS :: Args
eqLHS = Int -> Args -> Args
forall a. Int -> [a] -> [a]
dropAt Int
k (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
, eqRHS :: Args
eqRHS = Int -> Args -> Args
forall a. Int -> [a] -> [a]
dropAt Int
k (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
}
where
u' :: Term
u' = Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
k Term
u
n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
sigma :: Substitution' DeBruijnPattern
sigma = Int
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. Int -> Substitution' a -> Substitution' a
liftS (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern)
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a b. (a -> b) -> a -> b
$ DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS (Term -> DeBruijnPattern
forall a. Term -> Pattern' a
dotP Term
u') Substitution' DeBruijnPattern
forall a. Substitution' a
idS
data UnifyStep
= Deletion
{ UnifyStep -> Int
deleteAt :: Int
, UnifyStep -> Type
deleteType :: Type
, UnifyStep -> Term
deleteLeft :: Term
, UnifyStep -> Term
deleteRight :: Term
}
| Solution
{ UnifyStep -> Int
solutionAt :: Int
, UnifyStep -> Dom Type
solutionType :: Dom Type
, UnifyStep -> FlexibleVar Int
solutionVar :: FlexibleVar Int
, UnifyStep -> Term
solutionTerm :: Term
}
| Injectivity
{ UnifyStep -> Int
injectAt :: Int
, UnifyStep -> Type
injectType :: Type
, UnifyStep -> QName
injectDatatype :: QName
, UnifyStep -> Args
injectParameters :: Args
, UnifyStep -> Args
injectIndices :: Args
, UnifyStep -> ConHead
injectConstructor :: ConHead
}
| Conflict
{ UnifyStep -> Int
conflictAt :: Int
, UnifyStep -> Type
conflictType :: Type
, UnifyStep -> QName
conflictDatatype :: QName
, UnifyStep -> Args
conflictParameters :: Args
, UnifyStep -> Term
conflictLeft :: Term
, UnifyStep -> Term
conflictRight :: Term
}
| Cycle
{ UnifyStep -> Int
cycleAt :: Int
, UnifyStep -> Type
cycleType :: Type
, UnifyStep -> QName
cycleDatatype :: QName
, UnifyStep -> Args
cycleParameters :: Args
, UnifyStep -> Int
cycleVar :: Int
, UnifyStep -> Term
cycleOccursIn :: Term
}
| EtaExpandVar
{ UnifyStep -> FlexibleVar Int
expandVar :: FlexibleVar Int
, UnifyStep -> QName
expandVarRecordType :: QName
, UnifyStep -> Args
expandVarParameters :: Args
}
| EtaExpandEquation
{ UnifyStep -> Int
expandAt :: Int
, UnifyStep -> QName
expandRecordType :: QName
, UnifyStep -> Args
expandParameters :: Args
}
| LitConflict
{ UnifyStep -> Int
litConflictAt :: Int
, UnifyStep -> Type
litType :: Type
, UnifyStep -> Literal
litConflictLeft :: Literal
, UnifyStep -> Literal
litConflictRight :: Literal
}
| StripSizeSuc
{ UnifyStep -> Int
stripAt :: Int
, UnifyStep -> Term
stripArgLeft :: Term
, UnifyStep -> Term
stripArgRight :: Term
}
| SkipIrrelevantEquation
{ UnifyStep -> Int
skipIrrelevantAt :: Int
}
| TypeConInjectivity
{ UnifyStep -> Int
typeConInjectAt :: Int
, UnifyStep -> QName
typeConstructor :: QName
, UnifyStep -> Args
typeConArgsLeft :: Args
, UnifyStep -> Args
typeConArgsRight :: Args
} deriving (Int -> UnifyStep -> ShowS
[UnifyStep] -> ShowS
UnifyStep -> String
(Int -> UnifyStep -> ShowS)
-> (UnifyStep -> String)
-> ([UnifyStep] -> ShowS)
-> Show UnifyStep
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UnifyStep] -> ShowS
$cshowList :: [UnifyStep] -> ShowS
show :: UnifyStep -> String
$cshow :: UnifyStep -> String
showsPrec :: Int -> UnifyStep -> ShowS
$cshowsPrec :: Int -> UnifyStep -> ShowS
Show)
instance PrettyTCM UnifyStep where
prettyTCM :: UnifyStep -> m Doc
prettyTCM UnifyStep
step = case UnifyStep
step of
Deletion Int
k Type
a Term
u Term
v -> m Doc
"Deletion" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"type: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
, m Doc
"lhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
, m Doc
"rhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
])
Solution Int
k Dom Type
a FlexibleVar Int
i Term
u -> m Doc
"Solution" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"type: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Dom Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Dom Type
a
, m Doc
"variable: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text ((Int, Maybe Int, IsForced, FlexibleVarKind) -> String
forall a. Show a => a -> String
show (FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVar Int
i, FlexibleVar Int -> Maybe Int
forall a. FlexibleVar a -> Maybe Int
flexPos FlexibleVar Int
i, FlexibleVar Int -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Int
i, FlexibleVar Int -> FlexibleVarKind
forall a. FlexibleVar a -> FlexibleVarKind
flexKind FlexibleVar Int
i))
, m Doc
"term: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
])
Injectivity Int
k Type
a QName
d Args
pars Args
ixs ConHead
c -> m Doc
"Injectivity" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"type: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
, m Doc
"datatype: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
, m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> Args -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
pars)
, m Doc
"indices: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> Args -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
ixs)
, m Doc
"constructor:" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> ConHead -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM ConHead
c
])
Conflict Int
k Type
a QName
d Args
pars Term
u Term
v -> m Doc
"Conflict" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"type: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
, m Doc
"datatype: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
, m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> Args -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
pars)
, m Doc
"lhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
, m Doc
"rhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
])
Cycle Int
k Type
a QName
d Args
pars Int
i Term
u -> m Doc
"Cycle" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"type: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
, m Doc
"datatype: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
, m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> Args -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
pars)
, m Doc
"variable: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
i)
, m Doc
"term: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
])
EtaExpandVar FlexibleVar Int
fi QName
r Args
pars -> m Doc
"EtaExpandVar" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"variable: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Int -> String
forall a. Show a => a -> String
show FlexibleVar Int
fi)
, m Doc
"record type:" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
r
, m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Args -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
pars
])
EtaExpandEquation Int
k QName
r Args
pars -> m Doc
"EtaExpandEquation" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"record type:" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
r
, m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Args -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
pars
])
LitConflict Int
k Type
a Literal
u Literal
v -> m Doc
"LitConflict" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"type: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
, m Doc
"lhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Literal -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Literal
u
, m Doc
"rhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Literal -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Literal
v
])
StripSizeSuc Int
k Term
u Term
v -> m Doc
"StripSizeSuc" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"lhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
, m Doc
"rhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
])
SkipIrrelevantEquation Int
k -> m Doc
"SkipIrrelevantEquation" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
])
TypeConInjectivity Int
k QName
d Args
us Args
vs -> m Doc
"TypeConInjectivity" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
[ m Doc
"position: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
, m Doc
"datatype: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
, m Doc
"lhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> Args -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
us)
, m Doc
"rhs: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> Args -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
vs)
])
type UnifyStrategy = forall m. (PureTCM m, MonadPlus m) => UnifyState -> m UnifyStep
rightToLeftStrategy :: UnifyStrategy
rightToLeftStrategy :: UnifyState -> m UnifyStep
rightToLeftStrategy UnifyState
s =
[m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum ([Int] -> (Int -> m UnifyStep) -> [m UnifyStep]
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
for (Int -> [Int]
forall a. Integral a => a -> [a]
downFrom Int
n) ((Int -> m UnifyStep) -> [m UnifyStep])
-> (Int -> m UnifyStep) -> [m UnifyStep]
forall a b. (a -> b) -> a -> b
$ \Int
k -> Int -> UnifyState -> m UnifyStep
Int -> UnifyStrategy
completeStrategyAt Int
k UnifyState
s)
where n :: Int
n = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int) -> Telescope -> Int
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
completeStrategyAt :: Int -> UnifyStrategy
completeStrategyAt :: Int -> UnifyStrategy
completeStrategyAt Int
k UnifyState
s = [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum ([m UnifyStep] -> m UnifyStep) -> [m UnifyStep] -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ ((Int -> UnifyState -> m UnifyStep) -> m UnifyStep)
-> [Int -> UnifyState -> m UnifyStep] -> [m UnifyStep]
forall a b. (a -> b) -> [a] -> [b]
map (\Int -> UnifyState -> m UnifyStep
strat -> Int -> UnifyState -> m UnifyStep
strat Int
k UnifyState
s) ([Int -> UnifyState -> m UnifyStep] -> [m UnifyStep])
-> [Int -> UnifyState -> m UnifyStep] -> [m UnifyStep]
forall a b. (a -> b) -> a -> b
$
[ (\Int
n -> Int -> UnifyStrategy
skipIrrelevantStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
basicUnifyStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
literalStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
dataStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
etaExpandVarStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
etaExpandEquationStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
injectiveTypeConStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
injectivePragmaStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
simplifySizesStrategy Int
n)
, (\Int
n -> Int -> UnifyStrategy
checkEqualityStrategy Int
n)
]
isHom :: (Free a, Subst a) => Int -> a -> Maybe a
isHom :: Int -> a -> Maybe a
isHom Int
n a
x = do
Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> Maybe ()) -> Bool -> Maybe ()
forall a b. (a -> b) -> a -> b
$ All -> Bool
getAll (All -> Bool) -> All -> Bool
forall a b. (a -> b) -> a -> b
$ SingleVar All -> IgnoreSorts -> a -> All
forall a c t.
