{-# LANGUAGE NondecreasingIndentation #-}

module Agda.TypeChecking.Conversion where

import Control.Arrow (second)
import Control.Monad
import Control.Monad.Except
-- Control.Monad.Fail import is redundant since GHC 8.8.1
import Control.Monad.Fail (MonadFail)

import Data.Function
import Data.Semigroup ((<>))
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.IntSet as IntSet

import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Internal.MetaVars
import Agda.Syntax.Translation.InternalToAbstract (reify)

import Agda.TypeChecking.Monad
import Agda.TypeChecking.MetaVars
import Agda.TypeChecking.MetaVars.Occurs (killArgs,PruneResult(..),rigidVarsNotContainedIn)
import Agda.TypeChecking.Names
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Substitute
import qualified Agda.TypeChecking.SyntacticEquality as SynEq
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Conversion.Pure (pureCompareAs)
import {-# SOURCE #-} Agda.TypeChecking.CheckInternal (infer)
import Agda.TypeChecking.Forcing (isForced, nextIsForced)
import Agda.TypeChecking.Free
import Agda.TypeChecking.Datatypes (getConType, getFullyAppliedConType)
import Agda.TypeChecking.Records
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Injectivity
import Agda.TypeChecking.Polarity
import Agda.TypeChecking.SizedTypes
import Agda.TypeChecking.Level
import Agda.TypeChecking.Implicit (implicitArgs)
import Agda.TypeChecking.Irrelevance
import Agda.TypeChecking.Primitive
import Agda.TypeChecking.Warnings (MonadWarning)
import Agda.Interaction.Options

import Agda.Utils.Functor
import Agda.Utils.List1 (List1, pattern (:|))
import qualified Agda.Utils.List1 as List1
import Agda.Utils.Monad
import Agda.Utils.Maybe
import Agda.Utils.Permutation
import Agda.Utils.Pretty (prettyShow)
import Agda.Utils.Size
import Agda.Utils.Tuple
import Agda.Utils.WithDefault

import Agda.Utils.Impossible

type MonadConversion m =
  ( PureTCM m
  , MonadConstraint m
  , MonadMetaSolver m
  , MonadError TCErr m
  , MonadWarning m
  , MonadStatistics m
  , MonadFresh ProblemId m
  , MonadFresh Int m
  , MonadFail m
  )

-- | Try whether a computation runs without errors or new constraints
--   (may create new metas, though).
--   Restores state upon failure.
tryConversion
  :: (MonadConstraint m, MonadWarning m, MonadError TCErr m, MonadFresh ProblemId m)
  => m () -> m Bool
tryConversion :: m () -> m Bool
tryConversion = Maybe () -> Bool
forall a. Maybe a -> Bool
isJust (Maybe () -> Bool) -> (m () -> m (Maybe ())) -> m () -> m Bool
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> (a -> m b) -> a -> m c
<.> m () -> m (Maybe ())
forall (m :: * -> *) a.
(MonadConstraint m, MonadWarning m, MonadError TCErr m,
 MonadFresh ProblemId m) =>
m a -> m (Maybe a)
tryConversion'

-- | Try whether a computation runs without errors or new constraints
--   (may create new metas, though).
--   Return 'Just' the result upon success.
--   Return 'Nothing' and restore state upon failure.
tryConversion'
  :: (MonadConstraint m, MonadWarning m, MonadError TCErr m, MonadFresh ProblemId m)
  => m a -> m (Maybe a)
tryConversion' :: m a -> m (Maybe a)
tryConversion' m a
m = m a -> m (Maybe a)
forall e (m :: * -> *) a.
(MonadError e m, Functor m) =>
m a -> m (Maybe a)
tryMaybe (m a -> m (Maybe a)) -> m a -> m (Maybe a)
forall a b. (a -> b) -> a -> b
$ m a -> m a
forall (m :: * -> *) a.
(MonadConstraint m, MonadWarning m, MonadError TCErr m,
 MonadFresh ProblemId m) =>
m a -> m a
noConstraints m a
m

-- | Check if to lists of arguments are the same (and all variables).
--   Precondition: the lists have the same length.
sameVars :: Elims -> Elims -> Bool
sameVars :: Elims -> Elims -> Bool
sameVars Elims
xs Elims
ys = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ([Bool] -> Bool) -> [Bool] -> Bool
forall a b. (a -> b) -> a -> b
$ (Elim' Term -> Elim' Term -> Bool) -> Elims -> Elims -> [Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Elim' Term -> Elim' Term -> Bool
same Elims
xs Elims
ys
    where
        same :: Elim' Term -> Elim' Term -> Bool
same (Apply (Arg ArgInfo
_ (Var Int
n []))) (Apply (Arg ArgInfo
_ (Var Int
m []))) = Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
m
        same Elim' Term
_ Elim' Term
_ = Bool
False

-- | @intersectVars us vs@ checks whether all relevant elements in @us@ and @vs@
--   are variables, and if yes, returns a prune list which says @True@ for
--   arguments which are different and can be pruned.
intersectVars :: Elims -> Elims -> Maybe [Bool]
intersectVars :: Elims -> Elims -> Maybe [Bool]
intersectVars = (Elim' Term -> Elim' Term -> Maybe Bool)
-> Elims -> Elims -> Maybe [Bool]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM Elim' Term -> Elim' Term -> Maybe Bool
areVars where
    -- ignore irrelevant args
    areVars :: Elim' Term -> Elim' Term -> Maybe Bool
areVars (Apply Arg Term
u) Elim' Term
v | Arg Term -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Arg Term
u = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
False -- do not prune
    areVars (Apply (Arg ArgInfo
_ (Var Int
n []))) (Apply (Arg ArgInfo
_ (Var Int
m []))) = Bool -> Maybe Bool
forall a. a -> Maybe a
Just (Bool -> Maybe Bool) -> Bool -> Maybe Bool
forall a b. (a -> b) -> a -> b
$ Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
m -- prune different vars
    areVars Elim' Term
_ Elim' Term
_                                   = Maybe Bool
forall a. Maybe a
Nothing

-- | Run the given computation but turn any errors into blocked computations with the given blocker
blockOnError :: MonadError TCErr m => Blocker -> m a -> m a
blockOnError :: Blocker -> m a -> m a
blockOnError Blocker
blocker m a
f
  | Blocker
blocker Blocker -> Blocker -> Bool
forall a. Eq a => a -> a -> Bool
== Blocker
neverUnblock = m a
f
  | Bool
otherwise               = m a
f m a -> (TCErr -> m a) -> m a
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \case
    TypeError{}         -> TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TCErr -> m a) -> TCErr -> m a
forall a b. (a -> b) -> a -> b
$ Blocker -> TCErr
PatternErr Blocker
blocker
    PatternErr Blocker
blocker' -> TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TCErr -> m a) -> TCErr -> m a
forall a b. (a -> b) -> a -> b
$ Blocker -> TCErr
PatternErr (Blocker -> TCErr) -> Blocker -> TCErr
forall a b. (a -> b) -> a -> b
$ Blocker -> Blocker -> Blocker
unblockOnEither Blocker
blocker Blocker
blocker'
    err :: TCErr
err@Exception{}     -> TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err
    err :: TCErr
err@IOException{}   -> TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err

equalTerm :: MonadConversion m => Type -> Term -> Term -> m ()
equalTerm :: Type -> Term -> Term -> m ()
equalTerm = Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
CmpEq

equalAtom :: MonadConversion m => CompareAs -> Term -> Term -> m ()
equalAtom :: CompareAs -> Term -> Term -> m ()
equalAtom = Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
CmpEq

equalType :: MonadConversion m => Type -> Type -> m ()
equalType :: Type -> Type -> m ()
equalType = Comparison -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Type -> m ()
compareType Comparison
CmpEq

{- Comparing in irrelevant context always succeeds.

   However, we might want to dig for solutions of irrelevant metas.

   To this end, we can just ignore errors during conversion checking.
 -}

-- convError ::  MonadTCM tcm => TypeError -> tcm a
-- | Ignore errors in irrelevant context.
convError :: TypeError -> TCM ()
convError :: TypeError -> TCM ()
convError TypeError
err = TCMT IO Bool -> TCM () -> TCM () -> TCM ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Relevance -> Relevance -> Bool
forall a. Eq a => a -> a -> Bool
(==) Relevance
Irrelevant (Relevance -> Bool) -> TCMT IO Relevance -> TCMT IO Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (TCEnv -> Relevance) -> TCMT IO Relevance
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance) (() -> TCM ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ TypeError -> TCM ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError TypeError
err

-- | Type directed equality on values.
--
compareTerm :: forall m. MonadConversion m => Comparison -> Type -> Term -> Term -> m ()
compareTerm :: Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
cmp Type
a Term
u Term
v = Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAs Comparison
cmp (Type -> CompareAs
AsTermsOf Type
a) Term
u Term
v

-- | Type directed equality on terms or types.
compareAs :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m ()
  -- If one term is a meta, try to instantiate right away. This avoids unnecessary unfolding.
  -- Andreas, 2012-02-14: This is UNSOUND for subtyping!
compareAs :: Comparison -> CompareAs -> Term -> Term -> m ()
compareAs Comparison
cmp CompareAs
a Term
u Term
v = do
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.term" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$
    [ TCM Doc
"compareTerm"
    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ CompareAs -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM CompareAs
a
    ]
  -- Check syntactic equality. This actually saves us quite a bit of work.
  ((Term
u, Term
v), Bool
equal) <- Term -> Term -> m ((Term, Term), Bool)
forall a (m :: * -> *).
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> m ((a, a), Bool)
SynEq.checkSyntacticEquality Term
u Term
v
  -- OLD CODE, traverses the *full* terms u v at each step, even if they
  -- are different somewhere.  Leads to infeasibility in issue 854.
  -- (u, v) <- instantiateFull (u, v)
  -- let equal = u == v
  if Bool
equal then VerboseKey -> Int -> m () -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> m () -> m ()
verboseS VerboseKey
"profile.sharing" Int
20 (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey -> m ()
forall (m :: * -> *). MonadStatistics m => VerboseKey -> m ()
tick VerboseKey
"equal terms" else do
      VerboseKey -> Int -> m () -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> m () -> m ()
verboseS VerboseKey
"profile.sharing" Int
20 (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey -> m ()
forall (m :: * -> *). MonadStatistics m => VerboseKey -> m ()
tick VerboseKey
"unequal terms"
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.term" Int
15 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$
        [ TCM Doc
"compareTerm (not syntactically equal)"
        , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
        , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ CompareAs -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM CompareAs
a
        ]
      -- If we are at type Size, we cannot short-cut comparison
      -- against metas by assignment.
      -- Andreas, 2014-04-12: this looks incomplete.
      -- It seems to assume we are never comparing
      -- at function types into Size.
      let fallback :: m ()
fallback = Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAs' Comparison
cmp CompareAs
a Term
u Term
v
          unlessSubtyping :: m () -> m ()
          unlessSubtyping :: m () -> m ()
unlessSubtyping m ()
cont =
              if Comparison
cmp Comparison -> Comparison -> Bool
forall a. Eq a => a -> a -> Bool
== Comparison
CmpEq then m ()
cont else do
                -- Andreas, 2014-04-12 do not short cut if type is blocked.
                CompareAs
-> (Blocker -> CompareAs -> m ())
-> (NotBlocked -> CompareAs -> m ())
-> m ()
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked CompareAs
a (\ Blocker
_ CompareAs
_ -> m ()
fallback) {-else-} ((NotBlocked -> CompareAs -> m ()) -> m ())
-> (NotBlocked -> CompareAs -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ NotBlocked
_ CompareAs
a -> do
                  -- do not short circuit size comparison!
                  m (Maybe BoundedSize) -> m () -> (BoundedSize -> m ()) -> m ()
forall (m :: * -> *) a b.
Monad m =>
m (Maybe a) -> m b -> (a -> m b) -> m b
caseMaybeM (CompareAs -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
isSizeType CompareAs
a) m ()
cont (\ BoundedSize
_ -> m ()
fallback)

          dir :: CompareDirection
dir = Comparison -> CompareDirection
fromCmp Comparison
cmp
          rid :: CompareDirection
rid = CompareDirection -> CompareDirection
flipCmp CompareDirection
dir     -- The reverse direction.  Bad name, I know.
      case (Term
u, Term
v) of
        (MetaV MetaId
x Elims
us, MetaV MetaId
y Elims
vs)
          | MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
/= MetaId
y    -> m () -> m ()
unlessSubtyping (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ m ()
solve1 m () -> m () -> m ()
`orelse` m ()
solve2 m () -> m () -> m ()
`orelse` m ()
fallback
          | Bool
otherwise -> m ()
fallback
          where
            (m ()
solve1, m ()
solve2) | MetaId
x MetaId -> MetaId -> Bool
forall a. Ord a => a -> a -> Bool
> MetaId
y     = (CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
us Term
v, CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
rid MetaId
y Elims
vs Term
u)
                             | Bool
otherwise = (CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
rid MetaId
y Elims
vs Term
u, CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
us Term
v)
        (MetaV MetaId
x Elims
us, Term
_) -> m () -> m ()
unlessSubtyping (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
us Term
v m () -> m () -> m ()
`orelse` m ()
fallback
        (Term
_, MetaV MetaId
y Elims
vs) -> m () -> m ()
unlessSubtyping (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
rid MetaId
y Elims
vs Term
u m () -> m () -> m ()
`orelse` m ()
fallback
        (Def QName
f Elims
es, Def QName
f' Elims
es') | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
f' ->
          m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifNotM (PragmaOptions -> Bool
optFirstOrder (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions) m ()
fallback (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ {- else -} m () -> m ()
unlessSubtyping (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
          Definition
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
          -- We do not shortcut projection-likes,
          -- Andreas, 2022-03-07, issue #5809:
          -- but irrelevant projections since they are applied to their parameters.
          if Maybe Projection -> Bool
forall a. Maybe a -> Bool
isJust (Maybe Projection -> Bool) -> Maybe Projection -> Bool
forall a b. (a -> b) -> a -> b
$ Definition -> Maybe Projection
isRelevantProjection_ Definition
def then m ()
fallback else do
          [Polarity]
pol <- Comparison -> QName -> m [Polarity]
forall (m :: * -> *).
HasConstInfo m =>
Comparison -> QName -> m [Polarity]
getPolarity' Comparison
cmp QName
f
          [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pol [] (Definition -> Type
defType Definition
def) (QName -> Elims -> Term
Def QName
f []) Elims
es Elims
es' m () -> m () -> m ()
`orelse` m ()
fallback
        (Term, Term)
_               -> m ()
fallback
  where
    assign :: CompareDirection -> MetaId -> Elims -> Term -> m ()
    assign :: CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
es Term
v = do
      -- Andreas, 2013-10-19 can only solve if no projections
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.term.shortcut" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
        [ TCM Doc
"attempting shortcut"
        , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (MetaId -> Elims -> Term
MetaV MetaId
x Elims
es) TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
":=" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
        ]
      m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM (MetaId -> m Bool
forall a (m :: * -> *).
(IsInstantiatedMeta a, MonadFail m, ReadTCState m) =>
a -> m Bool
isInstantiatedMeta MetaId
x) (Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
alwaysUnblock) -- Already instantiated, retry right away
      CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
assignE CompareDirection
dir MetaId
x Elims
es Term
v CompareAs
a ((Term -> Term -> m ()) -> m ()) -> (Term -> Term -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ CompareDirection -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAsDir CompareDirection
dir CompareAs
a
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.term.shortcut" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCM Doc
"shortcut successful" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc
"result:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> (Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Term -> TCM Doc) -> TCMT IO Term -> TCM Doc
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> TCMT IO Term
forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate (MetaId -> Elims -> Term
MetaV MetaId
x Elims
es)))
    -- Should be ok with catchError_ but catchError is much safer since we don't
    -- rethrow errors.
    orelse :: m () -> m () -> m ()
    orelse :: m () -> m () -> m ()
orelse m ()
m m ()
h = m () -> (TCErr -> m ()) -> m ()
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
catchError m ()
m (\TCErr
_ -> m ()
h)