(IsVarSet a c, Free t) =>
SingleVar c -> IgnoreSorts -> t -> c
runFree (Bool -> All
All (Bool -> All) -> (Int -> Bool) -> SingleVar All
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n)) IgnoreSorts
IgnoreNot a
x
a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> Maybe a) -> a -> Maybe a
forall a b. (a -> b) -> a -> b
$ Int -> a -> a
forall a. Subst a => Int -> a -> a
raise (-Int
n) a
x
findFlexible :: Int -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible :: Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i FlexibleVars
flex = (FlexibleVar Int -> Bool)
-> FlexibleVars -> Maybe (FlexibleVar Int)
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
List.find ((Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==) (Int -> Bool)
-> (FlexibleVar Int -> Int) -> FlexibleVar Int -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar) FlexibleVars
flex
basicUnifyStrategy :: Int -> UnifyStrategy
basicUnifyStrategy :: Int -> UnifyStrategy
basicUnifyStrategy Int
k UnifyState
s = do
Equal dom :: Dom Type
dom@Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s)
Type
ha <- Maybe Type -> m Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> m Type) -> Maybe Type -> m Type
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Maybe Type
forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n Type
a
(Maybe Int
mi, Maybe Int
mj) <- Telescope -> m (Maybe Int, Maybe Int) -> m (Maybe Int, Maybe Int)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Maybe Int, Maybe Int) -> m (Maybe Int, Maybe Int))
-> m (Maybe Int, Maybe Int) -> m (Maybe Int, Maybe Int)
forall a b. (a -> b) -> a -> b
$ (,) (Maybe Int -> Maybe Int -> (Maybe Int, Maybe Int))
-> m (Maybe Int) -> m (Maybe Int -> (Maybe Int, Maybe Int))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> Type -> m (Maybe Int)
forall (m :: * -> *). PureTCM m => Term -> Type -> m (Maybe Int)
isEtaVar Term
u Type
ha m (Maybe Int -> (Maybe Int, Maybe Int))
-> m (Maybe Int) -> m (Maybe Int, Maybe Int)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> Type -> m (Maybe Int)
forall (m :: * -> *). PureTCM m => Term -> Type -> m (Maybe Int)
isEtaVar Term
v Type
ha
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"isEtaVar results: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text ([Maybe Int] -> String
forall a. Show a => a -> String
show [Maybe Int
mi,Maybe Int
mj])
case (Maybe Int
mi, Maybe Int
mj) of
(Just Int
i, Just Int
j)
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
(Just Int
i, Just Int
j)
| Just FlexibleVar Int
fi <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i FlexibleVars
flex
, Just FlexibleVar Int
fj <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
j FlexibleVars
flex -> do
let choice :: FlexChoice
choice = FlexibleVar Int -> FlexibleVar Int -> FlexChoice
forall a. ChooseFlex a => a -> a -> FlexChoice
chooseFlex FlexibleVar Int
fi FlexibleVar Int
fj
firstTryLeft :: m UnifyStep
firstTryLeft = [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fi Term
v)
, UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fj Term
u)]
firstTryRight :: m UnifyStep
firstTryRight = [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fj Term
u)
, UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fi Term
v)]
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"fi = " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Int -> String
forall a. Show a => a -> String
show FlexibleVar Int
fi)
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"fj = " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Int -> String
forall a. Show a => a -> String
show FlexibleVar Int
fj)
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"chooseFlex: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexChoice -> String
forall a. Show a => a -> String
show FlexChoice
choice)
case FlexChoice
choice of
FlexChoice
ChooseLeft -> m UnifyStep
firstTryLeft
FlexChoice
ChooseRight -> m UnifyStep
firstTryRight
FlexChoice
ExpandBoth -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
FlexChoice
ChooseEither -> m UnifyStep
firstTryRight
(Just Int
i, Maybe Int
_)
| Just FlexibleVar Int
fi <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i FlexibleVars
flex -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Dom Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fi Term
v
(Maybe Int
_, Just Int
j)
| Just FlexibleVar Int
fj <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
j FlexibleVars
flex -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Dom Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fj Term
u
(Maybe Int, Maybe Int)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
where
flex :: FlexibleVars
flex = UnifyState -> FlexibleVars
flexVars UnifyState
s
n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
dataStrategy :: Int -> UnifyStrategy
dataStrategy :: Int -> UnifyStrategy
dataStrategy Int
k UnifyState
s = do
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqConstructorForm (Equality -> m Equality) -> m Equality -> m Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality) -> m Equality -> m Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Int -> UnifyState -> Equality
getEqualityUnraised Int
k UnifyState
s)
Sort
sa <- Sort -> m Sort
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Sort -> m Sort) -> Sort -> m Sort
forall a b. (a -> b) -> a -> b
$ Type -> Sort
forall a. LensSort a => a -> Sort
getSort Type
a
case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a of
Def QName
d Elims
es | Type{} <- Sort
sa -> do
Int
npars <- m (Maybe Int) -> m Int
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (m (Maybe Int) -> m Int) -> m (Maybe Int) -> m Int
forall a b. (a -> b) -> a -> b
$ QName -> m (Maybe Int)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Int)
getNumberOfParameters QName
d
let (Args
pars,Args
ixs) = Int -> Args -> (Args, Args)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
npars (Args -> (Args, Args)) -> Args -> (Args, Args)
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Telescope -> TCM Doc -> TCM Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` UnifyState -> Telescope
eqTel UnifyState
s) (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$
TCM Doc
"Found equation at datatype " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
" with parameters " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Args -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (Int -> Args -> Args
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size (UnifyState -> Telescope
eqTel UnifyState
s) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
k) Args
pars)
case (Term
u, Term
v) of
(Con ConHead
c ConInfo
_ Elims
_ , Con ConHead
c' ConInfo
_ Elims
_ ) | ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
c' -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> Args -> Args -> ConHead -> UnifyStep
Injectivity Int
k Type
a QName
d Args
pars Args
ixs ConHead
c
(Con ConHead
c ConInfo
_ Elims
_ , Con ConHead
c' ConInfo
_ Elims
_ ) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> Args -> Term -> Term -> UnifyStep
Conflict Int
k Type
a QName
d Args
pars Term
u Term
v
(Var Int
i [] , Term
v ) -> Int -> Term -> m UnifyStep -> m UnifyStep
forall (m :: * -> *) a b.
(ForceNotFree a, Reduce a, MonadReduce m, Free a, MonadPlus m) =>
Int -> a -> m b -> m b
ifOccursStronglyRigid Int
i Term
v (m UnifyStep -> m UnifyStep) -> m UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> Args -> Int -> Term -> UnifyStep
Cycle Int
k Type
a QName
d Args
pars Int
i Term
v
(Term
u , Var Int
j [] ) -> Int -> Term -> m UnifyStep -> m UnifyStep
forall (m :: * -> *) a b.
(ForceNotFree a, Reduce a, MonadReduce m, Free a, MonadPlus m) =>
Int -> a -> m b -> m b
ifOccursStronglyRigid Int
j Term
u (m UnifyStep -> m UnifyStep) -> m UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> Args -> Int -> Term -> UnifyStep
Cycle Int
k Type
a QName
d Args
pars Int
j Term
u
(Term, Term)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
Term
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
where
ifOccursStronglyRigid :: Int -> a -> m b -> m b
ifOccursStronglyRigid Int
i a
u m b
ret = do
(IntMap IsFree
_ , a
u) <- IntSet -> a -> m (IntMap IsFree, a)
forall a (m :: * -> *).
(ForceNotFree a, Reduce a, MonadReduce m) =>
IntSet -> a -> m (IntMap IsFree, a)
forceNotFree (Int -> IntSet
forall el coll. Singleton el coll => el -> coll
singleton Int
i) a
u
case Int -> a -> Maybe (FlexRig' ())
forall a. Free a => Int -> a -> Maybe (FlexRig' ())
flexRigOccurrenceIn Int
i a
u of
Just FlexRig' ()
StronglyRigid -> m b
ret
Maybe (FlexRig' ())
_ -> m b
forall (m :: * -> *) a. MonadPlus m => m a
mzero
checkEqualityStrategy :: Int -> UnifyStrategy
checkEqualityStrategy :: Int -> UnifyStrategy
checkEqualityStrategy Int
k UnifyState
s = do
let Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v = Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
Type
ha <- Maybe Type -> m Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> m Type) -> Maybe Type -> m Type
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Maybe Type
forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n Type
a
UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Term -> Term -> UnifyStep
Deletion Int
k Type
ha Term
u Term
v
literalStrategy :: Int -> UnifyStrategy
literalStrategy :: Int -> UnifyStrategy
literalStrategy Int
k UnifyState
s = do
let n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
Type
ha <- Maybe Type -> m Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> m Type) -> Maybe Type -> m Type
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Maybe Type
forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n Type
a
(Term
u, Term
v) <- (Term, Term) -> m (Term, Term)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Term
u, Term
v)
case (Term
u , Term
v) of
(Lit Literal
l1 , Lit Literal
l2)
| Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l2 -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Term -> Term -> UnifyStep
Deletion Int
k Type
ha Term
u Term
v
| Bool
otherwise -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Literal -> Literal -> UnifyStep
LitConflict Int
k Type
ha Literal
l1 Literal
l2
(Term, Term)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
etaExpandVarStrategy :: Int -> UnifyStrategy
etaExpandVarStrategy :: Int -> UnifyStrategy
etaExpandVarStrategy Int
k UnifyState
s = do
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality)
-> (Equality -> m Equality) -> Equality -> m Equality
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
Term -> Term -> Type -> UnifyState -> m UnifyStep
Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand Term
u Term
v Type
a UnifyState
s m UnifyStep -> m UnifyStep -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Term -> Term -> Type -> UnifyState -> m UnifyStep
Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand Term
v Term
u Type
a UnifyState
s
where
shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand (Var Int
i Elims
es) Term
v Type
a UnifyState
s = do
FlexibleVar Int
fi <- Maybe (FlexibleVar Int) -> m (FlexibleVar Int)
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe (FlexibleVar Int) -> m (FlexibleVar Int))
-> Maybe (FlexibleVar Int) -> m (FlexibleVar Int)
forall a b. (a -> b) -> a -> b
$ Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i (UnifyState -> FlexibleVars
flexVars UnifyState
s)
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
TCM Doc
"Found flexible variable " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
i)
Type
b <- Type -> m Type
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Type
forall t e. Dom' t e -> e
unDom (Dom Type -> Type) -> Dom Type -> Type
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Dom Type
getVarTypeUnraised (UnifyState -> Int
varCount UnifyState
s Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) UnifyState
s
(QName
d, Args
pars) <- m (Maybe (QName, Args)) -> m (QName, Args)
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (m (Maybe (QName, Args)) -> m (QName, Args))
-> m (Maybe (QName, Args)) -> m (QName, Args)
forall a b. (a -> b) -> a -> b
$ Type -> m (Maybe (QName, Args))
forall (m :: * -> *).
HasConstInfo m =>
Type -> m (Maybe (QName, Args))
isEtaRecordType Type
b
[(ProjOrigin, QName)]
ps <- Maybe [(ProjOrigin, QName)] -> m [(ProjOrigin, QName)]
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe [(ProjOrigin, QName)] -> m [(ProjOrigin, QName)])
-> Maybe [(ProjOrigin, QName)] -> m [(ProjOrigin, QName)]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [(ProjOrigin, QName)]
forall t. [Elim' t] -> Maybe [(ProjOrigin, QName)]
allProjElims Elims
es
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> m Bool -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [m Bool] -> m Bool
forall (f :: * -> *) (m :: * -> *).
(Foldable f, Monad m) =>
f (m Bool) -> m Bool
orM
[ Bool -> m Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ [(ProjOrigin, QName)] -> Bool
forall a. Null a => a -> Bool
null [(ProjOrigin, QName)]
ps
, Term -> m Bool
forall (f :: * -> *). HasConstInfo f => Term -> f Bool
isRecCon Term
v
, (Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
==) (Either Blocker Bool -> Bool) -> m (Either Blocker Bool) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (QName -> Args -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
QName -> Args -> m Bool
isSingletonRecord QName
d Args
pars)
]
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
TCM Doc
"with projections " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [QName] -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (((ProjOrigin, QName) -> QName) -> [(ProjOrigin, QName)] -> [QName]
forall a b. (a -> b) -> [a] -> [b]
map (ProjOrigin, QName) -> QName
forall a b. (a, b) -> b
snd [(ProjOrigin, QName)]
ps)
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
TCM Doc
"at record type " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ FlexibleVar Int -> QName -> Args -> UnifyStep
EtaExpandVar FlexibleVar Int
fi QName
d Args
pars
shouldEtaExpand Term
_ Term
_ Type
_ UnifyState
_ = m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
isRecCon :: Term -> f Bool
isRecCon (Con ConHead
c ConInfo
_ Elims
_) = Maybe (QName, Defn) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (QName, Defn) -> Bool) -> f (Maybe (QName, Defn)) -> f Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> f (Maybe (QName, Defn))
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe (QName, Defn))
isRecordConstructor (ConHead -> QName
conName ConHead
c)
isRecCon Term
_ = Bool -> f Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
etaExpandEquationStrategy :: Int -> UnifyStrategy
etaExpandEquationStrategy :: Int -> UnifyStrategy
etaExpandEquationStrategy Int
k UnifyState
s = do
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEqualityUnraised Int
k UnifyState
s
(QName
d, Args
pars) <- m (Maybe (QName, Args)) -> m (QName, Args)
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (m (Maybe (QName, Args)) -> m (QName, Args))
-> m (Maybe (QName, Args)) -> m (QName, Args)
forall a b. (a -> b) -> a -> b
$ Telescope -> m (Maybe (QName, Args)) -> m (Maybe (QName, Args))
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (m (Maybe (QName, Args)) -> m (Maybe (QName, Args)))
-> m (Maybe (QName, Args)) -> m (Maybe (QName, Args))
forall a b. (a -> b) -> a -> b
$ Type -> m (Maybe (QName, Args))
forall (m :: * -> *).
HasConstInfo m =>
Type -> m (Maybe (QName, Args))
isEtaRecordType Type
a
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> m Bool -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [m Bool] -> m Bool
forall (f :: * -> *) (m :: * -> *).
(Foldable f, Monad m) =>
f (m Bool) -> m Bool
orM
[ (Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
==) (Either Blocker Bool -> Bool) -> m (Either Blocker Bool) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (QName -> Args -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
QName -> Args -> m Bool
isSingletonRecord QName
d Args
pars)
, Term -> m Bool
forall (m :: * -> *). PureTCM m => Term -> m Bool
shouldProject Term
u
, Term -> m Bool
forall (m :: * -> *). PureTCM m => Term -> m Bool
shouldProject Term
v
]
UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> QName -> Args -> UnifyStep
EtaExpandEquation Int
k QName
d Args
pars
where
shouldProject :: PureTCM m => Term -> m Bool
shouldProject :: Term -> m Bool
shouldProject = \case
Def QName
f Elims
es -> QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
usesCopatterns QName
f
Con ConHead
c ConInfo
_ Elims
_ -> Maybe (QName, Defn) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (QName, Defn) -> Bool) -> m (Maybe (QName, Defn)) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe (QName, Defn))
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe (QName, Defn))
isRecordConstructor (ConHead -> QName
conName ConHead
c)
Var Int
_ Elims
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Lam ArgInfo
_ Abs Term
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Lit Literal
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Pi Dom Type
_ Abs Type
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Sort Sort
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Level Level
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
MetaV MetaId
_ Elims
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
DontCare Term
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Dummy String
s Elims
_ -> String -> m Bool
forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
String -> m a
__IMPOSSIBLE_VERBOSE__ String
s
tel :: Telescope
tel = UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` [Dom' Term (String, Type)] -> Telescope
telFromList (Int -> [Dom' Term (String, Type)] -> [Dom' Term (String, Type)]
forall a. Int -> [a] -> [a]
take Int
k ([Dom' Term (String, Type)] -> [Dom' Term (String, Type)])
-> [Dom' Term (String, Type)] -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> [Dom' Term (String, Type)])
-> Telescope -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s)
simplifySizesStrategy :: Int -> UnifyStrategy
simplifySizesStrategy :: Int -> UnifyStrategy
simplifySizesStrategy Int
k UnifyState
s = do
QName -> Bool
isSizeName <- m (QName -> Bool)
forall (m :: * -> *).
(HasOptions m, HasBuiltins m) =>
m (QName -> Bool)
isSizeNameTest
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a of
Def QName
d Elims
_ -> do
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> Bool -> m ()
forall a b. (a -> b) -> a -> b
$ QName -> Bool
isSizeName QName
d
SizeView
su <- Term -> m SizeView
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
Term -> m SizeView
sizeView Term
u
SizeView
sv <- Term -> m SizeView
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
Term -> m SizeView
sizeView Term
v
case (SizeView
su, SizeView
sv) of
(SizeSuc Term
u, SizeSuc Term
v) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term -> UnifyStep
StripSizeSuc Int
k Term
u Term
v
(SizeSuc Term
u, SizeView
SizeInf ) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term -> UnifyStep
StripSizeSuc Int
k Term
u Term
v
(SizeView
SizeInf , SizeSuc Term
v) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term -> UnifyStep
StripSizeSuc Int
k Term
u Term
v
(SizeView, SizeView)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
Term
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
injectiveTypeConStrategy :: Int -> UnifyStrategy
injectiveTypeConStrategy :: Int -> UnifyStrategy
injectiveTypeConStrategy Int
k UnifyState
s = do
Bool
injTyCon <- PragmaOptions -> Bool
optInjectiveTypeConstructors (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard Bool
injTyCon
Equality
eq <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality)
-> (Equality -> m Equality) -> Equality -> m Equality
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
case Equality
eq of
Equal Dom Type
a u :: Term
u@(Def QName
d Elims
es) v :: Term
v@(Def QName
d' Elims
es') | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' -> do
Definition
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> Bool -> m ()
forall a b. (a -> b) -> a -> b
$ case Definition -> Defn
theDef Definition
def of
Datatype{} -> Bool
True
Record{} -> Bool
True
Axiom{} -> Bool
True
DataOrRecSig{} -> Bool
True
AbstractDefn{} -> Bool
False
Function{} -> Bool
False
Primitive{} -> Bool
False
PrimitiveSort{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
GeneralizableVar{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Constructor{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
let us :: Args
us = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
vs :: Args
vs = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es'
UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> QName -> Args -> Args -> UnifyStep
TypeConInjectivity Int
k QName
d Args
us Args
vs
Equality
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
injectivePragmaStrategy :: Int -> UnifyStrategy
injectivePragmaStrategy :: Int -> UnifyStrategy
injectivePragmaStrategy Int
k UnifyState
s = do
Equality
eq <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality)
-> (Equality -> m Equality) -> Equality -> m Equality
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
case Equality
eq of
Equal Dom Type
a u :: Term
u@(Def QName
d Elims
es) v :: Term
v@(Def QName
d' Elims
es') | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' -> do
Definition
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> Bool -> m ()
forall a b. (a -> b) -> a -> b
$ Definition -> Bool
defInjective Definition
def
let us :: Args
us = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
vs :: Args
vs = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es'
UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> QName -> Args -> Args -> UnifyStep
TypeConInjectivity Int
k QName
d Args
us Args
vs
Equality
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
skipIrrelevantStrategy :: Int -> UnifyStrategy
skipIrrelevantStrategy :: Int -> UnifyStrategy
skipIrrelevantStrategy Int
k UnifyState
s = do
let Equal Dom Type
a Term
_ Term
_ = Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ())
-> (Either Blocker Bool -> Bool) -> Either Blocker Bool -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True) (Either Blocker Bool -> m ()) -> m (Either Blocker Bool) -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (Dom Type -> BlockT m Bool
forall a (m :: * -> *).