-- | Try to assign meta.  If meta is projected, try to eta-expand
--   and run conversion check again.
assignE :: (MonadConversion m)
        => CompareDirection -> MetaId -> Elims -> Term -> CompareAs -> (Term -> Term -> m ()) -> m ()
assignE :: CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
assignE CompareDirection
dir MetaId
x Elims
es Term
v CompareAs
a Term -> Term -> m ()
comp = CompareDirection -> MetaId -> Elims -> Term -> m () -> m ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadConstraint m, MonadError TCErr m,
 MonadDebug m, HasOptions m) =>
CompareDirection -> MetaId -> Elims -> Term -> m () -> m ()
assignWrapper CompareDirection
dir MetaId
x Elims
es Term
v (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
  case Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es of
    Just [Arg Term]
vs -> CompareDirection
-> MetaId -> [Arg Term] -> Term -> CompareAs -> m ()
forall (m :: * -> *).
MonadMetaSolver m =>
CompareDirection
-> MetaId -> [Arg Term] -> Term -> CompareAs -> m ()
assignV CompareDirection
dir MetaId
x [Arg Term]
vs Term
v CompareAs
a
    Maybe [Arg Term]
Nothing -> do
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.assign" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
        [ TCM Doc
"assigning to projected meta "
        , MetaId -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM MetaId
x TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ((Elim' Term -> TCM Doc) -> Elims -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map Elim' Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Elims
es) TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey
":" VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ CompareDirection -> VerboseKey
forall a. Show a => a -> VerboseKey
show CompareDirection
dir) TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
        ]
      [MetaKind] -> MetaId -> m ()
forall (m :: * -> *).
MonadMetaSolver m =>
[MetaKind] -> MetaId -> m ()
etaExpandMeta [MetaKind
Records] MetaId
x
      Maybe Term
res <- MetaId -> m (Maybe Term)
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m (Maybe Term)
isInstantiatedMeta' MetaId
x
      case Maybe Term
res of
        Just Term
u  -> do
          VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.assign" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
            [ TCM Doc
"seems like eta expansion instantiated meta "
            , MetaId -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM MetaId
x TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text  (VerboseKey
":" VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ CompareDirection -> VerboseKey
forall a. Show a => a -> VerboseKey
show CompareDirection
dir) TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
            ]
          let w :: Term
w = Term
u Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es
          Term -> Term -> m ()
comp Term
w Term
v
        Maybe Term
Nothing ->  do
          VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.assign" Int
30 VerboseKey
"eta expansion did not instantiate meta"
          Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Term -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn (MetaId -> Elims -> Term
MetaV MetaId
x Elims
es)) -- nothing happened, give up

compareAsDir :: MonadConversion m => CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAsDir :: CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAsDir CompareDirection
dir CompareAs
a = (Comparison -> Term -> Term -> m ())
-> CompareDirection -> Term -> Term -> m ()
forall a c.
(Comparison -> a -> a -> c) -> CompareDirection -> a -> a -> c
dirToCmp (Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
`compareAs'` CompareAs
a) CompareDirection
dir

compareAs' :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m ()
compareAs' :: Comparison -> CompareAs -> Term -> Term -> m ()
compareAs' Comparison
cmp CompareAs
tt Term
m Term
n = case CompareAs
tt of
  AsTermsOf Type
a -> Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm' Comparison
cmp Type
a Term
m Term
n
  CompareAs
AsSizes     -> Comparison -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Term -> m ()
compareSizes Comparison
cmp Term
m Term
n
  CompareAs
AsTypes     -> Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp CompareAs
AsTypes Term
m Term
n

compareTerm' :: forall m. MonadConversion m => Comparison -> Type -> Term -> Term -> m ()
compareTerm' :: Comparison -> Type -> Term -> Term -> m ()
compareTerm' Comparison
cmp Type
a Term
m Term
n =
  VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.term" Int
20 VerboseKey
"compareTerm" (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
  (Blocker
ba, Type
a') <- Type -> m (Blocker, Type)
forall a (m :: * -> *).
(Reduce a, IsMeta a, MonadReduce m) =>
a -> m (Blocker, a)
reduceWithBlocker Type
a
  (Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint (Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp (Type -> CompareAs
AsTermsOf Type
a') Term
m Term
n) :: m () -> m ()) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ Blocker -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => Blocker -> m a -> m a
blockOnError Blocker
ba (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.term" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep
      [ TCM Doc
"compareTerm", Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
m, Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp, Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
n, TCM Doc
":", Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a' ]
    Bool
propIrr  <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
isPropEnabled
    Bool
isSize   <- Maybe BoundedSize -> Bool
forall a. Maybe a -> Bool
isJust (Maybe BoundedSize -> Bool) -> m (Maybe BoundedSize) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
isSizeType Type
a'
    (Blocker
bs, Sort
s)  <- Sort -> m (Blocker, Sort)
forall a (m :: * -> *).
(Reduce a, IsMeta a, MonadReduce m) =>
a -> m (Blocker, a)
reduceWithBlocker (Sort -> m (Blocker, Sort)) -> Sort -> m (Blocker, Sort)
forall a b. (a -> b) -> a -> b
$ Type -> Sort
forall a. LensSort a => a -> Sort
getSort Type
a'
    Maybe Term
mlvl     <- VerboseKey -> m (Maybe Term)
forall (m :: * -> *). HasBuiltins m => VerboseKey -> m (Maybe Term)
getBuiltin' VerboseKey
builtinLevel
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
60 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
      [ TCM Doc
"a'   =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
a'
      , TCM Doc
"mlvl =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Maybe Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Maybe Term
mlvl
      , VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc) -> VerboseKey -> TCM Doc
forall a b. (a -> b) -> a -> b
$ VerboseKey
"(Just (unEl a') == mlvl) = " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ Bool -> VerboseKey
forall a. Show a => a -> VerboseKey
show (Term -> Maybe Term
forall a. a -> Maybe a
Just (Type -> Term
forall t a. Type'' t a -> a
unEl Type
a') Maybe Term -> Maybe Term -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe Term
mlvl)
      ]
    Blocker -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => Blocker -> m a -> m a
blockOnError Blocker
bs (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ case Sort
s of
      Prop{} | Bool
propIrr -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Type -> Term -> Term -> m ()
compareIrrelevant Type
a' Term
m Term
n
      Sort
_    | Bool
isSize   -> Comparison -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Term -> m ()
compareSizes Comparison
cmp Term
m Term
n
      Sort
_               -> case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a' of
        Term
a | Term -> Maybe Term
forall a. a -> Maybe a
Just Term
a Maybe Term -> Maybe Term -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe Term
mlvl -> do
          Level
a <- Term -> m Level
forall (m :: * -> *). PureTCM m => Term -> m Level
levelView Term
m
          Level
b <- Term -> m Level
forall (m :: * -> *). PureTCM m => Term -> m Level
levelView Term
n
          Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
a Level
b
        a :: Term
a@Pi{}    -> MonadConversion m => Sort -> Term -> Term -> Term -> m ()
Sort -> Term -> Term -> Term -> m ()
equalFun Sort
s Term
a Term
m Term
n
        Lam ArgInfo
_ Abs Term
_   -> m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
        Def QName
r Elims
es  -> do
          Bool
isrec <- QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
isEtaRecord QName
r
          if Bool
isrec
            then do
              Signature
sig <- m Signature
forall (m :: * -> *). ReadTCState m => m Signature
getSignature
              let ps :: [Arg Term]
ps = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
              -- Andreas, 2010-10-11: allowing neutrals to be blocked things does not seem
              -- to change Agda's behavior
              --    isNeutral Blocked{}          = False
                  isNeutral :: Blocked' t Term -> m Bool
isNeutral (NotBlocked NotBlocked' t
_ Con{}) = Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
              -- Andreas, 2013-09-18 / 2015-06-29: a Def by copatterns is
              -- not neutral if it is blocked (there can be missing projections
              -- to trigger a reduction.
                  isNeutral (NotBlocked NotBlocked' t
r (Def QName
q Elims
_)) = do    -- Andreas, 2014-12-06 optimize this using r !!
                    Bool -> Bool
not (Bool -> Bool) -> m Bool -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
usesCopatterns QName
q -- a def by copattern can reduce if projected
                  isNeutral Blocked' t Term
_                   = Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
                  isMeta :: Blocked' t Term -> Bool
isMeta Blocked' t Term
b = case Blocked' t Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked' t Term
b of
                               MetaV{} -> Bool
True
                               Term
_       -> Bool
False

              VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.term" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"is eta record type"
              Blocked Term
m <- Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Term
m
              Bool
mNeutral <- Blocked Term -> m Bool
forall (m :: * -> *) t. HasConstInfo m => Blocked' t Term -> m Bool
isNeutral Blocked Term
m
              Blocked Term
n <- Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Term
n
              Bool
nNeutral <- Blocked Term -> m Bool
forall (m :: * -> *) t. HasConstInfo m => Blocked' t Term -> m Bool
isNeutral Blocked Term
n
              case (Blocked Term
m, Blocked Term
n) of
                (Blocked Term, Blocked Term)
_ | Blocked Term -> Bool
forall t. Blocked' t Term -> Bool
isMeta Blocked Term
m Bool -> Bool -> Bool
|| Blocked Term -> Bool
forall t. Blocked' t Term -> Bool
isMeta Blocked Term
n ->
                    Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf Type
a') (Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
m) (Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
n)

                (Blocked Term, Blocked Term)
_ | Bool
mNeutral Bool -> Bool -> Bool
&& Bool
nNeutral -> do
                    -- Andreas 2011-03-23: (fixing issue 396)
                    -- if we are dealing with a singleton record,
                    -- we can succeed immediately
                    m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> [Arg Term] -> m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
QName -> [Arg Term] -> m Bool
isSingletonRecordModuloRelevance QName
r [Arg Term]
ps) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
                      -- do not eta-expand if comparing two neutrals
                      Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf Type
a') (Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
m) (Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
n)
                (Blocked Term, Blocked Term)
_ -> do
                  (Telescope
tel, [Arg Term]
m') <- QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
forall (m :: * -> *).
(HasConstInfo m, MonadDebug m, ReadTCState m) =>
QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
etaExpandRecord QName
r [Arg Term]
ps (Term -> m (Telescope, [Arg Term]))
-> Term -> m (Telescope, [Arg Term])
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
m
                  (Telescope
_  , [Arg Term]
n') <- QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
forall (m :: * -> *).
(HasConstInfo m, MonadDebug m, ReadTCState m) =>
QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
etaExpandRecord QName
r [Arg Term]
ps (Term -> m (Telescope, [Arg Term]))
-> Term -> m (Telescope, [Arg Term])
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
n
                  -- No subtyping on record terms
                  ConHead
c <- QName -> m ConHead
forall (m :: * -> *).
(HasConstInfo m, ReadTCState m, MonadError TCErr m) =>
QName -> m ConHead
getRecordConstructor QName
r
                  -- Record constructors are covariant (see test/succeed/CovariantConstructors).
                  [Polarity]
-> [IsForced] -> Type -> Term -> [Arg Term] -> [Arg Term] -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity]
-> [IsForced] -> Type -> Term -> [Arg Term] -> [Arg Term] -> m ()
compareArgs (Polarity -> [Polarity]
forall a. a -> [a]
repeat (Polarity -> [Polarity]) -> Polarity -> [Polarity]
forall a b. (a -> b) -> a -> b
$ Comparison -> Polarity
polFromCmp Comparison
cmp) [] (Telescope -> Type -> Type
telePi_ Telescope
tel Type
HasCallStack => Type
__DUMMY_TYPE__) (ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ConOSystem []) [Arg Term]
m' [Arg Term]
n'

            else (do PathView
pathview <- Type -> m PathView
forall (m :: * -> *). HasBuiltins m => Type -> m PathView
pathView Type
a'
                     MonadConversion m => PathView -> Type -> Term -> Term -> m ()
PathView -> Type -> Term -> Term -> m ()
equalPath PathView
pathview Type
a' Term
m Term
n)
        Term
_ -> Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf Type
a') Term
m Term
n
  where
    -- equality at function type (accounts for eta)
    equalFun :: (MonadConversion m) => Sort -> Term -> Term -> Term -> m ()
    equalFun :: Sort -> Term -> Term -> Term -> m ()
equalFun Sort
s a :: Term
a@(Pi Dom Type
dom Abs Type
b) Term
m Term
n | Dom Type -> Bool
forall t e. Dom' t e -> Bool
domFinite Dom Type
dom = do
       Maybe QName
mp <- (Term -> QName) -> Maybe Term -> Maybe QName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Term -> QName
getPrimName (Maybe Term -> Maybe QName) -> m (Maybe Term) -> m (Maybe QName)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VerboseKey -> m (Maybe Term)
forall (m :: * -> *). HasBuiltins m => VerboseKey -> m (Maybe Term)
getBuiltin' VerboseKey
builtinIsOne
       case Type -> Term
forall t a. Type'' t a -> a
unEl (Type -> Term) -> Type -> Term
forall a b. (a -> b) -> a -> b
$ Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
dom of
          Def QName
q [Apply Arg Term
phi]
              | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
mp -> Comparison -> Term -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace Comparison
cmp (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
phi) (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s (Dom Type -> Abs Type -> Term
Pi (Dom Type
dom {domFinite :: Bool
domFinite = Bool
False}) Abs Type
b)) Term
m Term
n
          Term
_                  -> MonadConversion m => Sort -> Term -> Term -> Term -> m ()
Sort -> Term -> Term -> Term -> m ()
equalFun Sort
s (Dom Type -> Abs Type -> Term
Pi (Dom Type
dom{domFinite :: Bool
domFinite = Bool
False}) Abs Type
b) Term
m Term
n
    equalFun Sort
_ (Pi dom :: Dom Type
dom@Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info} Abs Type
b) Term
m Term
n | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Dom Type -> Bool
forall t e. Dom' t e -> Bool
domFinite Dom Type
dom = do
        let name :: VerboseKey
name = [Suggestion] -> VerboseKey
suggests [ Abs Type -> Suggestion
forall a. Suggest a => a -> Suggestion
Suggestion Abs Type
b , Term -> Suggestion
forall a. Suggest a => a -> Suggestion
Suggestion Term
m , Term -> Suggestion
forall a. Suggest a => a -> Suggestion
Suggestion Term
n ]
        (VerboseKey, Dom Type) -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (VerboseKey
name, Dom Type
dom) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
cmp (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b) Term
m' Term
n'
      where
        (Term
m',Term
n') = Int -> (Term, Term) -> (Term, Term)
forall a. Subst a => Int -> a -> a
raise Int
1 (Term
m,Term
n) (Term, Term) -> [Arg Term] -> (Term, Term)
forall t. Apply t => t -> [Arg Term] -> t
`apply` [ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
0]
    equalFun Sort
_ Term
_ Term
_ Term
_ = m ()
forall a. HasCallStack => a
__IMPOSSIBLE__

    equalPath :: (MonadConversion m) => PathView -> Type -> Term -> Term -> m ()
    equalPath :: PathView -> Type -> Term -> Term -> m ()
equalPath (PathType Sort
s QName
_ Arg Term
l Arg Term
a Arg Term
x Arg Term
y) Type
_ Term
m Term
n = do
        let name :: VerboseKey
name = VerboseKey
"i" :: String
        Type
interval <- m Term -> m Type
forall (m :: * -> *). Functor m => m Term -> m Type
el m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primInterval
        let (Term
m',Term
n') = Int -> (Term, Term) -> (Term, Term)
forall a. Subst a => Int -> a -> a
raise Int
1 (Term
m, Term
n) (Term, Term) -> Elims -> (Term, Term)
forall t. Apply t => t -> Elims -> t
`applyE` [Term -> Term -> Term -> Elim' Term
forall a. a -> a -> a -> Elim' a
IApply (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
1 (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
x) (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
1 (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
y) (Int -> Term
var Int
0)]
        (VerboseKey, Dom Type) -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (VerboseKey
name, Type -> Dom Type
forall a. a -> Dom a
defaultDom Type
interval) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
cmp (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Int -> Sort -> Sort
forall a. Subst a => Int -> a -> a
raise Int
1 Sort
s) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
1 (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Term -> Arg Term
forall e. e -> Arg e
argN (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
0]) Term
m' Term
n'
    equalPath OType{} Type
a' Term
m Term
n = Type -> Term -> Term -> m ()
cmpDef Type
a' Term
m Term
n

    cmpDef :: Type -> Term -> Term -> m ()
cmpDef a' :: Type
a'@(El Sort
s Term
ty) Term
m Term
n = do
       Maybe QName
mI     <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getBuiltinName'   VerboseKey
builtinInterval
       Maybe QName
mIsOne <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getBuiltinName'   VerboseKey
builtinIsOne
       Maybe QName
mGlue  <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getPrimitiveName' VerboseKey
builtinGlue
       Maybe QName
mHComp <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getPrimitiveName' VerboseKey
builtinHComp
       Maybe QName
mSub   <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getBuiltinName' VerboseKey
builtinSub
       Maybe Term
mUnglueU <- VerboseKey -> m (Maybe Term)
forall (m :: * -> *). HasBuiltins m => VerboseKey -> m (Maybe Term)
getPrimitiveTerm' VerboseKey
builtin_unglueU
       Maybe Term
mSubIn   <- VerboseKey -> m (Maybe Term)
forall (m :: * -> *). HasBuiltins m => VerboseKey -> m (Maybe Term)
getPrimitiveTerm' VerboseKey
builtinSubIn
       case Term
ty of
         Def QName
q Elims
es | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
mIsOne -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
         Def QName
q Elims
es | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
mGlue, Just args :: [Arg Term]
args@(Arg Term
l:Arg Term
_:Arg Term
a:Arg Term
phi:[Arg Term]
_) <- Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es -> do
              Type
aty <- m Term -> m Term -> m Type
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Type
el' (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
l) (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a)
              Term
unglue <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
prim_unglue
              let mkUnglue :: Term -> Term
mkUnglue Term
m = Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
unglue ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) [Arg Term]
args [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ [Term -> Arg Term
forall e. e -> Arg e
argN Term
m]
              VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"conv.glue" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ (Type, Term, Term) -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (Type
aty,Term -> Term
mkUnglue Term
m,Term -> Term
mkUnglue Term
n)
              Comparison -> Term -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace Comparison
cmp (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
phi) Type
a' Term
m Term
n
              Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
cmp Type
aty (Term -> Term
mkUnglue Term
m) (Term -> Term
mkUnglue Term
n)
         Def QName
q Elims
es | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
mHComp, Just (Arg Term
sl:Arg Term
s:args :: [Arg Term]
args@[Arg Term
phi,Arg Term
u,Arg Term
u0]) <- Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
                  , Sort (Type Level
lvl) <- Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
s
                  , Just Term
unglueU <- Maybe Term
mUnglueU, Just Term
subIn <- Maybe Term
mSubIn
                  -> do
              let l :: Term
l = Level -> Term
Level Level
lvl
              Type
ty <- m Term -> m Term -> m Type
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Type
el' (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Term
l) (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
u0)
              let bA :: Term
bA = Term
subIn Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Arg Term
sl,Arg Term
s,Arg Term
phi,Arg Term
u0]
              let mkUnglue :: Term -> Term
mkUnglue Term
m = Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
unglueU ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ [Term -> Arg Term
forall e. e -> Arg e
argH Term
l] [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) [Arg Term
phi,Arg Term
u]  [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ [Term -> Arg Term
forall e. e -> Arg e
argH Term
bA,Term -> Arg Term
forall e. e -> Arg e
argN Term
m]
              VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"conv.hcompU" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ (Type, Term, Term) -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (Type
ty,Term -> Term
mkUnglue Term
m,Term -> Term
mkUnglue Term
n)
              Comparison -> Term -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace Comparison
cmp (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
phi) Type
ty Term
m Term
n
              Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
cmp Type
ty (Term -> Term
mkUnglue Term
m) (Term -> Term
mkUnglue Term
n)
         Def QName
q Elims
es | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
mSub, Just args :: [Arg Term]
args@(Arg Term
l:Arg Term
a:[Arg Term]
_) <- Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es -> do
              Type
ty <- m Term -> m Term -> m Type
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Type
el' (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
l) (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a)
              Term
out <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primSubOut
              let mkOut :: Term -> Term
mkOut Term
m = Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
out ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) [Arg Term]
args [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ [Term -> Arg Term
forall e. e -> Arg e
argN Term
m]
              Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Comparison
cmp Type
ty (Term -> Term
mkOut Term
m) (Term -> Term
mkOut Term
n)
         Def QName
q [] | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
mI -> Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareInterval Comparison
cmp Type
a' Term
m Term
n
         Term
_ -> Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf Type
a') Term
m Term
n

compareAtomDir :: MonadConversion m => CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAtomDir :: CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAtomDir CompareDirection
dir CompareAs
a = (Comparison -> Term -> Term -> m ())
-> CompareDirection -> Term -> Term -> m ()
forall a c.
(Comparison -> a -> a -> c) -> CompareDirection -> a -> a -> c
dirToCmp (Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
`compareAtom` CompareAs
a) CompareDirection
dir

-- | Compute the head type of an elimination. For projection-like functions
--   this requires inferring the type of the principal argument.
computeElimHeadType :: MonadConversion m => QName -> Elims -> Elims -> m Type
computeElimHeadType :: QName -> Elims -> Elims -> m Type
computeElimHeadType QName
f Elims
es Elims
es' = do
  Definition
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
  -- To compute the type @a@ of a projection-like @f@,
  -- we have to infer the type of its first argument.
  if Definition -> Int
projectionArgs Definition
def Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 then Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ Definition -> Type
defType Definition
def else do
    -- Find a first argument to @f@.
    let arg :: Arg Term
arg = case (Elims
es, Elims
es') of
              (Apply Arg Term
arg : Elims
_, Elims
_) -> Arg Term
arg
              (Elims
_, Apply Arg Term
arg : Elims
_) -> Arg Term
arg
              (Elims, Elims)
_ -> Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__
    -- Infer its type.
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.infer" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"inferring type of internal arg: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Arg Term
arg
    Type
targ <- Term -> m Type
forall (m :: * -> *). MonadCheckInternal m => Term -> m Type
infer (Term -> m Type) -> Term -> m Type
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.infer" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"inferred type: " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
targ
    -- getDefType wants the argument type reduced.
    -- Andreas, 2016-02-09, Issue 1825: The type of arg might be
    -- a meta-variable, e.g. in interactive development.
    -- In this case, we postpone.
    Type
targ <- Type -> m Type
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked Type
targ
    m Type -> m (Maybe Type) -> m Type
forall (m :: * -> *) a. Monad m => m a -> m (Maybe a) -> m a
fromMaybeM m Type
forall a. HasCallStack => a
__IMPOSSIBLE__ (m (Maybe Type) -> m Type) -> m (Maybe Type) -> m Type
forall a b. (a -> b) -> a -> b
$ QName -> Type -> m (Maybe Type)
forall (m :: * -> *). PureTCM m => QName -> Type -> m (Maybe Type)
getDefType QName
f Type
targ

-- | Syntax directed equality on atomic values
--
compareAtom :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom :: Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp CompareAs
t Term
m Term
n =
  VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.atom" Int
20 VerboseKey
"compareAtom" (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
  -- if a PatternErr is thrown, rebuild constraint!
  (Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint (Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp CompareAs
t Term
m Term
n) :: m () -> m ()) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
    VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.atom.size" Int
50 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"compareAtom term size:  " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ (Int, Int) -> VerboseKey
forall a. Show a => a -> VerboseKey
show (Term -> Int
forall a. TermSize a => a -> Int
termSize Term
m, Term -> Int
forall a. TermSize a => a -> Int
termSize Term
n)
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.atom" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"compareAtom" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
m TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp
                             , Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
n
                             , CompareAs -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM CompareAs
t
                             ]
    -- Andreas: what happens if I cut out the eta expansion here?
    -- Answer: Triggers issue 245, does not resolve 348
    (Blocked Term
mb',Blocked Term
nb') <- do
      Blocked Term
mb' <- Blocked Term -> m (Blocked Term)
forall (m :: * -> *) t.
(MonadReduce m, MonadMetaSolver m, IsMeta t, Reduce t) =>
Blocked t -> m (Blocked t)
etaExpandBlocked (Blocked Term -> m (Blocked Term))
-> m (Blocked Term) -> m (Blocked Term)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Term
m
      Blocked Term
nb' <- Blocked Term -> m (Blocked Term)
forall (m :: * -> *) t.
(MonadReduce m, MonadMetaSolver m, IsMeta t, Reduce t) =>
Blocked t -> m (Blocked t)
etaExpandBlocked (Blocked Term -> m (Blocked Term))
-> m (Blocked Term) -> m (Blocked Term)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Term
n
      (Blocked Term, Blocked Term) -> m (Blocked Term, Blocked Term)
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Term
mb', Blocked Term
nb')
    let getBlocker :: Blocked' t a -> Blocker
getBlocker (Blocked Blocker
b a
_) = Blocker
b
        getBlocker NotBlocked{}  = Blocker
neverUnblock
        blocker :: Blocker
blocker = Blocker -> Blocker -> Blocker
unblockOnEither (Blocked Term -> Blocker
forall t a. Blocked' t a -> Blocker
getBlocker Blocked Term
mb') (Blocked Term -> Blocker
forall t a. Blocked' t a -> Blocker
getBlocker Blocked Term
nb')
    VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.atom.size" Int
50 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"term size after reduce: " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ (Int, Int) -> VerboseKey
forall a. Show a => a -> VerboseKey
show (Term -> Int
forall a. TermSize a => a -> Int
termSize (Term -> Int) -> Term -> Int
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
mb', Term -> Int
forall a. TermSize a => a -> Int
termSize (Term -> Int) -> Term -> Int
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
nb')

    -- constructorForm changes literal to constructors
    -- only needed if the other side is not a literal
    (Blocked Term
mb'', Blocked Term
nb'') <- case (Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
mb', Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
nb') of
      (Lit Literal
_, Lit Literal
_) -> (Blocked Term, Blocked Term) -> m (Blocked Term, Blocked Term)
forall (m :: * -> *) a. Monad m => a -> m a
return (Blocked Term
mb', Blocked Term
nb')
      (Term, Term)
_ -> (,) (Blocked Term -> Blocked Term -> (Blocked Term, Blocked Term))
-> m (Blocked Term)
-> m (Blocked Term -> (Blocked Term, Blocked Term))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Term -> m Term) -> Blocked Term -> m (Blocked Term)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Blocked Term
mb'
               m (Blocked Term -> (Blocked Term, Blocked Term))
-> m (Blocked Term) -> m (Blocked Term, Blocked Term)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Term -> m Term) -> Blocked Term -> m (Blocked Term)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Blocked Term
nb'

    Blocked Term
mb <- (Term -> m Term) -> Blocked Term -> m (Blocked Term)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
unLevel Blocked Term
mb''
    Blocked Term
nb <- (Term -> m Term) -> Blocked Term -> m (Blocked Term)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
unLevel Blocked Term
nb''

    Bool
cmpBlocked <- Lens' Bool TCEnv -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Bool TCEnv
eCompareBlocked

    let m :: Term
m = Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
mb
        n :: Term
n = Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
nb

        checkDefinitionalEquality :: m ()
checkDefinitionalEquality = m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM (Comparison -> CompareAs -> Term -> Term -> m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
Comparison -> CompareAs -> Term -> Term -> m Bool
pureCompareAs Comparison
CmpEq CompareAs
t Term
m Term
n) m ()
notEqual

        notEqual :: m ()
notEqual = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Term -> CompareAs -> TypeError
UnequalTerms Comparison
cmp Term
m Term
n CompareAs
t

        dir :: CompareDirection
dir = Comparison -> CompareDirection
fromCmp Comparison
cmp
        rid :: CompareDirection
rid = CompareDirection -> CompareDirection
flipCmp CompareDirection
dir     -- The reverse direction.  Bad name, I know.

        assign :: CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
es Term
v = CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
assignE CompareDirection
dir MetaId
x Elims
es Term
v CompareAs
t ((Term -> Term -> m ()) -> m ()) -> (Term -> Term -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ CompareDirection -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAtomDir CompareDirection
dir CompareAs
t

    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.atom" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"compareAtom" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ Blocked Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Blocked Term
mb TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp
                             , Blocked Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Blocked Term
nb
                             , CompareAs -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM CompareAs
t
                             ]
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.atom" Int
80 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"compareAtom" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ (VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc)
-> (Blocked Term -> VerboseKey) -> Blocked Term -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocked Term -> VerboseKey
forall a. Show a => a -> VerboseKey
show) Blocked Term
mb TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp
                                  , (VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc)
-> (Blocked Term -> VerboseKey) -> Blocked Term -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocked Term -> VerboseKey
forall a. Show a => a -> VerboseKey
show) Blocked Term
nb
                                  , TCM Doc
":" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> (VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc)
-> (CompareAs -> VerboseKey) -> CompareAs -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CompareAs -> VerboseKey
forall a. Show a => a -> VerboseKey
show) CompareAs
t ]
    case (Blocked Term
mb, Blocked Term
nb) of
      -- equate two metas x and y.  if y is the younger meta,
      -- try first y := x and then x := y
      (Blocked Term, Blocked Term)
_ | MetaV MetaId
x Elims
xArgs <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
mb,   -- Can be either Blocked or NotBlocked depending on
          MetaV MetaId
y Elims
yArgs <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
nb -> -- envCompareBlocked check above.
        if | MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
y, Bool
cmpBlocked -> do
              Type
a <- MetaId -> m Type
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m Type
metaType MetaId
x
              Blocker -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => Blocker -> m a -> m a
blockOnError (MetaId -> Blocker
unblockOnMeta MetaId
x) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
                [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [] [] Type
a (MetaId -> Elims -> Term
MetaV MetaId
x []) Elims
xArgs Elims
yArgs
           | MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
y -> Blocker -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => Blocker -> m a -> m a
blockOnError (MetaId -> Blocker
unblockOnMeta MetaId
x) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
            case Elims -> Elims -> Maybe [Bool]
intersectVars Elims
xArgs Elims
yArgs of
              -- all relevant arguments are variables
              Just [Bool]
kills -> do
                -- kills is a list with 'True' for each different var
                PruneResult
killResult <- [Bool] -> MetaId -> m PruneResult
forall (m :: * -> *).
MonadMetaSolver m =>
[Bool] -> MetaId -> m PruneResult
killArgs [Bool]
kills MetaId
x
                case PruneResult
killResult of
                  PruneResult
NothingToPrune   -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
                  PruneResult
PrunedEverything -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
                  PruneResult
PrunedNothing    -> m ()
checkDefinitionalEquality
                  PruneResult
PrunedSomething  -> m ()
checkDefinitionalEquality
              -- not all relevant arguments are variables
              Maybe [Bool]
Nothing -> m ()
checkDefinitionalEquality -- Check definitional equality on meta-variables
                              -- (same as for blocked terms)
           | Bool
otherwise -> do
              [MetaPriority
p1, MetaPriority
p2] <- (MetaId -> m MetaPriority) -> [MetaId] -> m [MetaPriority]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM MetaId -> m MetaPriority
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m MetaPriority
getMetaPriority [MetaId
x,MetaId
y]
              -- First try the one with the highest priority. If that doesn't
              -- work, try the low priority one.
              let (m ()
solve1, m ()
solve2)
                    | (MetaPriority
p1, MetaId
x) (MetaPriority, MetaId) -> (MetaPriority, MetaId) -> Bool
forall a. Ord a => a -> a -> Bool
> (MetaPriority
p2, MetaId
y) = (m ()
l1, m ()
r2)
                    | Bool
otherwise         = (m ()
r1, m ()
l2)
                    where l1 :: m ()
l1 = CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
xArgs Term
n
                          r1 :: m ()
r1 = CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
rid MetaId
y Elims
yArgs Term
m
                          -- Careful: the first attempt might prune the low
                          -- priority meta! (Issue #2978)
                          l2 :: m ()
l2 = m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (MetaId -> m Bool
forall a (m :: * -> *).
(IsInstantiatedMeta a, MonadFail m, ReadTCState m) =>
a -> m Bool
isInstantiatedMeta MetaId
x) (CompareDirection -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAsDir CompareDirection
dir CompareAs
t Term
m Term
n) m ()
l1
                          r2 :: m ()
r2 = m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (MetaId -> m Bool
forall a (m :: * -> *).
(IsInstantiatedMeta a, MonadFail m, ReadTCState m) =>
a -> m Bool
isInstantiatedMeta MetaId
y) (CompareDirection -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAsDir CompareDirection
rid CompareAs
t Term
n Term
m) m ()
r1