(LensRelevance a, LensSort a, PrettyTCM a, PureTCM m,
MonadBlock m) =>
a -> m Bool
isIrrelevantOrPropM Dom Type
a)
UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> UnifyStep
SkipIrrelevantEquation Int
k
data UnifyLogEntry
= UnificationStep UnifyState UnifyStep
type UnifyLog = [UnifyLogEntry]
data UnifyOutput = UnifyOutput
{ UnifyOutput -> Substitution' DeBruijnPattern
unifySubst :: PatternSubstitution
, UnifyOutput -> Substitution' DeBruijnPattern
unifyProof :: PatternSubstitution
, UnifyOutput -> UnifyLog
unifyLog :: UnifyLog
}
instance Semigroup UnifyOutput where
UnifyOutput
x <> :: UnifyOutput -> UnifyOutput -> UnifyOutput
<> UnifyOutput
y = UnifyOutput :: Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> UnifyLog -> UnifyOutput
UnifyOutput
{ unifySubst :: Substitution' DeBruijnPattern
unifySubst = UnifyOutput -> Substitution' DeBruijnPattern
unifySubst UnifyOutput
y Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` UnifyOutput -> Substitution' DeBruijnPattern
unifySubst UnifyOutput
x
, unifyProof :: Substitution' DeBruijnPattern
unifyProof = UnifyOutput -> Substitution' DeBruijnPattern
unifyProof UnifyOutput
y Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` UnifyOutput -> Substitution' DeBruijnPattern
unifyProof UnifyOutput
x
, unifyLog :: UnifyLog
unifyLog = UnifyOutput -> UnifyLog
unifyLog UnifyOutput
x UnifyLog -> UnifyLog -> UnifyLog
forall a. [a] -> [a] -> [a]
++ UnifyOutput -> UnifyLog
unifyLog UnifyOutput
y
}
instance Monoid UnifyOutput where
mempty :: UnifyOutput
mempty = Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> UnifyLog -> UnifyOutput
UnifyOutput Substitution' DeBruijnPattern
forall a. Substitution' a
IdS Substitution' DeBruijnPattern
forall a. Substitution' a
IdS []
mappend :: UnifyOutput -> UnifyOutput -> UnifyOutput
mappend = UnifyOutput -> UnifyOutput -> UnifyOutput
forall a. Semigroup a => a -> a -> a
(<>)
type UnifyLogT m a = WriterT UnifyOutput m a
tellUnifySubst :: MonadWriter UnifyOutput m => PatternSubstitution -> m ()
tellUnifySubst :: Substitution' DeBruijnPattern -> m ()
tellUnifySubst Substitution' DeBruijnPattern
sub = UnifyOutput -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (UnifyOutput -> m ()) -> UnifyOutput -> m ()
forall a b. (a -> b) -> a -> b
$ Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> UnifyLog -> UnifyOutput
UnifyOutput Substitution' DeBruijnPattern
sub Substitution' DeBruijnPattern
forall a. Substitution' a
IdS []
tellUnifyProof :: MonadWriter UnifyOutput m => PatternSubstitution -> m ()
tellUnifyProof :: Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
sub = UnifyOutput -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (UnifyOutput -> m ()) -> UnifyOutput -> m ()
forall a b. (a -> b) -> a -> b
$ Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> UnifyLog -> UnifyOutput
UnifyOutput Substitution' DeBruijnPattern
forall a. Substitution' a
IdS Substitution' DeBruijnPattern
sub []
writeUnifyLog :: MonadWriter UnifyOutput m => UnifyLogEntry -> m ()
writeUnifyLog :: UnifyLogEntry -> m ()
writeUnifyLog UnifyLogEntry
x = UnifyOutput -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (UnifyOutput -> m ()) -> UnifyOutput -> m ()
forall a b. (a -> b) -> a -> b
$ Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> UnifyLog -> UnifyOutput
UnifyOutput Substitution' DeBruijnPattern
forall a. Substitution' a
IdS Substitution' DeBruijnPattern
forall a. Substitution' a
IdS [UnifyLogEntry
x]
runUnifyLogT :: UnifyLogT m a -> m (a,UnifyOutput)
runUnifyLogT :: UnifyLogT m a -> m (a, UnifyOutput)
runUnifyLogT = UnifyLogT m a -> m (a, UnifyOutput)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT
unifyStep
:: (PureTCM m, MonadWriter UnifyOutput m)
=> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
unifyStep :: UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
unifyStep UnifyState
s Deletion{ deleteAt :: UnifyStep -> Int
deleteAt = Int
k , deleteType :: UnifyStep -> Type
deleteType = Type
a , deleteLeft :: UnifyStep -> Term
deleteLeft = Term
u , deleteRight :: UnifyStep -> Term
deleteRight = Term
v } = do
Either Blocker Bool
isReflexive <- Telescope -> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Either Blocker Bool) -> m (Either Blocker Bool))
-> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (BlockT m Bool -> m (Either Blocker Bool))
-> BlockT m Bool -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ Type -> Term -> Term -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
Type -> Term -> Term -> m Bool
pureEqualTerm Type
a Term
u Term
v
Bool
withoutK <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
withoutKOption
Bool
splitOnStrict <- (TCEnv -> Bool) -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Bool
envSplitOnStrict
case Either Blocker Bool
isReflexive of
Left Blocker
block -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
Right Bool
False -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
Right Bool
True | Bool
withoutK Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
splitOnStrict
-> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Term -> UnificationFailure
UnifyReflexiveEq (UnifyState -> Telescope
varTel UnifyState
s) Type
a Term
u]
Right Bool
True -> do
let (UnifyState
s', Substitution' DeBruijnPattern
sigma) = Int
-> Term
-> UnifyState
-> (UnifyState, Substitution' DeBruijnPattern)
solveEq Int
k Term
u UnifyState
s
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
sigma
UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> m UnifyState -> m (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensEqTel Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce UnifyState
s'
unifyStep UnifyState
s step :: UnifyStep
step@Solution{} = RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
RetryNormalised UnifyState
s UnifyStep
step
unifyStep UnifyState
s (Injectivity Int
k Type
a QName
d Args
pars Args
ixs ConHead
c) = do
m Bool
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> m Bool) -> QName -> m Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
c) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
Bool
withoutK <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
withoutKOption
let ([Dom' Term (String, Type)]
eqListTel1, Dom' Term (String, Type)
_ : [Dom' Term (String, Type)]
eqListTel2) = Int
-> [Dom' Term (String, Type)]
-> ([Dom' Term (String, Type)], [Dom' Term (String, Type)])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
k ([Dom' Term (String, Type)]
-> ([Dom' Term (String, Type)], [Dom' Term (String, Type)]))
-> [Dom' Term (String, Type)]
-> ([Dom' Term (String, Type)], [Dom' Term (String, Type)])
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> [Dom' Term (String, Type)])
-> Telescope -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
(Telescope
eqTel1, Telescope
eqTel2) = ([Dom' Term (String, Type)] -> Telescope
telFromList [Dom' Term (String, Type)]
eqListTel1, [Dom' Term (String, Type)] -> Telescope
telFromList [Dom' Term (String, Type)]
eqListTel2)
Definition
cdef <- ConHead -> m Definition
forall (m :: * -> *). HasConstInfo m => ConHead -> m Definition
getConInfo ConHead
c
let ctype :: Type
ctype = Definition -> Type
defType Definition
cdef Type -> Args -> Type
`piApply` Args
pars
Telescope -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel1) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
TCM Doc
"Constructor type: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
ctype
TelV Telescope
ctel Type
ctarget <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
ctype
let cixs :: Args
cixs = case Type -> Term
forall t a. Type'' t a -> a
unEl Type
ctarget of
Def QName
d' Elims
es | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' ->
let args :: Args
args = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
in Int -> Args -> Args
forall a. Int -> [a] -> [a]
drop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
pars) Args
args
Term
_ -> Args
forall a. HasCallStack => a
__IMPOSSIBLE__
Type
dtype <- (Type -> Args -> Type
`piApply` Args
pars) (Type -> Type) -> (Definition -> Type) -> Definition -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Definition -> Type
defType (Definition -> Type) -> m Definition -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
Telescope -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel1) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
TCM Doc
"Datatype type: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
dtype
let hduTel :: Telescope
hduTel = Telescope
eqTel1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
ctel
notforced :: [IsForced]
notforced = Int -> IsForced -> [IsForced]
forall a. Int -> a -> [a]
replicate (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
hduTel) IsForced
NotForced
UnificationResult
res <- Telescope -> m UnificationResult -> m UnificationResult
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m UnificationResult -> m UnificationResult)
-> m UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$ Telescope
-> FlexibleVars -> Type -> Args -> Args -> m UnificationResult
forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars -> Type -> Args -> Args -> m UnificationResult
unifyIndices'
Telescope
hduTel
([IsForced] -> Telescope -> FlexibleVars
allFlexVars [IsForced]
notforced Telescope
hduTel)
(Int -> Type -> Type
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel) Type
dtype)
(Int -> Args -> Args
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel) Args
ixs)
Args
cixs
case UnificationResult
res of
NoUnify NegativeUnification
_ -> m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
UnifyBlocked Blocker
block -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
UnifyStuck [UnificationFailure]
_ | Bool -> Bool
not Bool
withoutK -> do
let eqTel1' :: Telescope
eqTel1' = Telescope
eqTel1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
ctel
rho1 :: Substitution' DeBruijnPattern
rho1 = Int -> Substitution' DeBruijnPattern
forall a. Int -> Substitution' a
raiseS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel)
ceq :: DeBruijnPattern
ceq = ConHead
-> ConPatternInfo -> [NamedArg DeBruijnPattern] -> DeBruijnPattern
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
noConPatternInfo ([NamedArg DeBruijnPattern] -> DeBruijnPattern)
-> [NamedArg DeBruijnPattern] -> DeBruijnPattern
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg DeBruijnPattern]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs Telescope
ctel
rho3 :: Substitution' DeBruijnPattern
rho3 = DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS DeBruijnPattern
ceq Substitution' DeBruijnPattern
rho1
eqTel2' :: Telescope
eqTel2' = Substitution' DeBruijnPattern -> Telescope -> Telescope
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
rho3 Telescope
eqTel2
eqTel' :: Telescope
eqTel' = Telescope
eqTel1' Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel2'
rho :: Substitution' DeBruijnPattern
rho = Int
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. Int -> Substitution' a -> Substitution' a
liftS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel2) Substitution' DeBruijnPattern
rho3
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
rho
Telescope
eqTel' <- Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Telescope
eqTel'
(Args
lhs', Args
rhs') <- do
let ps :: [NamedArg DeBruijnPattern]
ps = Substitution' (SubstArg [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' DeBruijnPattern
Substitution' (SubstArg [NamedArg DeBruijnPattern])
rho ([NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg DeBruijnPattern]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs (Telescope -> [NamedArg DeBruijnPattern])
-> Telescope -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
(Match Term
lhsMatch, Args
_) <- [NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
forall (m :: * -> *).
MonadMatch m =>
[NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
Match.matchPatterns [NamedArg DeBruijnPattern]
ps (Args -> m (Match Term, Args)) -> Args -> m (Match Term, Args)
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
(Match Term
rhsMatch, Args
_) <- [NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
forall (m :: * -> *).
MonadMatch m =>
[NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
Match.matchPatterns [NamedArg DeBruijnPattern]
ps (Args -> m (Match Term, Args)) -> Args -> m (Match Term, Args)
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
case (Match Term
lhsMatch, Match Term
rhsMatch) of
(Match.Yes Simplification
_ IntMap (Arg Term)
lhs', Match.Yes Simplification
_ IntMap (Arg Term)
rhs') -> (Args, Args) -> m (Args, Args)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Args -> Args
forall a. [a] -> [a]
reverse (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> Args
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
lhs',
Args -> Args
forall a. [a] -> [a]
reverse (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> Args
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
rhs')
(Match Term, Match Term)
_ -> m (Args, Args)
forall a. HasCallStack => a
__IMPOSSIBLE__
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s { eqTel :: Telescope
eqTel = Telescope
eqTel' , eqLHS :: Args
eqLHS = Args
lhs' , eqRHS :: Args
eqRHS = Args
rhs' }
UnifyStuck [UnificationFailure]
_ -> let n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v = Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
in UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Term -> Term -> Args -> UnificationFailure
UnifyIndicesNotVars
(UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` UnifyState -> Telescope
eqTel UnifyState
s) Type
a
(Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
n Term
u) (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
n Term
v) (Int -> Args -> Args
forall a. Subst a => Int -> a -> a
raise (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
k) Args
ixs)]
Unifies (Telescope
eqTel1', Substitution' DeBruijnPattern
rho0, [NamedArg DeBruijnPattern]
_) -> do
let (Substitution' DeBruijnPattern
rho1, Substitution' DeBruijnPattern
rho2) = Int
-> Substitution' DeBruijnPattern
-> (Substitution' DeBruijnPattern, Substitution' DeBruijnPattern)
forall a.
Int -> Substitution' a -> (Substitution' a, Substitution' a)
splitS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel) Substitution' DeBruijnPattern
rho0
let ceq :: DeBruijnPattern
ceq = ConHead
-> ConPatternInfo -> [NamedArg DeBruijnPattern] -> DeBruijnPattern
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
noConPatternInfo ([NamedArg DeBruijnPattern] -> DeBruijnPattern)
-> [NamedArg DeBruijnPattern] -> DeBruijnPattern
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' DeBruijnPattern
Substitution' (SubstArg [NamedArg DeBruijnPattern])
rho2 ([NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg DeBruijnPattern]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs Telescope
ctel
rho3 :: Substitution' DeBruijnPattern
rho3 = DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS DeBruijnPattern
ceq Substitution' DeBruijnPattern
rho1
eqTel2' :: Telescope
eqTel2' = Substitution' DeBruijnPattern -> Telescope -> Telescope
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
rho3 Telescope
eqTel2
eqTel' :: Telescope
eqTel' = Telescope
eqTel1' Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel2'
rho :: Substitution' DeBruijnPattern
rho = Int
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. Int -> Substitution' a -> Substitution' a
liftS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel2) Substitution' DeBruijnPattern
rho3
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
rho
Telescope
eqTel' <- Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Telescope
eqTel'
(Args
lhs', Args
rhs') <- do
let ps :: [NamedArg DeBruijnPattern]
ps = Substitution' (SubstArg [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' DeBruijnPattern
Substitution' (SubstArg [NamedArg DeBruijnPattern])
rho ([NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg DeBruijnPattern]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs (Telescope -> [NamedArg DeBruijnPattern])
-> Telescope -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
(Match Term
lhsMatch, Args
_) <- [NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
forall (m :: * -> *).
MonadMatch m =>
[NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
Match.matchPatterns [NamedArg DeBruijnPattern]
ps (Args -> m (Match Term, Args)) -> Args -> m (Match Term, Args)
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
(Match Term
rhsMatch, Args
_) <- [NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
forall (m :: * -> *).
MonadMatch m =>
[NamedArg DeBruijnPattern] -> Args -> m (Match Term, Args)
Match.matchPatterns [NamedArg DeBruijnPattern]
ps (Args -> m (Match Term, Args)) -> Args -> m (Match Term, Args)
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
case (Match Term
lhsMatch, Match Term
rhsMatch) of
(Match.Yes Simplification
_ IntMap (Arg Term)
lhs', Match.Yes Simplification
_ IntMap (Arg Term)
rhs') -> (Args, Args) -> m (Args, Args)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Args -> Args
forall a. [a] -> [a]
reverse (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> Args
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
lhs',
Args -> Args
forall a. [a] -> [a]
reverse (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> Args
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
rhs')
(Match Term, Match Term)
_ -> m (Args, Args)
forall a. HasCallStack => a
__IMPOSSIBLE__
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s { eqTel :: Telescope
eqTel = Telescope
eqTel' , eqLHS :: Args
eqLHS = Args
lhs' , eqRHS :: Args
eqRHS = Args
rhs' }
unifyStep UnifyState
s Conflict
{ conflictLeft :: UnifyStep -> Term
conflictLeft = Term
u
, conflictRight :: UnifyStep -> Term
conflictRight = Term
v
} =
case Term
u of
Con ConHead
h ConInfo
_ Elims
_ -> do
m Bool
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> m Bool) -> QName -> m Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
h) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Term -> Term -> NegativeUnification
UnifyConflict (UnifyState -> Telescope
varTel UnifyState
s) Term
u Term
v
Term
_ -> m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unifyStep UnifyState
s Cycle
{ cycleVar :: UnifyStep -> Int
cycleVar = Int
i
, cycleOccursIn :: UnifyStep -> Term
cycleOccursIn = Term
u
} =
case Term
u of
Con ConHead
h ConInfo
_ Elims
_ -> do
m Bool
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> m Bool) -> QName -> m Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
h) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Int -> Term -> NegativeUnification
UnifyCycle (UnifyState -> Telescope
varTel UnifyState
s) Int
i Term
u
Term
_ -> m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unifyStep UnifyState
s EtaExpandVar{ expandVar :: UnifyStep -> FlexibleVar Int
expandVar = FlexibleVar Int
fi, expandVarRecordType :: UnifyStep -> QName
expandVarRecordType = QName
d , expandVarParameters :: UnifyStep -> Args
expandVarParameters = Args
pars } = do
Defn
recd <- Defn -> Maybe Defn -> Defn
forall a. a -> Maybe a -> a
fromMaybe Defn
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Defn -> Defn) -> m (Maybe Defn) -> m Defn
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe Defn)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Defn)
isRecord QName
d
let delta :: Telescope
delta = Defn -> Telescope
recTel Defn
recd Telescope -> Args -> Telescope
forall t. Apply t => t -> Args -> t
`apply` Args
pars
c :: ConHead
c = Defn -> ConHead
recConHead Defn
recd
let nfields :: Int
nfields = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
delta
(Telescope
varTel', Substitution' DeBruijnPattern
rho) = Telescope
-> Int
-> Telescope
-> ConHead
-> (Telescope, Substitution' DeBruijnPattern)
expandTelescopeVar (UnifyState -> Telescope
varTel UnifyState
s) (Int
mInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
i) Telescope
delta ConHead
c
projectFlexible :: FlexibleVars
projectFlexible = [ ArgInfo
-> IsForced
-> FlexibleVarKind
-> Maybe Int
-> Int
-> FlexibleVar Int
forall a.
ArgInfo
-> IsForced -> FlexibleVarKind -> Maybe Int -> a -> FlexibleVar a
FlexibleVar (FlexibleVar Int -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo FlexibleVar Int
fi) (FlexibleVar Int -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Int
fi) (Int -> FlexibleVarKind
projFlexKind Int
j) (FlexibleVar Int -> Maybe Int
forall a. FlexibleVar a -> Maybe Int
flexPos FlexibleVar Int
fi) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j) | Int
j <- [Int
0..Int
nfieldsInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1] ]
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifySubst (Substitution' DeBruijnPattern -> m ())
-> Substitution' DeBruijnPattern -> m ()
forall a b. (a -> b) -> a -> b
$ Substitution' DeBruijnPattern
rho
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UState :: Telescope
-> FlexibleVars -> Telescope -> Args -> Args -> UnifyState
UState
{ varTel :: Telescope
varTel = Telescope
varTel'
, flexVars :: FlexibleVars
flexVars = FlexibleVars
projectFlexible FlexibleVars -> FlexibleVars -> FlexibleVars
forall a. [a] -> [a] -> [a]
++ Int -> FlexibleVars -> FlexibleVars
liftFlexibles Int
nfields (UnifyState -> FlexibleVars
flexVars UnifyState
s)
, eqTel :: Telescope
eqTel = Substitution' DeBruijnPattern -> Telescope -> Telescope
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
rho (Telescope -> Telescope) -> Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
, eqLHS :: Args
eqLHS = Substitution' DeBruijnPattern -> Args -> Args
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
rho (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
, eqRHS :: Args
eqRHS = Substitution' DeBruijnPattern -> Args -> Args
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
rho (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
}
where
i :: Int
i = FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVar Int
fi
m :: Int
m = UnifyState -> Int
varCount UnifyState
s
projFlexKind :: Int -> FlexibleVarKind
projFlexKind :: Int -> FlexibleVarKind
projFlexKind Int
j = case FlexibleVar Int -> FlexibleVarKind
forall a. FlexibleVar a -> FlexibleVarKind
flexKind FlexibleVar Int
fi of
RecordFlex [FlexibleVarKind]
ks -> FlexibleVarKind -> [FlexibleVarKind] -> Int -> FlexibleVarKind
forall a. a -> [a] -> Int -> a
indexWithDefault FlexibleVarKind
ImplicitFlex [FlexibleVarKind]
ks Int
j
FlexibleVarKind
ImplicitFlex -> FlexibleVarKind
ImplicitFlex
FlexibleVarKind
DotFlex -> FlexibleVarKind
DotFlex
FlexibleVarKind
OtherFlex -> FlexibleVarKind
OtherFlex
liftFlexible :: Int -> Int -> Maybe Int
liftFlexible :: Int -> Int -> Maybe Int
liftFlexible Int
n Int
j = if Int
j Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i then Maybe Int
forall a. Maybe a
Nothing else Int -> Maybe Int
forall a. a -> Maybe a
Just (if Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
i then Int
j Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) else Int
j)
liftFlexibles :: Int -> FlexibleVars -> FlexibleVars
liftFlexibles :: Int -> FlexibleVars -> FlexibleVars
liftFlexibles Int
n FlexibleVars
fs = (FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars -> FlexibleVars
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe ((Int -> Maybe Int) -> FlexibleVar Int -> Maybe (FlexibleVar Int)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((Int -> Maybe Int) -> FlexibleVar Int -> Maybe (FlexibleVar Int))
-> (Int -> Maybe Int) -> FlexibleVar Int -> Maybe (FlexibleVar Int)
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Maybe Int
liftFlexible Int
n) FlexibleVars
fs
unifyStep UnifyState
s EtaExpandEquation{ expandAt :: UnifyStep -> Int
expandAt = Int
k, expandRecordType :: UnifyStep -> QName
expandRecordType = QName
d, expandParameters :: UnifyStep -> Args
expandParameters = Args
pars } = do
Defn
recd <- Defn -> Maybe Defn -> Defn
forall a. a -> Maybe a -> a
fromMaybe Defn
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Defn -> Defn) -> m (Maybe Defn) -> m Defn
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe Defn)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Defn)
isRecord QName
d
let delta :: Telescope
delta = Defn -> Telescope
recTel Defn
recd Telescope -> Args -> Telescope
forall t. Apply t => t -> Args -> t
`apply` Args
pars
c :: ConHead
c = Defn -> ConHead
recConHead Defn
recd
Args
lhs <- Args -> m Args
expandKth (Args -> m Args) -> Args -> m Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
Args
rhs <- Args -> m Args
expandKth (Args -> m Args) -> Args -> m Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
let (Telescope
tel, Substitution' DeBruijnPattern
sigma) = Telescope
-> Int
-> Telescope
-> ConHead
-> (Telescope, Substitution' DeBruijnPattern)
expandTelescopeVar (UnifyState -> Telescope
eqTel UnifyState
s) Int
k Telescope
delta ConHead
c
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
sigma
UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> m UnifyState -> m (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
(Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensEqTel Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s
{ eqTel :: Telescope
eqTel = Telescope
tel
, eqLHS :: Args
eqLHS = Args
lhs
, eqRHS :: Args
eqRHS = Args
rhs
}
where
expandKth :: Args -> m Args
expandKth Args
us = do
let (Args
us1,Arg Term
v:Args
us2) = (Args, Args) -> Maybe (Args, Args) -> (Args, Args)
forall a. a -> Maybe a -> a
fromMaybe (Args, Args)
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe (Args, Args) -> (Args, Args))
-> Maybe (Args, Args) -> (Args, Args)
forall a b. (a -> b) -> a -> b
$ Int -> Args -> Maybe (Args, Args)
forall n a. Integral n => n -> [a] -> Maybe ([a], [a])
splitExactlyAt Int
k Args
us
Args
vs <- (Telescope, Args) -> Args
forall a b. (a, b) -> b
snd ((Telescope, Args) -> Args) -> m (Telescope, Args) -> m Args
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> Args -> Term -> m (Telescope, Args)
forall (m :: * -> *).