              -- Unblock on both unblockers of solve1 and solve2
              (Blocker -> m ()) -> m () -> m ()
forall (m :: * -> *) a.
MonadBlock m =>
(Blocker -> m a) -> m a -> m a
catchPatternErr (Blocker -> m () -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a -> m a
`addOrUnblocker` m ()
solve2) m ()
solve1

      -- one side a meta
      (Blocked Term, Blocked Term)
_ | MetaV MetaId
x Elims
es <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
mb -> CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
dir MetaId
x Elims
es Term
n
      (Blocked Term, Blocked Term)
_ | MetaV MetaId
x Elims
es <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
nb -> CompareDirection -> MetaId -> Elims -> Term -> m ()
assign CompareDirection
rid MetaId
x Elims
es Term
m
      (Blocked{}, Blocked{}) | Bool -> Bool
not Bool
cmpBlocked  -> m ()
checkDefinitionalEquality
      (Blocked Blocker
b Term
_, Blocked Term
_) | Bool -> Bool
not Bool
cmpBlocked -> CompareDirection -> Blocker -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection -> Blocker -> CompareAs -> Term -> Term -> m ()
useInjectivity (Comparison -> CompareDirection
fromCmp Comparison
cmp) Blocker
b CompareAs
t Term
m Term
n   -- The blocked term  goes first
      (Blocked Term
_, Blocked Blocker
b Term
_) | Bool -> Bool
not Bool
cmpBlocked -> CompareDirection -> Blocker -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection -> Blocker -> CompareAs -> Term -> Term -> m ()
useInjectivity (CompareDirection -> CompareDirection
flipCmp (CompareDirection -> CompareDirection)
-> CompareDirection -> CompareDirection
forall a b. (a -> b) -> a -> b
$ Comparison -> CompareDirection
fromCmp Comparison
cmp) Blocker
b CompareAs
t Term
n Term
m
      (Blocked Term, Blocked Term)
_ -> Blocker -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => Blocker -> m a -> m a
blockOnError Blocker
blocker (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
        -- -- Andreas, 2013-10-20 put projection-like function
        -- -- into the spine, to make compareElims work.
        -- -- 'False' means: leave (Def f []) unchanged even for
        -- -- proj-like funs.
        -- m <- elimView False m
        -- n <- elimView False n
        -- Andreas, 2015-07-01, actually, don't put them into the spine.
        -- Polarity cannot be communicated properly if projection-like
        -- functions are post-fix.
        case (Term
m, Term
n) of
          (Pi{}, Pi{}) -> Term -> Term -> m ()
equalFun Term
m Term
n

          (Sort Sort
s1, Sort Sort
s2) ->
            m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (PragmaOptions -> Bool
optCumulativity (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions)
              (Comparison -> Sort -> Sort -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Sort -> Sort -> m ()
compareSort Comparison
cmp Sort
s1 Sort
s2)
              (Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s1 Sort
s2)

          (Lit Literal
l1, Lit Literal
l2) | Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l2 -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
          (Var Int
i Elims
es, Var Int
i' Elims
es') | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i' -> do
              Type
a <- Int -> m Type
forall (m :: * -> *).
(Applicative m, MonadFail m, MonadTCEnv m) =>
Int -> m Type
typeOfBV Int
i
              -- Variables are invariant in their arguments
              [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [] [] Type
a (Int -> Term
var Int
i) Elims
es Elims
es'

          -- The case of definition application:
          (Def QName
f Elims
es, Def QName
f' Elims
es') -> do

              -- 1. All absurd lambdas are equal.
              m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM (QName -> QName -> m Bool
forall (m :: * -> *). MonadConversion m => QName -> QName -> m Bool
bothAbsurd QName
f QName
f') (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do

              -- 2. If the heads are unequal, the only chance is subtyping between SIZE and SIZELT.
              if QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
/= QName
f' then Comparison
-> CompareAs
-> Term
-> Term
-> QName
-> Elims
-> QName
-> Elims
-> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison
-> CompareAs
-> Term
-> Term
-> QName
-> Elims
-> QName
-> Elims
-> m ()
trySizeUniv Comparison
cmp CompareAs
t Term
m Term
n QName
f Elims
es QName
f' Elims
es' else do

              -- 3. If the heads are equal:
              -- 3a. If there are no arguments, we are done.
              Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Elims -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null Elims
es Bool -> Bool -> Bool
&& Elims -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null Elims
es') (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do

              -- 3b. If some cubical magic kicks in, we are done.
              m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM (MonadConversion m => QName -> Elims -> Elims -> m Bool
QName -> Elims -> Elims -> m Bool
compareEtaPrims QName
f Elims
es Elims
es') (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do

              -- 3c. Oh no, we actually have to work and compare the eliminations!
               Type
a <- QName -> Elims -> Elims -> m Type
forall (m :: * -> *).
MonadConversion m =>
QName -> Elims -> Elims -> m Type
computeElimHeadType QName
f Elims
es Elims
es'
               -- The polarity vector of projection-like functions
               -- does not include the parameters.
               [Polarity]
pol <- Comparison -> QName -> m [Polarity]
forall (m :: * -> *).
HasConstInfo m =>
Comparison -> QName -> m [Polarity]
getPolarity' Comparison
cmp QName
f
               [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pol [] Type
a (QName -> Elims -> Term
Def QName
f []) Elims
es Elims
es'

          -- Due to eta-expansion, these constructors are fully applied.
          (Con ConHead
x ConInfo
ci Elims
xArgs, Con ConHead
y ConInfo
_ Elims
yArgs)
              | ConHead
x ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
y -> do
                  -- Get the type of the constructor instantiated to the datatype parameters.
                  Type
a' <- case CompareAs
t of
                    AsTermsOf Type
a -> ConHead -> Type -> m Type
forall (m :: * -> *).
(MonadBlock m, PureTCM m) =>
ConHead -> Type -> m Type
conType ConHead
x Type
a
                    CompareAs
AsSizes   -> m Type
forall a. HasCallStack => a
__IMPOSSIBLE__
                    CompareAs
AsTypes   -> m Type
forall a. HasCallStack => a
__IMPOSSIBLE__
                  [IsForced]
forcedArgs <- QName -> m [IsForced]
forall (m :: * -> *). HasConstInfo m => QName -> m [IsForced]
getForcedArgs (QName -> m [IsForced]) -> QName -> m [IsForced]
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
x
                  -- Constructors are covariant in their arguments
                  -- (see test/succeed/CovariantConstructors).
                  [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims (Polarity -> [Polarity]
forall a. a -> [a]
repeat (Polarity -> [Polarity]) -> Polarity -> [Polarity]
forall a b. (a -> b) -> a -> b
$ Comparison -> Polarity
polFromCmp Comparison
cmp) [IsForced]
forcedArgs Type
a' (ConHead -> ConInfo -> Elims -> Term
Con ConHead
x ConInfo
ci []) Elims
xArgs Elims
yArgs
          (Term, Term)
_ -> m ()
notEqual
    where
        -- returns True in case we handled the comparison already.
        compareEtaPrims :: MonadConversion m => QName -> Elims -> Elims -> m Bool
        compareEtaPrims :: QName -> Elims -> Elims -> m Bool
compareEtaPrims QName
q Elims
es Elims
es' = do
          Maybe QName
munglue <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getPrimitiveName' VerboseKey
builtin_unglue
          Maybe QName
munglueU <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getPrimitiveName' VerboseKey
builtin_unglueU
          Maybe QName
msubout <- VerboseKey -> m (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
VerboseKey -> m (Maybe QName)
getPrimitiveName' VerboseKey
builtinSubOut
          case () of
            ()
_ | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
munglue -> QName -> Elims -> Elims -> m Bool
compareUnglueApp QName
q Elims
es Elims
es'
            ()
_ | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
munglueU -> MonadConversion m => QName -> Elims -> Elims -> m Bool
QName -> Elims -> Elims -> m Bool
compareUnglueUApp QName
q Elims
es Elims
es'
            ()
_ | QName -> Maybe QName
forall a. a -> Maybe a
Just QName
q Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
msubout -> QName -> Elims -> Elims -> m Bool
compareSubApp QName
q Elims
es Elims
es'
            ()
_                     -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
        compareSubApp :: QName -> Elims -> Elims -> m Bool
compareSubApp QName
q Elims
es Elims
es' = do
          let (Elims
as,Elims
bs) = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
5 Elims
es; (Elims
as',Elims
bs') = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
5 Elims
es'
          case (Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
as, Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
as') of
            (Just [Arg Term
a,Arg Term
bA,Arg Term
phi,Arg Term
u,Arg Term
x], Just [Arg Term
a',Arg Term
bA',Arg Term
phi',Arg Term
u',Arg Term
x']) -> do
              Term
tSub <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primSub
              -- Andrea, 28-07-16:
              -- comparing the types is most probably wasteful,
              -- since b and b' should be neutral terms, but it's a
              -- precondition for the compareAtom call to make
              -- sense.
              Type -> Type -> m ()
forall (m :: * -> *). MonadConversion m => Type -> Type -> m ()
equalType (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSSort (Term -> Sort) -> Term -> Sort
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
tSub ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term
a Arg Term -> [Arg Term] -> [Arg Term]
forall a. a -> [a] -> [a]
: (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
NotHidden) [Arg Term
bA,Arg Term
phi,Arg Term
u])
                        (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSSort (Term -> Sort) -> Term -> Sort
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
tSub ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term
a Arg Term -> [Arg Term] -> [Arg Term]
forall a. a -> [a] -> [a]
: (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
NotHidden) [Arg Term
bA',Arg Term
phi',Arg Term
u'])
              Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> Type -> CompareAs
forall a b. (a -> b) -> a -> b
$ Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSSort (Term -> Sort) -> Term -> Sort
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
tSub ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term
a Arg Term -> [Arg Term] -> [Arg Term]
forall a. a -> [a] -> [a]
: (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
NotHidden) [Arg Term
bA,Arg Term
phi,Arg Term
u])
                              (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
x) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
x')
              [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [] [] (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSort (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a)) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
bA)) (QName -> Elims -> Term
Def QName
q Elims
as) Elims
bs Elims
bs'
              Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
            (Maybe [Arg Term], Maybe [Arg Term])
_  -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
        compareUnglueApp :: QName -> Elims -> Elims -> m Bool
compareUnglueApp QName
q Elims
es Elims
es' = do
          let (Elims
as,Elims
bs) = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
7 Elims
es; (Elims
as',Elims
bs') = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
7 Elims
es'
          case (Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
as, Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
as') of
            (Just [Arg Term
la,Arg Term
lb,Arg Term
bA,Arg Term
phi,Arg Term
bT,Arg Term
e,Arg Term
b], Just [Arg Term
la',Arg Term
lb',Arg Term
bA',Arg Term
phi',Arg Term
bT',Arg Term
e',Arg Term
b']) -> do
              Term
tGlue <- VerboseKey -> m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
VerboseKey -> m Term
getPrimitiveTerm VerboseKey
builtinGlue
              -- Andrea, 28-07-16:
              -- comparing the types is most probably wasteful,
              -- since b and b' should be neutral terms, but it's a
              -- precondition for the compareAtom call to make
              -- sense.
              -- equalType (El (tmSort (unArg lb)) $ apply tGlue $ [la,lb] ++ map (setHiding NotHidden) [bA,phi,bT,e])
              --           (El (tmSort (unArg lb')) $ apply tGlue $ [la',lb'] ++ map (setHiding NotHidden) [bA',phi',bT',e'])
              Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> Type -> CompareAs
forall a b. (a -> b) -> a -> b
$ Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSort (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
lb)) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
tGlue ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ [Arg Term
la,Arg Term
lb] [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
NotHidden) [Arg Term
bA,Arg Term
phi,Arg Term
bT,Arg Term
e])
                              (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
b) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
b')
              [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [] [] (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSort (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
la)) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
bA)) (QName -> Elims -> Term
Def QName
q Elims
as) Elims
bs Elims
bs'
              Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
            (Maybe [Arg Term], Maybe [Arg Term])
_  -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
        compareUnglueUApp :: MonadConversion m => QName -> Elims -> Elims -> m Bool
        compareUnglueUApp :: QName -> Elims -> Elims -> m Bool
compareUnglueUApp QName
q Elims
es Elims
es' = do
          let (Elims
as,Elims
bs) = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
5 Elims
es; (Elims
as',Elims
bs') = Int -> Elims -> (Elims, Elims)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
5 Elims
es'
          case (Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
as, Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
as') of
            (Just [Arg Term
la,Arg Term
phi,Arg Term
bT,Arg Term
bAS,Arg Term
b], Just [Arg Term
la',Arg Term
phi',Arg Term
bT',Arg Term
bA',Arg Term
b']) -> do
              Term
tHComp <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primHComp
              Term
tLSuc <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primLevelSuc
              Term
tSubOut <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primSubOut
              Term
iz <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
              let lsuc :: Term -> Term
lsuc Term
t = Term
tLSuc Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Term -> Arg Term
forall e. e -> Arg e
argN Term
t]
                  s :: Sort
s = Term -> Sort
tmSort (Term -> Sort) -> Term -> Sort
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
la
                  sucla :: Arg Term
sucla = Term -> Term
lsuc (Term -> Term) -> Arg Term -> Arg Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg Term
la
              Term
bA <- Names -> NamesT m Term -> m Term
forall (m :: * -> *) a. Names -> NamesT m a -> m a
runNamesT [] (NamesT m Term -> m Term) -> NamesT m Term -> m Term
forall a b. (a -> b) -> a -> b
$ do
                [NamesT m Term
la,NamesT m Term
phi,NamesT m Term
bT,NamesT m Term
bAS] <- (Arg Term -> NamesT m (NamesT m Term))
-> [Arg Term] -> NamesT m [NamesT m Term]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Term -> NamesT m (NamesT m Term)
forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (Term -> NamesT m (NamesT m Term))
-> (Arg Term -> Term) -> Arg Term -> NamesT m (NamesT m Term)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
forall e. Arg e -> e
unArg) [Arg Term
la,Arg Term
phi,Arg Term
bT,Arg Term
bAS]
                (Term -> NamesT m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tSubOut NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (Term -> NamesT m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tLSuc NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
la) NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (Sort -> Term
Sort (Sort -> Term) -> (Term -> Sort) -> Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Sort
tmSort (Term -> Term) -> NamesT m Term -> NamesT m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT m Term
la) NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT m Term
phi NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (NamesT m Term
bT NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero) NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
bAS)
              Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
cmp (Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> Type -> CompareAs
forall a b. (a -> b) -> a -> b
$ Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort
tmSort (Term -> Sort) -> (Arg Term -> Term) -> Arg Term -> Sort
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Sort) -> Arg Term -> Sort
forall a b. (a -> b) -> a -> b
$ Arg Term
sucla) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
tHComp ([Arg Term] -> Term) -> [Arg Term] -> Term
forall a b. (a -> b) -> a -> b
$ [Arg Term
sucla, Term -> Arg Term
forall e. e -> Arg e
argH (Sort -> Term
Sort Sort
s), Arg Term
phi] [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ [Term -> Arg Term
forall e. e -> Arg e
argH (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
bT), Term -> Arg Term
forall e. e -> Arg e
argH Term
bA])
                              (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
b) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
b')
              [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [] [] (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s Term
bA) (QName -> Elims -> Term
Def QName
q Elims
as) Elims
bs Elims
bs'
              Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
            (Maybe [Arg Term], Maybe [Arg Term])
_  -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
        -- Andreas, 2013-05-15 due to new postponement strategy, type can now be blocked
        conType :: ConHead -> Type -> m Type
conType ConHead
c Type
t = do
          Type
t <- Type -> m Type
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked Type
t
          let impossible :: m Type
impossible = do
                VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"impossible" Int
10 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
                  TCM Doc
"expected data/record type, found " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
                VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"impossible" Int
70 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"raw =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
t
                -- __IMPOSSIBLE__
                -- Andreas, 2013-10-20:  in case termination checking fails
                -- we might get some unreduced types here.
                -- In issue 921, this happens during the final attempt
                -- to solve left-over constraints.
                -- Thus, instead of crashing, just give up gracefully.
                Blocker -> m Type
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock
          m Type
-> (((QName, Type, [Arg Term]), Type) -> m Type)
-> Maybe ((QName, Type, [Arg Term]), Type)
-> m Type
forall b a. b -> (a -> b) -> Maybe a -> b
maybe m Type
impossible (Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type)
-> (((QName, Type, [Arg Term]), Type) -> Type)
-> ((QName, Type, [Arg Term]), Type)
-> m Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((QName, Type, [Arg Term]), Type) -> Type
forall a b. (a, b) -> b
snd) (Maybe ((QName, Type, [Arg Term]), Type) -> m Type)
-> m (Maybe ((QName, Type, [Arg Term]), Type)) -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ConHead -> Type -> m (Maybe ((QName, Type, [Arg Term]), Type))
forall (m :: * -> *).
PureTCM m =>
ConHead -> Type -> m (Maybe ((QName, Type, [Arg Term]), Type))
getFullyAppliedConType ConHead
c Type
t
        equalFun :: Term -> Term -> m ()
equalFun Term
t1 Term
t2 = case (Term
t1, Term
t2) of
          (Pi Dom Type
dom1 Abs Type
b1, Pi Dom Type
dom2 Abs Type
b2) -> do
            VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.fun" Int
15 VerboseKey
"compare function types" (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
              VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.fun" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
                [ TCM Doc
"t1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
t1
                , TCM Doc
"t2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
t2
                ]
              Comparison
-> Dom Type
-> Dom Type
-> Abs Type
-> Abs Type
-> m ()
-> m ()
-> m ()
-> m ()
-> m ()
-> m ()
forall (m :: * -> *) c b.
(MonadConversion m, Free c) =>
Comparison
-> Dom Type
-> Dom Type
-> Abs b
-> Abs c
-> m ()
-> m ()
-> m ()
-> m ()
-> m ()
-> m ()
compareDom Comparison
cmp Dom Type
dom2 Dom Type
dom1 Abs Type
b1 Abs Type
b2 m ()
errH m ()
errR m ()
errQ m ()
errC (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
                Comparison -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Type -> m ()
compareType Comparison
cmp (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b1) (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b2)
            where
            errH :: m ()
errH = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Term -> Term -> TypeError
UnequalHiding Term
t1 Term
t2
            errR :: m ()
errR = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Term -> TypeError
UnequalRelevance Comparison
cmp Term
t1 Term
t2
            errQ :: m ()
errQ = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Term -> TypeError
UnequalQuantity  Comparison
cmp Term
t1 Term
t2
            errC :: m ()
errC = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Term -> TypeError
UnequalCohesion Comparison
cmp Term
t1 Term
t2
          (Term, Term)
_ -> m ()
forall a. HasCallStack => a
__IMPOSSIBLE__