(HasConstInfo m, MonadDebug m, ReadTCState m) =>
QName -> Args -> Term -> m (Telescope, Args)
etaExpandRecord QName
d Args
pars (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
v)
Args
vs <- Args -> m Args
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Args
vs
Args -> m Args
forall (m :: * -> *) a. Monad m => a -> m a
return (Args -> m Args) -> Args -> m Args
forall a b. (a -> b) -> a -> b
$ Args
us1 Args -> Args -> Args
forall a. [a] -> [a] -> [a]
++ Args
vs Args -> Args -> Args
forall a. [a] -> [a] -> [a]
++ Args
us2
unifyStep UnifyState
s LitConflict
{ litType :: UnifyStep -> Type
litType = Type
a
, litConflictLeft :: UnifyStep -> Literal
litConflictLeft = Literal
l
, litConflictRight :: UnifyStep -> Literal
litConflictRight = Literal
l'
} = UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Term -> Term -> NegativeUnification
UnifyConflict (UnifyState -> Telescope
varTel UnifyState
s) (Literal -> Term
Lit Literal
l) (Literal -> Term
Lit Literal
l')
unifyStep UnifyState
s (StripSizeSuc Int
k Term
u Term
v) = do
Type
sizeTy <- m Type
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
m Type
sizeType
Term
sizeSu <- Int -> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Int -> Term -> m Term
sizeSuc Int
1 (Int -> Term
var Int
0)
let n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
sub :: Substitution' Term
sub = Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
liftS (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Substitution' Term -> Substitution' Term)
-> Substitution' Term -> Substitution' Term
forall a b. (a -> b) -> a -> b
$ Term -> Substitution' Term -> Substitution' Term
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
sizeSu (Substitution' Term -> Substitution' Term)
-> Substitution' Term -> Substitution' Term
forall a b. (a -> b) -> a -> b
$ Int -> Substitution' Term
forall a. Int -> Substitution' a
raiseS Int
1
eqFlatTel :: [Dom Type]
eqFlatTel = Telescope -> [Dom Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (Telescope -> [Dom Type]) -> Telescope -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
eqFlatTel' :: [Dom Type]
eqFlatTel' = Substitution' (SubstArg [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg [Dom Type])
sub ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ Int -> (Dom Type -> Dom Type) -> [Dom Type] -> [Dom Type]
forall a. Int -> (a -> a) -> [a] -> [a]
updateAt Int
k ((Type -> Type) -> Dom Type -> Dom Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Type -> Type) -> Dom Type -> Dom Type)
-> (Type -> Type) -> Dom Type -> Dom Type
forall a b. (a -> b) -> a -> b
$ Type -> Type -> Type
forall a b. a -> b -> a
const Type
sizeTy) ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ [Dom Type]
eqFlatTel
eqTel' :: Telescope
eqTel' = [String] -> [Dom Type] -> Telescope
unflattenTel (Telescope -> [String]
teleNames (Telescope -> [String]) -> Telescope -> [String]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s) [Dom Type]
eqFlatTel'
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s
{ eqTel :: Telescope
eqTel = Telescope
eqTel'
, eqLHS :: Args
eqLHS = Int -> (Arg Term -> Arg Term) -> Args -> Args
forall a. Int -> (a -> a) -> [a] -> [a]
updateAt Int
k (Arg Term -> Arg Term -> Arg Term
forall a b. a -> b -> a
const (Arg Term -> Arg Term -> Arg Term)
-> Arg Term -> Arg Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
u) (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqLHS UnifyState
s
, eqRHS :: Args
eqRHS = Int -> (Arg Term -> Arg Term) -> Args -> Args
forall a. Int -> (a -> a) -> [a] -> [a]
updateAt Int
k (Arg Term -> Arg Term -> Arg Term
forall a b. a -> b -> a
const (Arg Term -> Arg Term -> Arg Term)
-> Arg Term -> Arg Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
v) (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ UnifyState -> Args
eqRHS UnifyState
s
}
unifyStep UnifyState
s (SkipIrrelevantEquation Int
k) = do
let lhs :: Args
lhs = UnifyState -> Args
eqLHS UnifyState
s
(UnifyState
s', Substitution' DeBruijnPattern
sigma) = Int
-> Term
-> UnifyState
-> (UnifyState, Substitution' DeBruijnPattern)
solveEq Int
k (Term -> Term
DontCare (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Args -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ Args
lhs Int
k) UnifyState
s
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
sigma
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s'
unifyStep UnifyState
s (TypeConInjectivity Int
k QName
d Args
us Args
vs) = do
Type
dtype <- Definition -> Type
defType (Definition -> Type) -> m Definition -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
TelV Telescope
dtel Type
_ <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
dtype
let deq :: Term
deq = QName -> Elims -> Term
Def QName
d (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Args -> Elims) -> Args -> Elims
forall a b. (a -> b) -> a -> b
$ Telescope -> Args
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Telescope
dtel
UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> m UnifyState -> m (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
(Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensEqTel Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s
{ eqTel :: Telescope
eqTel = Telescope
dtel Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Int -> Telescope -> Term -> Telescope
applyUnder Int
k (UnifyState -> Telescope
eqTel UnifyState
s) (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
k Term
deq)
, eqLHS :: Args
eqLHS = Args
us Args -> Args -> Args
forall a. [a] -> [a] -> [a]
++ Int -> Args -> Args
forall a. Int -> [a] -> [a]
dropAt Int
k (UnifyState -> Args
eqLHS UnifyState
s)
, eqRHS :: Args
eqRHS = Args
vs Args -> Args -> Args
forall a. [a] -> [a] -> [a]
++ Int -> Args -> Args
forall a. Int -> [a] -> [a]
dropAt Int
k (UnifyState -> Args
eqRHS UnifyState
s)
}
data RetryNormalised = RetryNormalised | DontRetryNormalised
deriving (RetryNormalised -> RetryNormalised -> Bool
(RetryNormalised -> RetryNormalised -> Bool)
-> (RetryNormalised -> RetryNormalised -> Bool)
-> Eq RetryNormalised
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: RetryNormalised -> RetryNormalised -> Bool
$c/= :: RetryNormalised -> RetryNormalised -> Bool
== :: RetryNormalised -> RetryNormalised -> Bool
$c== :: RetryNormalised -> RetryNormalised -> Bool
Eq, Int -> RetryNormalised -> ShowS
[RetryNormalised] -> ShowS
RetryNormalised -> String
(Int -> RetryNormalised -> ShowS)
-> (RetryNormalised -> String)
-> ([RetryNormalised] -> ShowS)
-> Show RetryNormalised
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [RetryNormalised] -> ShowS
$cshowList :: [RetryNormalised] -> ShowS
show :: RetryNormalised -> String
$cshow :: RetryNormalised -> String
showsPrec :: Int -> RetryNormalised -> ShowS
$cshowsPrec :: Int -> RetryNormalised -> ShowS
Show)
solutionStep
:: (PureTCM m, MonadWriter UnifyOutput m)
=> RetryNormalised
-> UnifyState
-> UnifyStep
-> m (UnificationResult' UnifyState)
solutionStep :: RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
retry UnifyState
s
step :: UnifyStep
step@Solution{ solutionAt :: UnifyStep -> Int
solutionAt = Int
k
, solutionType :: UnifyStep -> Dom Type
solutionType = dom :: Dom Type
dom@Dom{ unDom :: forall t e. Dom' t e -> e
unDom = Type
a }
, solutionVar :: UnifyStep -> FlexibleVar Int
solutionVar = fi :: FlexibleVar Int
fi@FlexibleVar{ flexVar :: forall a. FlexibleVar a -> a
flexVar = Int
i }
, solutionTerm :: UnifyStep -> Term
solutionTerm = Term
u } = do
let m :: Int
m = UnifyState -> Int
varCount UnifyState
s
Bool
inMakeCase <- Lens' Bool TCEnv -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Bool TCEnv
eMakeCase
let forcedVars :: IntMap Modality
forcedVars | Bool
inMakeCase = IntMap Modality
forall a. IntMap a
IntMap.empty
| Bool
otherwise = [(Int, Modality)] -> IntMap Modality
forall a. [(Int, a)] -> IntMap a
IntMap.fromList [ (FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVar Int
fi, FlexibleVar Int -> Modality
forall a. LensModality a => a -> Modality
getModality FlexibleVar Int
fi) | FlexibleVar Int
fi <- UnifyState -> FlexibleVars
flexVars UnifyState
s,
FlexibleVar Int -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Int
fi IsForced -> IsForced -> Bool
forall a. Eq a => a -> a -> Bool
== IsForced
Forced ]
(DeBruijnPattern
p, IntMap Modality
bound) <- IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality)
forall (m :: * -> *).