-- | Check whether @a1 `cmp` a2@ and continue in context extended by @a1@.
compareDom :: (MonadConversion m , Free c)
  => Comparison -- ^ @cmp@ The comparison direction
  -> Dom Type   -- ^ @a1@  The smaller domain.
  -> Dom Type   -- ^ @a2@  The other domain.
  -> Abs b      -- ^ @b1@  The smaller codomain.
  -> Abs c      -- ^ @b2@  The bigger codomain.
  -> m ()     -- ^ Continuation if mismatch in 'Hiding'.
  -> m ()     -- ^ Continuation if mismatch in 'Relevance'.
  -> m ()     -- ^ Continuation if mismatch in 'Quantity'.
  -> m ()     -- ^ Continuation if mismatch in 'Cohesion'.
  -> m ()     -- ^ Continuation if comparison is successful.
  -> m ()
compareDom :: Comparison
-> Dom Type
-> Dom Type
-> Abs b
-> Abs c
-> m ()
-> m ()
-> m ()
-> m ()
-> m ()
-> m ()
compareDom Comparison
cmp0
  dom1 :: Dom Type
dom1@(Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
i1, unDom :: forall t e. Dom' t e -> e
unDom = Type
a1})
  dom2 :: Dom Type
dom2@(Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
i2, unDom :: forall t e. Dom' t e -> e
unDom = Type
a2})
  Abs b
b1 Abs c
b2 m ()
errH m ()
errR m ()
errQ m ()
errC m ()
cont = do
  Bool
hasSubtyping <- WithDefault 'False -> Bool
forall (b :: Bool). KnownBool b => WithDefault b -> Bool
collapseDefault (WithDefault 'False -> Bool)
-> (PragmaOptions -> WithDefault 'False) -> PragmaOptions -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PragmaOptions -> WithDefault 'False
optSubtyping (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
  let cmp :: Comparison
cmp = if Bool
hasSubtyping then Comparison
cmp0 else Comparison
CmpEq
  if | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Dom Type -> Dom Type -> Bool
forall a b. (LensHiding a, LensHiding b) => a -> b -> Bool
sameHiding Dom Type
dom1 Dom Type
dom2 -> m ()
errH
     | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Comparison -> Relevance -> Relevance -> Bool
compareRelevance Comparison
cmp (Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
dom1) (Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
dom2) -> m ()
errR
     | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Comparison -> Quantity -> Quantity -> Bool
compareQuantity  Comparison
cmp (Dom Type -> Quantity
forall a. LensQuantity a => a -> Quantity
getQuantity  Dom Type
dom1) (Dom Type -> Quantity
forall a. LensQuantity a => a -> Quantity
getQuantity  Dom Type
dom2) -> m ()
errQ
     | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Comparison -> Cohesion -> Cohesion -> Bool
compareCohesion  Comparison
cmp (Dom Type -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion  Dom Type
dom1) (Dom Type -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion  Dom Type
dom2) -> m ()
errC
     | Bool
otherwise -> do
      let r :: Relevance
r = Relevance -> Relevance -> Relevance
forall a. Ord a => a -> a -> a
max (Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
dom1) (Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
dom2)
              -- take "most irrelevant"
          dependent :: Bool
dependent = (Relevance
r Relevance -> Relevance -> Bool
forall a. Eq a => a -> a -> Bool
/= Relevance
Irrelevant) Bool -> Bool -> Bool
&& Abs c -> Bool
forall a. Free a => Abs a -> Bool
isBinderUsed Abs c
b2
      ProblemId
pid <- m () -> m ProblemId
forall (m :: * -> *) a.
(MonadFresh ProblemId m, MonadConstraint m) =>
m a -> m ProblemId
newProblem_ (m () -> m ProblemId) -> m () -> m ProblemId
forall a b. (a -> b) -> a -> b
$ Comparison -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Type -> m ()
compareType Comparison
cmp0 Type
a1 Type
a2
      Dom Type
dom <- if Bool
dependent
             then (\ Type
a -> Dom Type
dom1 {unDom :: Type
unDom = Type
a}) (Type -> Dom Type) -> m Type -> m (Dom Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> ProblemId -> m Type
forall (m :: * -> *).
(MonadMetaSolver m, MonadFresh Int m) =>
Type -> ProblemId -> m Type
blockTypeOnProblem Type
a1 ProblemId
pid
             else Dom Type -> m (Dom Type)
forall (m :: * -> *) a. Monad m => a -> m a
return Dom Type
dom1
        -- We only need to require a1 == a2 if b2 is dependent
        -- If it's non-dependent it doesn't matter what we add to the context.
      let name :: VerboseKey
name = [Suggestion] -> VerboseKey
suggests [ Abs b -> Suggestion
forall a. Suggest a => a -> Suggestion
Suggestion Abs b
b1 , Abs c -> Suggestion
forall a. Suggest a => a -> Suggestion
Suggestion Abs c
b2 ]
      (VerboseKey, Dom Type) -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (VerboseKey
name, Dom Type
dom) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ m ()
cont
      ProblemId -> m ()
forall (m :: * -> *). MonadConstraint m => ProblemId -> m ()
stealConstraints ProblemId
pid
        -- Andreas, 2013-05-15 Now, comparison of codomains is not
        -- blocked any more by getting stuck on domains.
        -- Only the domain type in context will be blocked.
        -- But see issue #1258.

compareRelevance :: Comparison -> Relevance -> Relevance -> Bool
compareRelevance :: Comparison -> Relevance -> Relevance -> Bool
compareRelevance Comparison
CmpEq  = Relevance -> Relevance -> Bool
forall a. Eq a => a -> a -> Bool
(==)
compareRelevance Comparison
CmpLeq = Relevance -> Relevance -> Bool
forall a. Ord a => a -> a -> Bool
(<=)

compareQuantity :: Comparison -> Quantity -> Quantity -> Bool
compareQuantity :: Comparison -> Quantity -> Quantity -> Bool
compareQuantity Comparison
CmpEq  = Quantity -> Quantity -> Bool
sameQuantity
compareQuantity Comparison
CmpLeq = Quantity -> Quantity -> Bool
moreQuantity

compareCohesion :: Comparison -> Cohesion -> Cohesion -> Bool
compareCohesion :: Comparison -> Cohesion -> Cohesion -> Bool
compareCohesion Comparison
CmpEq  = Cohesion -> Cohesion -> Bool
sameCohesion
compareCohesion Comparison
CmpLeq = Cohesion -> Cohesion -> Bool
moreCohesion

-- | When comparing argument spines (in compareElims) where the first arguments
--   don't match, we keep going, substituting the anti-unification of the two
--   terms in the telescope. More precisely:
--
--  @@
--    (u = v : A)[pid]   w = antiUnify pid A u v   us = vs : Δ[w/x]
--    -------------------------------------------------------------
--                    u us = v vs : (x : A) Δ
--  @@
--
--   The simplest case of anti-unification is to return a fresh metavariable
--   (created by blockTermOnProblem), but if there's shared structure between
--   the two terms we can expose that.
--
--   This is really a crutch that lets us get away with things that otherwise
--   would require heterogenous conversion checking. See for instance issue
--   #2384.
antiUnify :: MonadConversion m => ProblemId -> Type -> Term -> Term -> m Term
antiUnify :: ProblemId -> Type -> Term -> Term -> m Term
antiUnify ProblemId
pid Type
a Term
u Term
v = do
  ((Term
u, Term
v), Bool
eq) <- Term -> Term -> m ((Term, Term), Bool)
forall a (m :: * -> *).
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> m ((a, a), Bool)
SynEq.checkSyntacticEquality Term
u Term
v
  if Bool
eq then Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
u else do
  (Term
u, Term
v) <- (Term, Term) -> m (Term, Term)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Term
u, Term
v)
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.antiUnify" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
    [ TCM Doc
"antiUnify"
    , TCM Doc
"a =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
    , TCM Doc
"u =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
    , TCM Doc
"v =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
    ]
  case (Term
u, Term
v) of
    (Pi Dom Type
ua Abs Type
ub, Pi Dom Type
va Abs Type
vb) -> do
      Type
wa0 <- ProblemId -> Type -> Type -> m Type
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Type -> m Type
antiUnifyType ProblemId
pid (Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
ua) (Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
va)
      let wa :: Dom Type
wa = Type
wa0 Type -> Dom Type -> Dom Type
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Dom Type
ua
      Type
wb <- Dom Type -> m Type -> m Type
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Dom Type
wa (m Type -> m Type) -> m Type -> m Type
forall a b. (a -> b) -> a -> b
$ ProblemId -> Type -> Type -> m Type
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Type -> m Type
antiUnifyType ProblemId
pid (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
ub) (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
vb)
      Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Term
Pi Dom Type
wa (VerboseKey -> Type -> Abs Type
forall a. (Subst a, Free a) => VerboseKey -> a -> Abs a
mkAbs (Abs Type -> VerboseKey
forall a. Abs a -> VerboseKey
absName Abs Type
ub) Type
wb)
    (Lam ArgInfo
i Abs Term
u, Lam ArgInfo
_ Abs Term
v) ->
      Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Type -> Term
forall t a. Type'' t a -> a
unEl Type
a) m Term -> (Term -> m Term) -> m Term
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
        Pi Dom Type
a Abs Type
b -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
i (Abs Term -> Term) -> (Term -> Abs Term) -> Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (VerboseKey -> Term -> Abs Term
forall a. (Subst a, Free a) => VerboseKey -> a -> Abs a
mkAbs (Abs Term -> VerboseKey
forall a. Abs a -> VerboseKey
absName Abs Term
u)) (Term -> Term) -> m Term -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type -> m Term -> m Term
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Dom Type
a (ProblemId -> Type -> Term -> Term -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Term -> m Term
antiUnify ProblemId
pid (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b) (Abs Term -> Term
forall a. Subst a => Abs a -> a
absBody Abs Term
u) (Abs Term -> Term
forall a. Subst a => Abs a -> a
absBody Abs Term
v))
        Term
_      -> m Term
fallback
    (Var Int
i Elims
us, Var Int
j Elims
vs) | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j -> m Term -> m Term
maybeGiveUp (m Term -> m Term) -> m Term -> m Term
forall a b. (a -> b) -> a -> b
$ do
      Type
a <- Int -> m Type
forall (m :: * -> *).
(Applicative m, MonadFail m, MonadTCEnv m) =>
Int -> m Type
typeOfBV Int
i
      ProblemId -> Type -> Term -> Elims -> Elims -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims ProblemId
pid Type
a (Int -> Term
var Int
i) Elims
us Elims
vs
    -- Andreas, 2017-07-27:
    -- It seems that nothing guarantees here that the constructors are fully
    -- applied!?  Thus, @a@ could be a function type and we need the robust
    -- @getConType@ here.
    -- (Note that @patternViolation@ swallows exceptions coming from @getConType@
    -- thus, we would not see clearly if we used @getFullyAppliedConType@ instead.)
    (Con ConHead
x ConInfo
ci Elims
us, Con ConHead
y ConInfo
_ Elims
vs) | ConHead
x ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
y -> m Term -> m Term
maybeGiveUp (m Term -> m Term) -> m Term -> m Term
forall a b. (a -> b) -> a -> b
$ do
      Type
a <- m Type
-> (((QName, Type, [Arg Term]), Type) -> m Type)
-> Maybe ((QName, Type, [Arg Term]), Type)
-> m Type
forall b a. b -> (a -> b) -> Maybe a -> b
maybe m Type
forall a. m a
abort (Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type)
-> (((QName, Type, [Arg Term]), Type) -> Type)
-> ((QName, Type, [Arg Term]), Type)
-> m Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((QName, Type, [Arg Term]), Type) -> Type
forall a b. (a, b) -> b
snd) (Maybe ((QName, Type, [Arg Term]), Type) -> m Type)
-> m (Maybe ((QName, Type, [Arg Term]), Type)) -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ConHead -> Type -> m (Maybe ((QName, Type, [Arg Term]), Type))
forall (m :: * -> *).
PureTCM m =>
ConHead -> Type -> m (Maybe ((QName, Type, [Arg Term]), Type))
getConType ConHead
x Type
a
      ProblemId -> Type -> Term -> Elims -> Elims -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims ProblemId
pid Type
a (ConHead -> ConInfo -> Elims -> Term
Con ConHead
x ConInfo
ci []) Elims
us Elims
vs
    (Def QName
f [], Def QName
g []) | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
g -> Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return (QName -> Elims -> Term
Def QName
f [])
    (Def QName
f Elims
us, Def QName
g Elims
vs) | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
g, Elims -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
us Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Elims -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Elims
vs -> m Term -> m Term
maybeGiveUp (m Term -> m Term) -> m Term -> m Term
forall a b. (a -> b) -> a -> b
$ do
      Type
a <- QName -> Elims -> Elims -> m Type
forall (m :: * -> *).
MonadConversion m =>
QName -> Elims -> Elims -> m Type
computeElimHeadType QName
f Elims
us Elims
vs
      ProblemId -> Type -> Term -> Elims -> Elims -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims ProblemId
pid Type
a (QName -> Elims -> Term
Def QName
f []) Elims
us Elims
vs
    (Term, Term)
_ -> m Term
fallback
  where
    maybeGiveUp :: m Term -> m Term
maybeGiveUp = (Blocker -> m Term) -> m Term -> m Term
forall (m :: * -> *) a.
MonadBlock m =>
(Blocker -> m a) -> m a -> m a
catchPatternErr ((Blocker -> m Term) -> m Term -> m Term)
-> (Blocker -> m Term) -> m Term -> m Term
forall a b. (a -> b) -> a -> b
$ \ Blocker
_ -> m Term
fallback
    abort :: m a
abort = Blocker -> m a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock -- caught by maybeGiveUp
    fallback :: m Term
fallback = Type -> Term -> ProblemId -> m Term
forall (m :: * -> *).
(MonadMetaSolver m, MonadFresh Int m) =>
Type -> Term -> ProblemId -> m Term
blockTermOnProblem Type
a Term
u ProblemId
pid

antiUnifyArgs :: MonadConversion m => ProblemId -> Dom Type -> Arg Term -> Arg Term -> m (Arg Term)
antiUnifyArgs :: ProblemId -> Dom Type -> Arg Term -> Arg Term -> m (Arg Term)
antiUnifyArgs ProblemId
pid Dom Type
dom Arg Term
u Arg Term
v
  | Bool -> Bool
not (Modality -> Modality -> Bool
forall a b. (LensModality a, LensModality b) => a -> b -> Bool
sameModality (Arg Term -> Modality
forall a. LensModality a => a -> Modality
getModality Arg Term
u) (Arg Term -> Modality
forall a. LensModality a => a -> Modality
getModality Arg Term
v))
              = Blocker -> m (Arg Term)
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock
  | Bool
otherwise = Arg Term -> m (Arg Term) -> m (Arg Term)
forall (tcm :: * -> *) m a.
(MonadTCEnv tcm, LensModality m) =>
m -> tcm a -> tcm a
applyModalityToContext Arg Term
u (m (Arg Term) -> m (Arg Term)) -> m (Arg Term) -> m (Arg Term)
forall a b. (a -> b) -> a -> b
$
    m Bool -> m (Arg Term) -> m (Arg Term) -> m (Arg Term)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Dom Type -> m Bool
forall a (m :: * -> *).
(LensRelevance a, LensSort a, PrettyTCM a, PureTCM m,
 MonadBlock m) =>
a -> m Bool
isIrrelevantOrPropM Dom Type
dom)
    {-then-} (Arg Term -> m (Arg Term)
forall (m :: * -> *) a. Monad m => a -> m a
return Arg Term
u)
    {-else-} ((Term -> Arg Term -> Arg Term
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Arg Term
u) (Term -> Arg Term) -> m Term -> m (Arg Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ProblemId -> Type -> Term -> Term -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Term -> m Term
antiUnify ProblemId
pid (Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
dom) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
u) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
v))

antiUnifyType :: MonadConversion m => ProblemId -> Type -> Type -> m Type
antiUnifyType :: ProblemId -> Type -> Type -> m Type
antiUnifyType ProblemId
pid (El Sort
s Term
a) (El Sort
_ Term
b) = m Type -> m Type
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes (m Type -> m Type) -> m Type -> m Type
forall a b. (a -> b) -> a -> b
$ Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s (Term -> Type) -> m Term -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ProblemId -> Type -> Term -> Term -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Term -> m Term
antiUnify ProblemId
pid (Sort -> Type
sort Sort
s) Term
a Term
b

antiUnifyElims :: MonadConversion m => ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims :: ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims ProblemId
pid Type
a Term
self [] [] = Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
self
antiUnifyElims ProblemId
pid Type
a Term
self (Proj ProjOrigin
o QName
f : Elims
es1) (Proj ProjOrigin
_ QName
g : Elims
es2) | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
g = do
  Maybe (Dom Type, Term, Type)
res <- Term
-> Type -> ProjOrigin -> QName -> m (Maybe (Dom Type, Term, Type))
forall (m :: * -> *).
PureTCM m =>
Term
-> Type -> ProjOrigin -> QName -> m (Maybe (Dom Type, Term, Type))
projectTyped Term
self Type
a ProjOrigin
o QName
f
  case Maybe (Dom Type, Term, Type)
res of
    Just (Dom Type
_, Term
self, Type
a) -> ProblemId -> Type -> Term -> Elims -> Elims -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims ProblemId
pid Type
a Term
self Elims
es1 Elims
es2
    Maybe (Dom Type, Term, Type)
Nothing -> Blocker -> m Term
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock -- can fail for projection like
antiUnifyElims ProblemId
pid Type
a Term
self (Apply Arg Term
u : Elims
es1) (Apply Arg Term
v : Elims
es2) = do
  Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Type -> Term
forall t a. Type'' t a -> a
unEl Type
a) m Term -> (Term -> m Term) -> m Term
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
    Pi Dom Type
a Abs Type
b -> do
      Arg Term
w <- ProblemId -> Dom Type -> Arg Term -> Arg Term -> m (Arg Term)
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Dom Type -> Arg Term -> Arg Term -> m (Arg Term)
antiUnifyArgs ProblemId
pid Dom Type
a Arg Term
u Arg Term
v
      ProblemId -> Type -> Term -> Elims -> Elims -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims ProblemId
pid (Abs Type
b Abs Type -> SubstArg Type -> Type
forall a. Subst a => Abs a -> SubstArg a -> a
`lazyAbsApp` Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
w) (Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
self [Arg Term
w]) Elims
es1 Elims
es2
    Term
_ -> Blocker -> m Term
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock
antiUnifyElims ProblemId
_ Type
_ Term
_ Elims
_ Elims
_ = Blocker -> m Term
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock -- trigger maybeGiveUp in antiUnify

-- | @compareElims pols a v els1 els2@ performs type-directed equality on eliminator spines.
--   @t@ is the type of the head @v@.
compareElims :: forall m. MonadConversion m => [Polarity] -> [IsForced] -> Type -> Term -> [Elim] -> [Elim] -> m ()
compareElims :: [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pols0 [IsForced]
fors0 Type
a Term
v Elims
els01 Elims
els02 =
  VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.elim" Int
20 VerboseKey
"compareElims" (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
  (Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint ([Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
pols0 [IsForced]
fors0 Type
a Term
v Elims
els01 Elims
els02) :: m () -> m ()) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
  let v1 :: Term
v1 = Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v Elims
els01
      v2 :: Term
v2 = Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v Elims
els02
      failure :: m ()
failure = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Term -> CompareAs -> TypeError
UnequalTerms Comparison
CmpEq Term
v1 Term
v2 (Type -> CompareAs
AsTermsOf Type
a)
        -- Andreas, 2013-03-15 since one of the spines is empty, @a@
        -- is the correct type here.
  Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Elims -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null Elims
els01) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elim" Int
25 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"compareElims" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ do
     Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
      [ TCM Doc
"a     =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
      , TCM Doc
"pols0 (truncated to 10) =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
hsep ((Polarity -> TCM Doc) -> [Polarity] -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map Polarity -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM ([Polarity] -> [TCM Doc]) -> [Polarity] -> [TCM Doc]
forall a b. (a -> b) -> a -> b
$ Int -> [Polarity] -> [Polarity]
forall a. Int -> [a] -> [a]
take Int
10 [Polarity]
pols0)
      , TCM Doc
"fors0 (truncated to 10) =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
hsep ((IsForced -> TCM Doc) -> [IsForced] -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map IsForced -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM ([IsForced] -> [TCM Doc]) -> [IsForced] -> [TCM Doc]
forall a b. (a -> b) -> a -> b
$ Int -> [IsForced] -> [IsForced]
forall a. Int -> [a] -> [a]
take Int
10 [IsForced]
fors0)
      , TCM Doc
"v     =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
      , TCM Doc
"els01 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Elims -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Elims
els01
      , TCM Doc
"els02 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Elims -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Elims
els02
      ]
  case (Elims
els01, Elims
els02) of
    ([]         , []         ) -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    ([]         , Proj{}:Elims
_   ) -> m ()
failure -- not impossible, see issue 821
    (Proj{}  : Elims
_, []         ) -> m ()
failure -- could be x.p =?= x for projection p
    ([]         , Apply{} : Elims
_) -> m ()
failure -- not impossible, see issue 878
    (Apply{} : Elims
_, []         ) -> m ()
failure
    ([]         , IApply{} : Elims
_) -> m ()
failure
    (IApply{} : Elims
_, []         ) -> m ()
failure
    (Apply{} : Elims
_, Proj{}  : Elims
_) -> ()
forall a. HasCallStack => a
__IMPOSSIBLE__ () -> m () -> m ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Bool -> m ()
forall (m :: * -> *). MonadConstraint m => Bool -> m ()
solveAwakeConstraints' Bool
True -- NB: popped up in issue 889
    (Proj{}  : Elims
_, Apply{} : Elims
_) -> ()
forall a. HasCallStack => a
__IMPOSSIBLE__ () -> m () -> m ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Bool -> m ()
forall (m :: * -> *). MonadConstraint m => Bool -> m ()
solveAwakeConstraints' Bool
True -- but should be impossible (but again in issue 1467)
    (IApply{} : Elims
_, Proj{}  : Elims
_) -> ()
forall a. HasCallStack => a
__IMPOSSIBLE__ () -> m () -> m ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Bool -> m ()
forall (m :: * -> *). MonadConstraint m => Bool -> m ()
solveAwakeConstraints' Bool
True
    (Proj{}  : Elims
_, IApply{} : Elims
_) -> ()
forall a. HasCallStack => a
__IMPOSSIBLE__ () -> m () -> m ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Bool -> m ()
forall (m :: * -> *). MonadConstraint m => Bool -> m ()
solveAwakeConstraints' Bool
True
    (IApply{} : Elims
_, Apply{}  : Elims
_) -> ()
forall a. HasCallStack => a
__IMPOSSIBLE__ () -> m () -> m ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Bool -> m ()
forall (m :: * -> *). MonadConstraint m => Bool -> m ()
solveAwakeConstraints' Bool
True
    (Apply{}  : Elims
_, IApply{} : Elims
_) -> ()
forall a. HasCallStack => a
__IMPOSSIBLE__ () -> m () -> m ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Bool -> m ()
forall (m :: * -> *). MonadConstraint m => Bool -> m ()
solveAwakeConstraints' Bool
True
    (e :: Elim' Term
e@(IApply Term
x1 Term
y1 Term
r1) : Elims
els1, IApply Term
x2 Term
y2 Term
r2 : Elims
els2) -> do
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elim" Int
25 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"compareElims IApply"
       -- Andrea: copying stuff from the Apply case..
      let (Polarity
pol, [Polarity]
pols) = [Polarity] -> (Polarity, [Polarity])
nextPolarity [Polarity]
pols0
      Type
a  <- Type -> m Type
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked Type
a
      PathView
va <- Type -> m PathView
forall (m :: * -> *). HasBuiltins m => Type -> m PathView
pathView Type
a
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elim.iapply" Int
60 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"compareElims IApply" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ do
        Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"va =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (Bool -> VerboseKey
forall a. Show a => a -> VerboseKey
show (PathView -> Bool
isPathType PathView
va))
      case PathView
va of
        PathType Sort
s QName
path Arg Term
l Arg Term
bA Arg Term
x Arg Term
y -> do
          Type
b <- m Type
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
          Polarity
-> (Comparison -> Term -> Term -> m ()) -> Term -> Term -> m ()
forall (m :: * -> *) a.
MonadConversion m =>
Polarity -> (Comparison -> a -> a -> m ()) -> a -> a -> m ()
compareWithPol Polarity
pol ((Comparison -> Type -> Term -> Term -> m ())
-> Type -> Comparison -> Term -> Term -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Type
b)
                              Term
r1 Term
r2
          -- TODO: compare (x1,x2) and (y1,y2) ?
          let r :: Term
r = Term
r1 -- TODO Andrea:  do blocking
          Type
codom <- m Term -> m Term -> m Type
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Type
el' (Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> (Arg Term -> Term) -> Arg Term -> m Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> m Term) -> Arg Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term
l) ((Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Term -> m Term) -> (Arg Term -> Term) -> Arg Term -> m Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> m Term) -> Arg Term -> m Term
forall a b. (a -> b) -> a -> b
$ Arg Term
bA) m Term -> m Term -> m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> Term -> m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
r)
          [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pols [] Type
codom -- Path non-dependent (codom `lazyAbsApp` unArg arg)
                            (Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v [Elim' Term
e]) Elims
els1 Elims
els2
        -- We allow for functions (i : I) -> ... to also be heads of a IApply,
        -- because @etaContract@ can produce such terms
        OType t :: Type
t@(El Sort
_ Pi{}) -> [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pols0 [IsForced]
fors0 Type
t Term
v (Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Term -> Arg Term
forall e. e -> Arg e
defaultArg Term
r1) Elim' Term -> Elims -> Elims
forall a. a -> [a] -> [a]
: Elims
els1) (Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Term -> Arg Term
forall e. e -> Arg e
defaultArg Term
r2) Elim' Term -> Elims -> Elims
forall a. a -> [a] -> [a]
: Elims
els2)

        OType Type
t -> Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Type -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Type
t) -- Can we get here? We know a is not blocked.