PureTCM m =>
IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality)
patternBindingForcedVars IntMap Modality
forcedVars Term
u
let dotSub :: Substitution' DeBruijnPattern
dotSub = (Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern)
-> Substitution' DeBruijnPattern
-> [Substitution' DeBruijnPattern]
-> Substitution' DeBruijnPattern
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
composeS Substitution' DeBruijnPattern
forall a. Substitution' a
idS [ Int -> DeBruijnPattern -> Substitution' DeBruijnPattern
forall a. EndoSubst a => Int -> a -> Substitution' a
inplaceS Int
i (Term -> DeBruijnPattern
forall a. Term -> Pattern' a
dotP (Int -> Elims -> Term
Var Int
i [])) | Int
i <- IntMap Modality -> [Int]
forall a. IntMap a -> [Int]
IntMap.keys IntMap Modality
bound ]
let updModality :: Modality -> IntMap Modality -> Telescope -> Telescope
updModality Modality
md IntMap Modality
vars Telescope
tel
| IntMap Modality -> Bool
forall a. IntMap a -> Bool
IntMap.null IntMap Modality
vars = Telescope
tel
| Bool
otherwise = [Dom' Term (String, Type)] -> Telescope
telFromList ([Dom' Term (String, Type)] -> Telescope)
-> [Dom' Term (String, Type)] -> Telescope
forall a b. (a -> b) -> a -> b
$ (Int -> Dom' Term (String, Type) -> Dom' Term (String, Type))
-> [Int]
-> [Dom' Term (String, Type)]
-> [Dom' Term (String, Type)]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Dom' Term (String, Type) -> Dom' Term (String, Type)
upd (Int -> [Int]
forall a. Integral a => a -> [a]
downFrom (Int -> [Int]) -> Int -> [Int]
forall a b. (a -> b) -> a -> b
$ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel)
where
upd :: Int -> Dom' Term (String, Type) -> Dom' Term (String, Type)
upd Int
i Dom' Term (String, Type)
a | Just Modality
md' <- Int -> IntMap Modality -> Maybe Modality
forall a. Int -> IntMap a -> Maybe a
IntMap.lookup Int
i IntMap Modality
vars = Modality -> Dom' Term (String, Type) -> Dom' Term (String, Type)
forall a. LensModality a => Modality -> a -> a
setModality (Modality -> Modality -> Modality
composeModality Modality
md Modality
md') Dom' Term (String, Type)
a
| Bool
otherwise = Dom' Term (String, Type)
a
UnifyState
s <- UnifyState -> m UnifyState
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s { varTel :: Telescope
varTel = Modality -> IntMap Modality -> Telescope -> Telescope
updModality (FlexibleVar Int -> Modality
forall a. LensModality a => a -> Modality
getModality FlexibleVar Int
fi) IntMap Modality
bound (UnifyState -> Telescope
varTel UnifyState
s) }
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify.force" Int
45 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
[ TCM Doc
"forcedVars =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Int] -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (IntMap Modality -> [Int]
forall a. IntMap a -> [Int]
IntMap.keys IntMap Modality
forcedVars)
, TCM Doc
"u =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
, TCM Doc
"p =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> DeBruijnPattern -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM DeBruijnPattern
p
, TCM Doc
"bound =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Int] -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (IntMap Modality -> [Int]
forall a. IntMap a -> [Int]
IntMap.keys IntMap Modality
bound)
, TCM Doc
"dotSub =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Substitution' DeBruijnPattern -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Substitution' DeBruijnPattern
dotSub ]
let dom' :: Dom Type
dom'@Dom{ unDom :: forall t e. Dom' t e -> e
unDom = Type
a' } = Int -> UnifyState -> Dom Type
getVarType (Int
mInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
i) UnifyState
s
Either Blocker Bool
equalTypes <- Telescope -> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Either Blocker Bool) -> m (Either Blocker Bool))
-> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (BlockT m Bool -> m (Either Blocker Bool))
-> BlockT m Bool -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ do
String -> Int -> TCM Doc -> BlockT m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
45 (TCM Doc -> BlockT m ()) -> TCM Doc -> BlockT m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"Equation type: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
String -> Int -> TCM Doc -> BlockT m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
45 (TCM Doc -> BlockT m ()) -> TCM Doc -> BlockT m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"Variable type: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a'
Type -> Type -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
Type -> Type -> m Bool
pureEqualType Type
a Type
a'
Modality
envmod <- Lens' Modality TCEnv -> m Modality
forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Modality TCEnv
eModality
let eqrel :: Relevance
eqrel = Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
dom
eqmod :: Modality
eqmod = Dom Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom Type
dom
varmod :: Modality
varmod = Dom Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom Type
dom'
mod :: Modality
mod = Bool -> (Modality -> Modality) -> Modality -> Modality
forall a. Bool -> (a -> a) -> a -> a
applyUnless (Relevance
NonStrict Relevance -> Relevance -> Bool
`moreRelevant` Relevance
eqrel) (Relevance -> Modality -> Modality
forall a. LensRelevance a => Relevance -> a -> a
setRelevance Relevance
eqrel)
(Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Bool -> (Modality -> Modality) -> Modality -> Modality
forall a. Bool -> (a -> a) -> a -> a
applyUnless (Modality -> Bool
forall a. LensQuantity a => a -> Bool
usableQuantity Modality
envmod) (Quantity -> Modality -> Modality
forall a. LensQuantity a => Quantity -> a -> a
setQuantity Quantity
zeroQuantity)
(Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Modality
varmod
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
65 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCM Doc) -> String -> TCM Doc
forall a b. (a -> b) -> a -> b
$ String
"Equation modality: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Modality -> String
forall a. Show a => a -> String
show (Dom Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom Type
dom)
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
65 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCM Doc) -> String -> TCM Doc
forall a b. (a -> b) -> a -> b
$ String
"Variable modality: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Modality -> String
forall a. Show a => a -> String
show Modality
varmod
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
65 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ String -> TCM Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCM Doc) -> String -> TCM Doc
forall a b. (a -> b) -> a -> b
$ String
"Solution must be usable in a " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Modality -> String
forall a. Show a => a -> String
show Modality
mod String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" position."
Either Blocker Bool
eusable <- Telescope -> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Either Blocker Bool) -> m (Either Blocker Bool))
-> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ ExceptT Blocker m Bool -> m (Either Blocker Bool)
forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT (ExceptT Blocker m Bool -> m (Either Blocker Bool))
-> ExceptT Blocker m Bool -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ Modality -> Term -> ExceptT Blocker m Bool
forall a (m :: * -> *).
(UsableModality a, ReadTCState m, HasConstInfo m, MonadTCEnv m,
MonadAddContext m, MonadDebug m, MonadReduce m,
MonadError Blocker m) =>
Modality -> a -> m Bool
usableMod Modality
mod Term
u
m (Either Blocker Bool)
-> (Blocker -> m (UnificationResult' UnifyState))
-> (Bool -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a b c.
Monad m =>
m (Either a b) -> (a -> m c) -> (b -> m c) -> m c
caseEitherM (Either Blocker Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return Either Blocker Bool
eusable) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> (Blocker -> UnificationResult' UnifyState)
-> Blocker
-> m (UnificationResult' UnifyState)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked) ((Bool -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState))
-> (Bool -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ \ Bool
usable -> do
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
45 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"Modality ok: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Bool -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Bool
usable
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
usable (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Int -> String -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> String -> m ()
reportSLn String
"tc.lhs.unify" Int
65 (String -> m ()) -> String -> m ()
forall a b. (a -> b) -> a -> b
$ String
"Rejected solution: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Term -> String
forall a. Show a => a -> String
show Term
u
if Bool -> Bool
not (Modality -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion Modality
eqmod Cohesion -> Cohesion -> Bool
`moreCohesion` Modality -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion Modality
varmod) then UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [] else do
case Either Blocker Bool
equalTypes of
Left Blocker
block -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
Right Bool
False -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
Right Bool
True | Bool
usable ->
case Int
-> DeBruijnPattern
-> UnifyState
-> Maybe (UnifyState, Substitution' DeBruijnPattern)
solveVar (Int
m Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) DeBruijnPattern
p UnifyState
s of
Maybe (UnifyState, Substitution' DeBruijnPattern)
Nothing | RetryNormalised
retry RetryNormalised -> RetryNormalised -> Bool
forall a. Eq a => a -> a -> Bool
== RetryNormalised
RetryNormalised -> do
Term
u <- Term -> m Term
forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise Term
u
UnifyState
s <- (Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensVarTel Telescope -> m Telescope
forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise UnifyState
s
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
DontRetryNormalised UnifyState
s UnifyStep
step{ solutionTerm :: Term
solutionTerm = Term
u }
Maybe (UnifyState, Substitution' DeBruijnPattern)
Nothing ->
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Int -> Term -> UnificationFailure
UnifyRecursiveEq (UnifyState -> Telescope
varTel UnifyState
s) Type
a Int
i Term
u]
Just (UnifyState
s', Substitution' DeBruijnPattern
sub) -> do
let rho :: Substitution' DeBruijnPattern
rho = Substitution' DeBruijnPattern
sub Substitution' DeBruijnPattern
-> Substitution' DeBruijnPattern -> Substitution' DeBruijnPattern
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` Substitution' DeBruijnPattern
dotSub
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifySubst Substitution' DeBruijnPattern
rho
let (UnifyState
s'', Substitution' DeBruijnPattern
sigma) = Int
-> Term
-> UnifyState
-> (UnifyState, Substitution' DeBruijnPattern)
solveEq Int
k (Substitution' DeBruijnPattern -> Term -> Term
forall a. TermSubst a => Substitution' DeBruijnPattern -> a -> a
applyPatSubst Substitution' DeBruijnPattern
rho Term
u) UnifyState
s'
Substitution' DeBruijnPattern -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
Substitution' DeBruijnPattern -> m ()
tellUnifyProof Substitution' DeBruijnPattern
sigma
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s''
Right Bool
True -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Int -> Term -> Modality -> UnificationFailure
UnifyUnusableModality (UnifyState -> Telescope
varTel UnifyState
s) Type
a Int
i Term
u Modality
mod]
solutionStep RetryNormalised
_ UnifyState
_ UnifyStep
_ = m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unify
:: (PureTCM m, MonadWriter UnifyOutput m)
=> UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify :: UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify UnifyState
s UnifyStrategy
strategy = if UnifyState -> Bool
isUnifyStateSolved UnifyState
s
then UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s
else ListT m UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
ListT m UnifyStep -> m (UnificationResult' UnifyState)
tryUnifyStepsAndContinue (UnifyState -> ListT m UnifyStep
UnifyStrategy
strategy UnifyState
s)
where
tryUnifyStepsAndContinue
:: (PureTCM m, MonadWriter UnifyOutput m)
=> ListT m UnifyStep -> m (UnificationResult' UnifyState)
tryUnifyStepsAndContinue :: ListT m UnifyStep -> m (UnificationResult' UnifyState)
tryUnifyStepsAndContinue ListT m UnifyStep
steps = do
UnificationResult' UnifyState
x <- (UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> ListT m UnifyStep
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b -> m b) -> m b -> ListT m a -> m b
foldListT UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
tryUnifyStep m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m (UnificationResult' a)
failure ListT m UnifyStep
steps
case UnificationResult' UnifyState
x of
Unifies UnifyState
s' -> UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify UnifyState
s' UnifyStrategy
strategy
NoUnify NegativeUnification
err -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify NegativeUnification
err
UnifyBlocked Blocker
b -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
b
UnifyStuck [UnificationFailure]
err -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [UnificationFailure]
err
tryUnifyStep :: (PureTCM m, MonadWriter UnifyOutput m)
=> UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
tryUnifyStep :: UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
tryUnifyStep UnifyStep
step m (UnificationResult' UnifyState)
fallback = do
Telescope -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"trying unifyStep" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyStep -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM UnifyStep
step
UnificationResult' UnifyState
x <- UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
unifyStep UnifyState
s UnifyStep
step
case UnificationResult' UnifyState
x of
Unifies UnifyState
s' -> do
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"unifyStep successful."