    (Apply Arg Term
arg1 : Elims
els1, Apply Arg Term
arg2 : Elims
els2) ->
      (VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.elim" Int
20 VerboseKey
"compare Apply" :: m () -> m ()) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elim" Int
10 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCM Doc
"a    =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
        , TCM Doc
"v    =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
        , TCM Doc
"arg1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Arg Term
arg1
        , TCM Doc
"arg2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Arg Term
arg2
        ]
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elim" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCM Doc
"raw:"
        , TCM Doc
"a    =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
a
        , TCM Doc
"v    =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v
        , TCM Doc
"arg1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Arg Term
arg1
        , TCM Doc
"arg2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Arg Term
arg2
        ]
      let (Polarity
pol, [Polarity]
pols) = [Polarity] -> (Polarity, [Polarity])
nextPolarity [Polarity]
pols0
          (IsForced
for, [IsForced]
fors) = [IsForced] -> (IsForced, [IsForced])
nextIsForced [IsForced]
fors0
      Type
a <- Type -> m Type
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked Type
a
      VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"type is not blocked"
      case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a of
        (Pi (Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info, unDom :: forall t e. Dom' t e -> e
unDom = Type
b}) Abs Type
codom) -> do
          VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"type is a function type"
          Maybe Term
mlvl <- m Term -> m (Maybe Term)
forall e (m :: * -> *) a.
(MonadError e m, Functor m) =>
m a -> m (Maybe a)
tryMaybe m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primLevel
          let freeInCoDom :: Abs a -> Bool
freeInCoDom (Abs VerboseKey
_ a
c) = Int
0 Int -> a -> Bool
forall a. Free a => Int -> a -> Bool
`freeInIgnoringSorts` a
c
              freeInCoDom Abs a
_         = Bool
False
              dependent :: Bool
dependent = (Term -> Maybe Term
forall a. a -> Maybe a
Just (Type -> Term
forall t a. Type'' t a -> a
unEl Type
b) Maybe Term -> Maybe Term -> Bool
forall a. Eq a => a -> a -> Bool
/= Maybe Term
mlvl) Bool -> Bool -> Bool
&& Abs Type -> Bool
forall a. Free a => Abs a -> Bool
freeInCoDom Abs Type
codom
                -- Level-polymorphism (x : Level) -> ... does not count as dependency here
                   -- NB: we could drop the free variable test and still be sound.
                   -- It is a trade-off between the administrative effort of
                   -- creating a blocking and traversing a term for free variables.
                   -- Apparently, it is believed that checking free vars is cheaper.
                   -- Andreas, 2013-05-15

-- NEW, Andreas, 2013-05-15

          -- compare arg1 and arg2
          ProblemId
pid <- m () -> m ProblemId
forall (m :: * -> *) a.
(MonadFresh ProblemId m, MonadConstraint m) =>
m a -> m ProblemId
newProblem_ (m () -> m ProblemId) -> m () -> m ProblemId
forall a b. (a -> b) -> a -> b
$ ArgInfo -> m () -> m ()
forall (tcm :: * -> *) m a.
(MonadTCEnv tcm, LensModality m) =>
m -> tcm a -> tcm a
applyModalityToContext ArgInfo
info (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
              if IsForced -> Bool
isForced IsForced
for then
                VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"argument is forced"
              else if ArgInfo -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant ArgInfo
info then do
                VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"argument is irrelevant"
                Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Type -> Term -> Term -> m ()
compareIrrelevant Type
b (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg1) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg2)
              else do
                VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"argument has polarity " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ Polarity -> VerboseKey
forall a. Show a => a -> VerboseKey
show Polarity
pol
                Polarity
-> (Comparison -> Term -> Term -> m ()) -> Term -> Term -> m ()
forall (m :: * -> *) a.
MonadConversion m =>
Polarity -> (Comparison -> a -> a -> m ()) -> a -> a -> m ()
compareWithPol Polarity
pol ((Comparison -> Type -> Term -> Term -> m ())
-> Type -> Comparison -> Term -> Term -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm Type
b)
                  (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg1) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg2)
          -- if comparison got stuck and function type is dependent, block arg
          Bool
solved <- ProblemId -> m Bool
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
ProblemId -> m Bool
isProblemSolved ProblemId
pid
          VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"solved = " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ Bool -> VerboseKey
forall a. Show a => a -> VerboseKey
show Bool
solved
          Arg Term
arg <- if Bool
dependent Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
solved
                 then ArgInfo -> m (Arg Term) -> m (Arg Term)
forall (tcm :: * -> *) m a.
(MonadTCEnv tcm, LensModality m) =>
m -> tcm a -> tcm a
applyModalityToContext ArgInfo
info (m (Arg Term) -> m (Arg Term)) -> m (Arg Term) -> m (Arg Term)
forall a b. (a -> b) -> a -> b
$ do
                  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elims" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$
                    [ TCM Doc
"Trying antiUnify:"
                    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"b    =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
b
                    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"arg1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Arg Term
arg1
                    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"arg2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Arg Term
arg2
                    ]
                  Arg Term
arg <- (Arg Term
arg1 Arg Term -> Term -> Arg Term
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$>) (Term -> Arg Term) -> m Term -> m (Arg Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ProblemId -> Type -> Term -> Term -> m Term
forall (m :: * -> *).
MonadConversion m =>
ProblemId -> Type -> Term -> Term -> m Term
antiUnify ProblemId
pid Type
b (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg1) (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg2)
                  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elims" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc -> Int -> TCM Doc -> TCM Doc
forall (m :: * -> *).
Applicative m =>
m Doc -> Int -> m Doc -> m Doc
hang TCM Doc
"Anti-unification:" Int
2 (Arg Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Arg Term
arg)
                  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elims" Int
70 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"raw:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Arg Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Arg Term
arg
                  Arg Term -> m (Arg Term)
forall (m :: * -> *) a. Monad m => a -> m a
return Arg Term
arg
                 else Arg Term -> m (Arg Term)
forall (m :: * -> *) a. Monad m => a -> m a
return Arg Term
arg1
          -- continue, possibly with blocked instantiation
          [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pols [IsForced]
fors (Abs Type
codom Abs Type -> SubstArg Type -> Type
forall a. Subst a => Abs a -> SubstArg a -> a
`lazyAbsApp` Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
arg) (Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
apply Term
v [Arg Term
arg]) Elims
els1 Elims
els2
          -- any left over constraints of arg are associated to the comparison
          VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.elim" Int
40 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"stealing constraints from problem " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ ProblemId -> VerboseKey
forall a. Show a => a -> VerboseKey
show ProblemId
pid
          ProblemId -> m ()
forall (m :: * -> *). MonadConstraint m => ProblemId -> m ()
stealConstraints ProblemId
pid
          {- Stealing solves this issue:

             Does not create enough blocked tc-problems,
             see test/fail/DontPrune.
             (There are remaining problems which do not show up as yellow.)
             Need to find a way to associate pid also to result of compareElims.
          -}
        Term
a -> do
          VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"impossible" Int
10 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
            TCM Doc
"unexpected type when comparing apply eliminations " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
a
          VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"impossible" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"raw type:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
a
          Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Term -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Term
a)
          -- Andreas, 2013-10-22
          -- in case of disabled reductions (due to failing termination check)
          -- we might get stuck, so do not crash, but fail gently.
          -- __IMPOSSIBLE__

    -- case: f == f' are projections
    (Proj ProjOrigin
o QName
f : Elims
els1, Proj ProjOrigin
_ QName
f' : Elims
els2)
      | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
/= QName
f'   -> TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> (Doc -> TypeError) -> Doc -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError (Doc -> m ()) -> m Doc -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
f m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> m Doc
"/=" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
f'
      | Bool
otherwise -> do
        Type
a   <- Type -> m Type
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked Type
a
        Maybe (Dom Type, Term, Type)
res <- Term
-> Type -> ProjOrigin -> QName -> m (Maybe (Dom Type, Term, Type))
forall (m :: * -> *).
PureTCM m =>
Term
-> Type -> ProjOrigin -> QName -> m (Maybe (Dom Type, Term, Type))
projectTyped Term
v Type
a ProjOrigin
o QName
f -- fails only if f is proj.like but parameters cannot be retrieved
        case Maybe (Dom Type, Term, Type)
res of
          Just (Dom Type
_, Term
u, Type
t) -> do
            -- Andreas, 2015-07-01:
            -- The arguments following the principal argument of a projection
            -- are invariant.  (At least as long as we have no explicit polarity
            -- annotations.)
            [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [] [] Type
t Term
u Elims
els1 Elims
els2
          Maybe (Dom Type, Term, Type)
Nothing -> do
            VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.elims" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
              [ VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc) -> VerboseKey -> TCM Doc
forall a b. (a -> b) -> a -> b
$ VerboseKey
"projection " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ QName -> VerboseKey
forall a. Pretty a => a -> VerboseKey
prettyShow QName
f
              , VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text   VerboseKey
"applied to value " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
              , VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text   VerboseKey
"of unexpected type " TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
              ]
            Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Type -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Type
a)


-- | "Compare" two terms in irrelevant position.  This always succeeds.
--   However, we can dig for solutions of irrelevant metas in the
--   terms we compare.
--   (Certainly not the systematic solution, that'd be proof search...)
compareIrrelevant :: MonadConversion m => Type -> Term -> Term -> m ()
{- 2012-04-02 DontCare no longer present
compareIrrelevant t (DontCare v) w = compareIrrelevant t v w
compareIrrelevant t v (DontCare w) = compareIrrelevant t v w
-}
compareIrrelevant :: Type -> Term -> Term -> m ()
compareIrrelevant Type
t Term
v0 Term
w0 = do
  let v :: Term
v = Term -> Term
stripDontCare Term
v0
      w :: Term
w = Term -> Term
stripDontCare Term
w0
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.irr" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
    [ TCM Doc
"compareIrrelevant"
    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"v =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"w =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
w
    ]
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.irr" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
    [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"v =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v
    , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"w =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
w
    ]
  Term -> Term -> m () -> m ()
try Term
v Term
w (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ Term -> Term -> m () -> m ()
try Term
w Term
v (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
  where
    try :: Term -> Term -> m () -> m ()
try (MetaV MetaId
x Elims
es) Term
w m ()
fallback = do
      MetaVariable
mv <- MetaId -> m MetaVariable
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupMeta MetaId
x
      let rel :: Relevance
rel  = MetaVariable -> Relevance
getMetaRelevance MetaVariable
mv
          inst :: Bool
inst = case MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
mv of
                   InstV{} -> Bool
True
                   MetaInstantiation
_       -> Bool
False
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.irr" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc) -> VerboseKey -> TCM Doc
forall a b. (a -> b) -> a -> b
$ VerboseKey
"rel  = " VerboseKey -> VerboseKey -> VerboseKey
forall a. [a] -> [a] -> [a]
++ Relevance -> VerboseKey
forall a. Show a => a -> VerboseKey
show Relevance
rel
        , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc
"inst =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Bool -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Bool
inst
        ]
      if Bool -> Bool
not (Relevance -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Relevance
rel) Bool -> Bool -> Bool
|| Bool
inst
        then m ()
fallback
        -- Andreas, 2016-08-08, issue #2131:
        -- Mining for solutions for irrelevant metas is not definite.
        -- Thus, in case of error, leave meta unsolved.
        else CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
assignE CompareDirection
DirEq MetaId
x Elims
es Term
w (Type -> CompareAs
AsTermsOf Type
t) (Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Type -> Term -> Term -> m ()
compareIrrelevant Type
t) m () -> (TCErr -> m ()) -> m ()
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \ TCErr
_ -> m ()
fallback
        -- the value of irrelevant or unused meta does not matter
    try Term
v Term
w m ()
fallback = m ()
fallback

compareWithPol :: MonadConversion m => Polarity -> (Comparison -> a -> a -> m ()) -> a -> a -> m ()
compareWithPol :: Polarity -> (Comparison -> a -> a -> m ()) -> a -> a -> m ()
compareWithPol Polarity
Invariant     Comparison -> a -> a -> m ()
cmp a
x a
y = Comparison -> a -> a -> m ()
cmp Comparison
CmpEq a
x a
y
compareWithPol Polarity
Covariant     Comparison -> a -> a -> m ()
cmp a
x a
y = Comparison -> a -> a -> m ()
cmp Comparison
CmpLeq a
x a
y
compareWithPol Polarity
Contravariant Comparison -> a -> a -> m ()
cmp a
x a
y = Comparison -> a -> a -> m ()
cmp Comparison
CmpLeq a
y a
x
compareWithPol Polarity
Nonvariant    Comparison -> a -> a -> m ()
cmp a
x a
y = () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

polFromCmp :: Comparison -> Polarity
polFromCmp :: Comparison -> Polarity
polFromCmp Comparison
CmpLeq = Polarity
Covariant
polFromCmp Comparison
CmpEq  = Polarity
Invariant

-- | Type-directed equality on argument lists
--
compareArgs :: MonadConversion m => [Polarity] -> [IsForced] -> Type -> Term -> Args -> Args -> m ()
compareArgs :: [Polarity]
-> [IsForced] -> Type -> Term -> [Arg Term] -> [Arg Term] -> m ()
compareArgs [Polarity]
pol [IsForced]
for Type
a Term
v [Arg Term]
args1 [Arg Term]
args2 =
  [Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
forall (m :: * -> *).
MonadConversion m =>
[Polarity] -> [IsForced] -> Type -> Term -> Elims -> Elims -> m ()
compareElims [Polarity]
pol [IsForced]
for Type
a Term
v ((Arg Term -> Elim' Term) -> [Arg Term] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply [Arg Term]
args1) ((Arg Term -> Elim' Term) -> [Arg Term] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply [Arg Term]
args2)

---------------------------------------------------------------------------
-- * Types
---------------------------------------------------------------------------

-- | Equality on Types
compareType :: MonadConversion m => Comparison -> Type -> Type -> m ()
compareType :: Comparison -> Type -> Type -> m ()
compareType Comparison
cmp ty1 :: Type
ty1@(El Sort
s1 Term
a1) ty2 :: Type
ty2@(El Sort
s2 Term
a2) =
    m () -> m ()
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
    VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.type" Int
20 VerboseKey
"compareType" (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.type" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
          [ TCM Doc
"compareType" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
ty1 TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp
                                       , Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
ty2 ]
          , [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
hsep [ TCM Doc
"   sorts:", Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s1, TCM Doc
" and ", Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s2 ]
          ]
        Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAs Comparison
cmp CompareAs
AsTypes Term
a1 Term
a2

leqType :: MonadConversion m => Type -> Type -> m ()
leqType :: Type -> Type -> m ()
leqType = Comparison -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Type -> m ()
compareType Comparison
CmpLeq

-- | @coerce v a b@ coerces @v : a@ to type @b@, returning a @v' : b@
--   with maybe extra hidden applications or hidden abstractions.
--
--   In principle, this function can host coercive subtyping, but
--   currently it only tries to fix problems with hidden function types.
--
coerce :: (MonadConversion m, MonadTCM m) => Comparison -> Term -> Type -> Type -> m Term
coerce :: Comparison -> Term -> Type -> Type -> m Term
coerce Comparison
cmp Term
v Type
t1 Type
t2 = Type -> m Term -> m Term
forall (m :: * -> *).
(MonadMetaSolver m, MonadConstraint m, MonadFresh Int m,
 MonadFresh ProblemId m) =>
Type -> m Term -> m Term
blockTerm Type
t2 (m Term -> m Term) -> m Term -> m Term
forall a b. (a -> b) -> a -> b
$ do
  VerboseKey -> Int -> m () -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> m () -> m ()
verboseS VerboseKey
"tc.conv.coerce" Int
10 (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
    (Expr
a1,Expr
a2) <- (Type, Type) -> m (ReifiesTo (Type, Type))
forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (Type
t1,Type
t2)
    let dbglvl :: Int
dbglvl = Int
30
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.coerce" Int
dbglvl (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"coerce" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCM Doc
"term      v  =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
        , TCM Doc
"from type t1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Expr -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
a1
        , TCM Doc
"to type   t2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Expr -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
a2
        , TCM Doc
"comparison   =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Comparison
cmp
        ]
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.coerce" Int
70 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"coerce" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCM Doc
"term      v  =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v
        , TCM Doc
"from type t1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
t1
        , TCM Doc
"to type   t2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
t2
        , TCM Doc
"comparison   =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Comparison -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Comparison
cmp
        ]
  -- v <$ do workOnTypes $ leqType t1 t2
  -- take off hidden/instance domains from t1 and t2
  TelV Telescope
tel1 Type
b1 <- Int -> (Dom Type -> Bool) -> Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Int -> (Dom Type -> Bool) -> Type -> m (TelV Type)
telViewUpTo' (-Int
1) Dom Type -> Bool
forall a. LensHiding a => a -> Bool
notVisible Type
t1
  TelV Telescope
tel2 Type
b2 <- Int -> (Dom Type -> Bool) -> Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Int -> (Dom Type -> Bool) -> Type -> m (TelV Type)
telViewUpTo' (-Int
1) Dom Type -> Bool
forall a. LensHiding a => a -> Bool
notVisible Type
t2
  let n :: Int
n = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel2
  -- the crude solution would be
  --   v' = λ {tel2} → v {tel1}
  -- however, that may introduce unneccessary many function types
  -- If n  > 0 and b2 is not blocked, it is safe to
  -- insert n many hidden args
  if Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 then m Term
fallback else do
    Type
-> (Blocker -> Type -> m Term)
-> (NotBlocked -> Type -> m Term)
-> m Term
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked Type
b2 (\ Blocker
_ Type
_ -> m Term
fallback) ((NotBlocked -> Type -> m Term) -> m Term)
-> (NotBlocked -> Type -> m Term) -> m Term
forall a b. (a -> b) -> a -> b
$ \ NotBlocked
_ Type
_ -> do
      ([Arg Term]
args, Type
t1') <- Int -> (Hiding -> Bool) -> Type -> m ([Arg Term], Type)
forall (m :: * -> *).
(PureTCM m, MonadMetaSolver m, MonadTCM m) =>
Int -> (Hiding -> Bool) -> Type -> m ([Arg Term], Type)
implicitArgs Int
n Hiding -> Bool
forall a. LensHiding a => a -> Bool
notVisible Type
t1
      let v' :: Term
v' = Term
v Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Arg Term]
args
      Term
v' Term -> m () -> m Term
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ (Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
(Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
coerceSize (Comparison -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Type -> m ()
compareType Comparison
cmp) Term
v' Type
t1' Type
t2
  where
    fallback :: m Term
fallback = Term
v Term -> m () -> m Term
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ (Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
(Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
coerceSize (Comparison -> Type -> Type -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Type -> m ()
compareType Comparison
cmp) Term
v Type
t1 Type
t2