String -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCM Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"new unifyState:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyState -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM UnifyState
s'
UnifyLogEntry -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
UnifyLogEntry -> m ()
writeUnifyLog (UnifyLogEntry -> m ()) -> UnifyLogEntry -> m ()
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnifyStep -> UnifyLogEntry
UnificationStep UnifyState
s UnifyStep
step
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
x
NoUnify{} -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
x
UnifyBlocked Blocker
b1 -> do
UnificationResult' UnifyState
y <- m (UnificationResult' UnifyState)
fallback
case UnificationResult' UnifyState
y of
UnifyStuck [UnificationFailure]
_ -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
b1
UnifyBlocked Blocker
b2 -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked (Blocker -> UnificationResult' UnifyState)
-> Blocker -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Blocker -> Blocker -> Blocker
unblockOnEither Blocker
b1 Blocker
b2
UnificationResult' UnifyState
_ -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
y
UnifyStuck [UnificationFailure]
err1 -> do
UnificationResult' UnifyState
y <- m (UnificationResult' UnifyState)
fallback
case UnificationResult' UnifyState
y of
UnifyStuck [UnificationFailure]
err2 -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck ([UnificationFailure] -> UnificationResult' UnifyState)
-> [UnificationFailure] -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ [UnificationFailure]
err1 [UnificationFailure]
-> [UnificationFailure] -> [UnificationFailure]
forall a. [a] -> [a] -> [a]
++ [UnificationFailure]
err2
UnificationResult' UnifyState
_ -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
y
failure :: Monad m => m (UnificationResult' a)
failure :: m (UnificationResult' a)
failure = UnificationResult' a -> m (UnificationResult' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' a -> m (UnificationResult' a))
-> UnificationResult' a -> m (UnificationResult' a)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' a
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
patternBindingForcedVars :: PureTCM m => IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality)
patternBindingForcedVars :: IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality)
patternBindingForcedVars IntMap Modality
forced Term
v = do
let v' :: Term
v' = Term -> Term
forall a. PrecomputeFreeVars a => a -> a
precomputeFreeVars_ Term
v
WriterT (IntMap Modality) m DeBruijnPattern
-> m (DeBruijnPattern, IntMap Modality)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT (StateT
(IntMap Modality) (WriterT (IntMap Modality) m) DeBruijnPattern
-> IntMap Modality -> WriterT (IntMap Modality) m DeBruijnPattern
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
evalStateT (Modality
-> Term
-> StateT
(IntMap Modality) (WriterT (IntMap Modality) m) DeBruijnPattern
forall (t :: (* -> *) -> * -> *) (t :: (* -> *) -> * -> *)
(m :: * -> *) a.
(MonadWriter (IntMap Modality) (t (t m)), HasConstInfo (t (t m)),
DeBruijn a, MonadTrans t, MonadTrans t, Monad (t m), MonadReduce m,
MonadState (IntMap Modality) (t (t m))) =>
Modality -> Term -> t (t m) (Pattern' a)
go Modality
defaultModality Term
v') IntMap Modality
forced)
where
noForced :: a -> m Bool
noForced a
v = (IntMap a -> Bool) -> m Bool
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets ((IntMap a -> Bool) -> m Bool) -> (IntMap a -> Bool) -> m Bool
forall a b. (a -> b) -> a -> b
$ IntSet -> IntSet -> Bool
IntSet.disjoint (a -> IntSet
forall a. PrecomputeFreeVars a => a -> IntSet
precomputedFreeVars a
v) (IntSet -> Bool) -> (IntMap a -> IntSet) -> IntMap a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> IntSet
forall a. IntMap a -> IntSet
IntMap.keysSet
bind :: a -> Int -> m (Pattern' a)
bind a
md Int
i = do
(IntMap a -> Maybe a) -> m (Maybe a)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets (Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
IntMap.lookup Int
i) m (Maybe a) -> (Maybe a -> m (Pattern' a)) -> m (Pattern' a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Just a
md' | a -> PartialOrdering -> a -> Bool
forall a. PartialOrd a => a -> PartialOrdering -> a -> Bool
related a
md PartialOrdering
POLE a
md' -> do
IntMap a -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (IntMap a -> m ()) -> IntMap a -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
IntMap.singleton Int
i a
md
(IntMap a -> IntMap a) -> m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((IntMap a -> IntMap a) -> m ()) -> (IntMap a -> IntMap a) -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
IntMap.delete Int
i
Pattern' a -> m (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> m (Pattern' a)) -> Pattern' a -> m (Pattern' a)
forall a b. (a -> b) -> a -> b
$ a -> Pattern' a
forall a. a -> Pattern' a
varP (Int -> a
forall a. DeBruijn a => Int -> a
deBruijnVar Int
i)
Maybe a
_ -> Pattern' a -> m (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> m (Pattern' a)) -> Pattern' a -> m (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP (Int -> Elims -> Term
Var Int
i [])
go :: Modality -> Term -> t (t m) (Pattern' a)
go Modality
md Term
v = t (t m) Bool
-> t (t m) (Pattern' a)
-> t (t m) (Pattern' a)
-> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Term -> t (t m) Bool
forall a (m :: * -> *) a.
(MonadState (IntMap a) m, PrecomputeFreeVars a) =>
a -> m Bool
noForced Term
v) (Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v) (t (t m) (Pattern' a) -> t (t m) (Pattern' a))
-> t (t m) (Pattern' a) -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ do
Term
v' <- t m Term -> t (t m) Term
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (t m Term -> t (t m) Term) -> t m Term -> t (t m) Term
forall a b. (a -> b) -> a -> b
$ m Term -> t m Term
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m Term -> t m Term) -> m Term -> t m Term
forall a b. (a -> b) -> a -> b
$ Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
v
case Term
v' of
Var Int
i [] -> Modality -> Int -> t (t m) (Pattern' a)
forall a (m :: * -> *) a.
(MonadState (IntMap a) m, PartialOrd a, MonadWriter (IntMap a) m,
DeBruijn a) =>
a -> Int -> m (Pattern' a)
bind Modality
md Int
i
Con ConHead
c ConInfo
ci Elims
es
| Just Args
vs <- Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es -> do
[IsForced]
fs <- Definition -> [IsForced]
defForced (Definition -> [IsForced])
-> t (t m) Definition -> t (t m) [IsForced]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> t (t m) Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo (ConHead -> QName
conName ConHead
c)
let goArg :: IsForced
-> Arg Term -> t (t m) (Arg (Named NamedName (Pattern' a)))
goArg IsForced
Forced Arg Term
v = Arg (Named NamedName (Pattern' a))
-> t (t m) (Arg (Named NamedName (Pattern' a)))
forall (m :: * -> *) a. Monad m => a -> m a
return (Arg (Named NamedName (Pattern' a))
-> t (t m) (Arg (Named NamedName (Pattern' a))))
-> Arg (Named NamedName (Pattern' a))
-> t (t m) (Arg (Named NamedName (Pattern' a)))
forall a b. (a -> b) -> a -> b
$ (Term -> Named NamedName (Pattern' a))
-> Arg Term -> Arg (Named NamedName (Pattern' a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Pattern' a -> Named NamedName (Pattern' a)
forall a name. a -> Named name a
unnamed (Pattern' a -> Named NamedName (Pattern' a))
-> (Term -> Pattern' a) -> Term -> Named NamedName (Pattern' a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Pattern' a
forall a. Term -> Pattern' a
dotP) Arg Term
v
goArg IsForced
NotForced Arg Term
v = (Pattern' a -> Named NamedName (Pattern' a))
-> Arg (Pattern' a) -> Arg (Named NamedName (Pattern' a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Pattern' a -> Named NamedName (Pattern' a)
forall a name. a -> Named name a
unnamed (Arg (Pattern' a) -> Arg (Named NamedName (Pattern' a)))
-> t (t m) (Arg (Pattern' a))
-> t (t m) (Arg (Named NamedName (Pattern' a)))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Term -> t (t m) (Pattern' a))
-> Arg Term -> t (t m) (Arg (Pattern' a))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Modality -> Term -> t (t m) (Pattern' a)
go (Modality -> Term -> t (t m) (Pattern' a))
-> Modality -> Term -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Modality -> Modality -> Modality
composeModality Modality
md (Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Arg Term -> Modality
forall a. LensModality a => a -> Modality
getModality Arg Term
v) Arg Term
v
([Arg (Named NamedName (Pattern' a))]
ps, IntMap Modality
bound) <- t (t m) [Arg (Named NamedName (Pattern' a))]
-> t (t m) ([Arg (Named NamedName (Pattern' a))], IntMap Modality)
forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen (t (t m) [Arg (Named NamedName (Pattern' a))]
-> t (t m) ([Arg (Named NamedName (Pattern' a))], IntMap Modality))
-> t (t m) [Arg (Named NamedName (Pattern' a))]
-> t (t m) ([Arg (Named NamedName (Pattern' a))], IntMap Modality)
forall a b. (a -> b) -> a -> b
$ (IsForced
-> Arg Term -> t (t m) (Arg (Named NamedName (Pattern' a))))
-> [IsForced]
-> Args
-> t (t m) [Arg (Named NamedName (Pattern' a))]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM IsForced
-> Arg Term -> t (t m) (Arg (Named NamedName (Pattern' a)))
goArg ([IsForced]
fs [IsForced] -> [IsForced] -> [IsForced]
forall a. [a] -> [a] -> [a]
++ IsForced -> [IsForced]
forall a. a -> [a]
repeat IsForced
NotForced) Args
vs
if IntMap Modality -> Bool
forall a. IntMap a -> Bool
IntMap.null IntMap Modality
bound
then Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
else do
let cpi :: ConPatternInfo
cpi = (ConInfo -> ConPatternInfo
toConPatternInfo ConInfo
ci) { conPLazy :: Bool
conPLazy = Bool
True }
Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ ConHead
-> ConPatternInfo
-> [Arg (Named NamedName (Pattern' a))]
-> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
cpi ([Arg (Named NamedName (Pattern' a))] -> Pattern' a)
-> [Arg (Named NamedName (Pattern' a))] -> Pattern' a
forall a b. (a -> b) -> a -> b
$ (Arg (Named NamedName (Pattern' a))
-> Arg (Named NamedName (Pattern' a)))
-> [Arg (Named NamedName (Pattern' a))]
-> [Arg (Named NamedName (Pattern' a))]
forall a b. (a -> b) -> [a] -> [b]
map (Origin
-> Arg (Named NamedName (Pattern' a))
-> Arg (Named NamedName (Pattern' a))
forall a. LensOrigin a => Origin -> a -> a
setOrigin Origin
Inserted) [Arg (Named NamedName (Pattern' a))]
ps
| Bool
otherwise -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Var Int
_ (Elim' Term
_:Elims
_) -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Lam{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Pi{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Def{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
MetaV{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Sort{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Level{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
DontCare{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Dummy{} -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Lit{} -> t (t m) (Pattern' a)
forall a. HasCallStack => a
__IMPOSSIBLE__