-- | Account for situations like @k : (Size< j) <= (Size< k + 1)@
--
--   Actually, the semantics is
--   @(Size<= k) ∩ (Size< j) ⊆ rhs@
--   which gives a disjunctive constraint.  Mmmh, looks like stuff
--   TODO.
--
--   For now, we do a cheap heuristics.
--
coerceSize :: MonadConversion m => (Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
coerceSize :: (Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
coerceSize Type -> Type -> m ()
leqType Term
v Type
t1 Type
t2 = VerboseKey -> Int -> VerboseKey -> m () -> m ()
forall (m :: * -> *) a.
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m a -> m a
verboseBracket VerboseKey
"tc.conv.size.coerce" Int
45 VerboseKey
"coerceSize" (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
  m () -> m ()
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.size.coerce" Int
70 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      TCM Doc
"coerceSize" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCM Doc
"term      v  =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v
        , TCM Doc
"from type t1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
t1
        , TCM Doc
"to type   t2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
t2
        ]
    let fallback :: m ()
fallback = Type -> Type -> m ()
leqType Type
t1 Type
t2
        done :: m ()
done = m (Maybe BoundedSize) -> m () -> (BoundedSize -> m ()) -> m ()
forall (m :: * -> *) a b.
Monad m =>
m (Maybe a) -> m b -> (a -> m b) -> m b
caseMaybeM (Type -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
isSizeType (Type -> m (Maybe BoundedSize)) -> m Type -> m (Maybe BoundedSize)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Type -> m Type
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
t1) m ()
fallback ((BoundedSize -> m ()) -> m ()) -> (BoundedSize -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ BoundedSize
_ -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    -- Andreas, 2015-07-22, Issue 1615:
    -- If t1 is a meta and t2 a type like Size< v2, we need to make sure we do not miss
    -- the constraint v < v2!
    m (Maybe BoundedSize) -> m () -> (BoundedSize -> m ()) -> m ()
forall (m :: * -> *) a b.
Monad m =>
m (Maybe a) -> m b -> (a -> m b) -> m b
caseMaybeM (Type -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
isSizeType (Type -> m (Maybe BoundedSize)) -> m Type -> m (Maybe BoundedSize)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Type -> m Type
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
t2) m ()
fallback ((BoundedSize -> m ()) -> m ()) -> (BoundedSize -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ BoundedSize
b2 -> do
      -- Andreas, 2017-01-20, issue #2329:
      -- If v is not a size suitable for the solver, like a neutral term,
      -- we can only rely on the type.
      SizeMaxView
mv <- Term -> m SizeMaxView
forall (m :: * -> *). PureTCM m => Term -> m SizeMaxView
sizeMaxView Term
v
      if (DeepSizeView -> Bool) -> SizeMaxView -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (\case{ DOtherSize{} -> Bool
True; DeepSizeView
_ -> Bool
False }) SizeMaxView
mv then m ()
fallback else do
      -- Andreas, 2015-02-11 do not instantiate metas here (triggers issue 1203).
      m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM (m () -> m Bool
forall (m :: * -> *).
(MonadConstraint m, MonadWarning m, MonadError TCErr m,
 MonadFresh ProblemId m) =>
m () -> m Bool
tryConversion (m () -> m Bool) -> m () -> m Bool
forall a b. (a -> b) -> a -> b
$ m () -> m ()
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
dontAssignMetas (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ Type -> Type -> m ()
leqType Type
t1 Type
t2) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
        -- A (most probably weaker) alternative is to just check syn.eq.
        -- ifM (snd <$> checkSyntacticEquality t1 t2) (return v) $ {- else -} do
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.size.coerce" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"coercing to a size type"
        case BoundedSize
b2 of
          -- @t2 = Size@.  We are done!
          BoundedSize
BoundedNo -> m ()
done
          -- @t2 = Size< v2@
          BoundedLt Term
v2 -> do
            SizeView
sv2 <- Term -> m SizeView
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
Term -> m SizeView
sizeView Term
v2
            case SizeView
sv2 of
              SizeView
SizeInf     -> m ()
done
              OtherSize{} -> do
                -- Andreas, 2014-06-16:
                -- Issue 1203: For now, just treat v < v2 as suc v <= v2
                -- TODO: Need proper < comparison
                Term
vinc <- Int -> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Int -> Term -> m Term
sizeSuc Int
1 Term
v
                Comparison -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Term -> m ()
compareSizes Comparison
CmpLeq Term
vinc Term
v2
                m ()
done
              -- @v2 = a2 + 1@: In this case, we can try @v <= a2@
              SizeSuc Term
a2 -> do
                Comparison -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Term -> m ()
compareSizes Comparison
CmpLeq Term
v Term
a2
                m ()
done  -- to pass Issue 1136

---------------------------------------------------------------------------
-- * Sorts and levels
---------------------------------------------------------------------------

compareLevel :: MonadConversion m => Comparison -> Level -> Level -> m ()
compareLevel :: Comparison -> Level -> Level -> m ()
compareLevel Comparison
CmpLeq Level
u Level
v = Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
u Level
v
compareLevel Comparison
CmpEq  Level
u Level
v = Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
u Level
v

compareSort :: MonadConversion m => Comparison -> Sort -> Sort -> m ()
compareSort :: Comparison -> Sort -> Sort -> m ()
compareSort Comparison
CmpEq  = Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort
compareSort Comparison
CmpLeq = Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
leqSort

-- | Check that the first sort is less or equal to the second.
--
--   We can put @SizeUniv@ below @Inf@, but otherwise, it is
--   unrelated to the other universes.
--
leqSort :: forall m. MonadConversion m => Sort -> Sort -> m ()
leqSort :: Sort -> Sort -> m ()
leqSort Sort
s1 Sort
s2 = (Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
CmpLeq Sort
s1 Sort
s2) :: m () -> m ()) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
  (Sort
s1,Sort
s2) <- (Sort, Sort) -> m (Sort, Sort)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Sort
s1,Sort
s2)
  let postpone :: m ()
postpone = Blocker -> Constraint -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Blocker -> Constraint -> m ()
addConstraint ((Sort, Sort) -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn (Sort
s1, Sort
s2)) (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
CmpLeq Sort
s1 Sort
s2)
      no :: m ()
no       = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> TypeError
NotLeqSort Sort
s1 Sort
s2
      yes :: m ()
yes      = () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
      synEq :: m ()
synEq    = m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifNotM (PragmaOptions -> Bool
optSyntacticEquality (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions) m ()
postpone (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
        ((Sort
s1,Sort
s2) , Bool
equal) <- Sort -> Sort -> m ((Sort, Sort), Bool)
forall a (m :: * -> *).
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> m ((a, a), Bool)
SynEq.checkSyntacticEquality Sort
s1 Sort
s2
        if | Bool
equal     -> m ()
yes
           | Bool
otherwise -> m ()
postpone
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.sort" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCM Doc
"leqSort"
        , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s1 TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=<"
                        , Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s2 ]
        ]
  Bool
propEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
isPropEnabled
  Bool
typeInTypeEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType
  Bool
omegaInOmegaEnabled <- PragmaOptions -> Bool
optOmegaInOmega (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions

  let fvsRHS :: Int -> Bool
fvsRHS = (Int -> IntSet -> Bool
`IntSet.member` Sort -> IntSet
forall t. Free t => t -> IntSet
allFreeVars Sort
s2)
  Bool
badRigid <- Sort
s1 Sort -> (Int -> Bool) -> m Bool
forall (m :: * -> *) a.
(PureTCM m, AnyRigid a) =>
a -> (Int -> Bool) -> m Bool
`rigidVarsNotContainedIn` Int -> Bool
fvsRHS

  case (Sort
s1, Sort
s2) of
      -- Andreas, 2018-09-03: crash on dummy sort
      (DummyS VerboseKey
s, Sort
_) -> VerboseKey -> m ()
forall (m :: * -> *) a b.
(ReportS [a], MonadDebug m, IsString a) =>
a -> m b
impossibleSort VerboseKey
s
      (Sort
_, DummyS VerboseKey
s) -> VerboseKey -> m ()
forall (m :: * -> *) a b.
(ReportS [a], MonadDebug m, IsString a) =>
a -> m b
impossibleSort VerboseKey
s

      -- The most basic rule: @Set l =< Set l'@ iff @l =< l'@
      (Type Level
a  , Type Level
b  ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a Level
b

      -- Likewise for @Prop@
      (Prop Level
a  , Prop Level
b  ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a Level
b

      -- Likewise for @SSet@
      (SSet Level
a  , SSet Level
b  ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a Level
b

      -- @Prop l@ is below @Set l@
      (Prop Level
a  , Type Level
b  ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a Level
b
      (Type Level
a  , Prop Level
b  ) -> m ()
no

      -- @Setωᵢ@ is above all small sorts (spelling out all cases
      -- for the exhaustiveness checker)
      (Inf IsFibrant
f Integer
m , Inf IsFibrant
f' Integer
n) ->
        if IsFibrant -> IsFibrant -> Bool
leqFib IsFibrant
f IsFibrant
f' Bool -> Bool -> Bool
&& (Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
n Bool -> Bool -> Bool
|| Bool
typeInTypeEnabled Bool -> Bool -> Bool
|| Bool
omegaInOmegaEnabled) then m ()
yes else m ()
no
      (Type{}  , Inf IsFibrant
f Integer
_) -> m ()
yes
      (Prop{}  , Inf IsFibrant
f Integer
_) -> m ()
yes
      (Inf IsFibrant
f Integer
_, Type{}  ) -> if IsFibrant
f IsFibrant -> IsFibrant -> Bool
forall a. Eq a => a -> a -> Bool
== IsFibrant
IsFibrant Bool -> Bool -> Bool
&& Bool
typeInTypeEnabled then m ()
yes else m ()
no
      (Inf IsFibrant
f Integer
_, SSet{}  ) -> if IsFibrant
f IsFibrant -> IsFibrant -> Bool
forall a. Eq a => a -> a -> Bool
== IsFibrant
IsStrict  Bool -> Bool -> Bool
&& Bool
typeInTypeEnabled then m ()
yes else m ()
no
      (Inf IsFibrant
_ Integer
_, Prop{}  ) -> m ()
no

      -- @Set l@ is below @SSet l@
      (Type Level
a  , SSet Level
b  ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a Level
b
      (SSet Level
a  , Type Level
b  ) -> m ()
no

      -- @Prop l@ is below @SSet l@
      (Prop Level
a  , SSet Level
b  ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a Level
b
      (SSet Level
a  , Prop Level
b  ) -> m ()
no

      -- @SSet@ is below @SSetω@
      (SSet{}  , Inf IsFibrant
IsStrict Integer
_) -> m ()
yes
      (SSet{}  , Inf IsFibrant
IsFibrant Integer
_) -> m ()
no

      -- @SizeUniv@ and @Prop0@ are bottom sorts.
      -- So is @Set0@ if @Prop@ is not enabled.
      (Sort
_       , Sort
LockUniv) -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s1 Sort
s2
      (Sort
_       , Sort
SizeUniv) -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s1 Sort
s2
      (Sort
_       , Prop (Max Integer
0 [])) -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s1 Sort
s2
      (Sort
_       , Type (Max Integer
0 []))
        | Bool -> Bool
not Bool
propEnabled  -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s1 Sort
s2

      -- SizeUniv is unrelated to any @Set l@ or @Prop l@
      (Sort
SizeUniv, Type{}  ) -> m ()
no
      (Sort
SizeUniv, Prop{}  ) -> m ()
no
      (Sort
SizeUniv , Inf{}  ) -> m ()
no
      (Sort
SizeUniv, SSet{}  ) -> m ()
no
      (Sort
LockUniv, Type{}  ) -> m ()
no
      (Sort
LockUniv, Prop{}  ) -> m ()
no
      (Sort
LockUniv , Inf{}  ) -> m ()
no
      (Sort
LockUniv, SSet{}  ) -> m ()
no

      -- If the first sort is a small sort that rigidly depends on a
      -- variable and the second sort does not mention this variable,
      -- the second sort must be at least @Setω@.
      (Sort
_       , Sort
_       ) | Just (Bool
True,IsFibrant
f) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s1 , Bool
badRigid -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
leqSort (IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
0) Sort
s2

      -- PiSort, FunSort, UnivSort and MetaS might reduce once we instantiate
      -- more metas, so we postpone.
      (PiSort{}, Sort
_       ) -> m ()
synEq
      (Sort
_       , PiSort{}) -> m ()
synEq
      (FunSort{}, Sort
_      ) -> m ()
synEq
      (Sort
_      , FunSort{}) -> m ()
synEq
      (UnivSort{}, Sort
_     ) -> m ()
synEq
      (Sort
_     , UnivSort{}) -> m ()
synEq
      (MetaS{} , Sort
_       ) -> m ()
synEq
      (Sort
_       , MetaS{} ) -> m ()
synEq

      -- DefS are postulated sorts, so they do not reduce.
      (DefS{} , Sort
_     ) -> m ()
synEq
      (Sort
_      , DefS{}) -> m ()
synEq

  where
  leqFib :: IsFibrant -> IsFibrant -> Bool
leqFib IsFibrant
IsFibrant IsFibrant
_ = Bool
True
  leqFib IsFibrant
IsStrict IsFibrant
IsStrict = Bool
True
  leqFib IsFibrant
_ IsFibrant
_ = Bool
False
  impossibleSort :: a -> m b
impossibleSort a
s = do
    VerboseKey -> Int -> [a] -> m ()
forall a (m :: * -> *).
(ReportS a, MonadDebug m) =>
VerboseKey -> Int -> a -> m ()
reportS VerboseKey
"impossible" Int
10
      [ a
"leqSort: found dummy sort with description:"
      , a
s
      ]
    m b
forall a. HasCallStack => a
__IMPOSSIBLE__

leqLevel :: MonadConversion m => Level -> Level -> m ()
leqLevel :: Level -> Level -> m ()
leqLevel Level
a Level
b = Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
CmpLeq Level
a Level
b) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCM Doc
"compareLevel" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
          [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Level -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Level
a TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=<"
              , Level -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Level
b ]

      (Level
a, Level
b) <- (Level, Level) -> m (Level, Level)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Level
a, Level
b)
      ((Level
a, Level
b), Bool
equal) <- Level -> Level -> m ((Level, Level), Bool)
forall a (m :: * -> *).
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> m ((a, a), Bool)
SynEq.checkSyntacticEquality Level
a Level
b

      let notok :: m ()
notok    = m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM m Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> TypeError
NotLeqSort (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
a) (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
b)
          postpone :: m ()
postpone = Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation ((Level, Level) -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn (Level
a, Level
b))

          wrap :: m () -> m ()
wrap m ()
m = m ()
m m () -> (TCErr -> m ()) -> m ()
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \case
            TypeError{} -> m ()
notok
            TCErr
err         -> TCErr -> m ()
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err

      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
60 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCM Doc
"checkSyntacticEquality returns" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Bool -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Bool
equal
      Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
equal (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do

      Bool
cumulativity <- PragmaOptions -> Bool
optCumulativity (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
      Bool
areWeComputingOverlap <- Lens' Bool TCEnv -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Bool TCEnv
eConflComputingOverlap
      VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCM Doc
"compareLevelView" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
          [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ NonEmpty (TCM Doc) -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ (NonEmpty (TCM Doc) -> TCM Doc) -> NonEmpty (TCM Doc) -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> TCM Doc)
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Level -> TCM Doc)
-> (SingleLevel' Term -> Level) -> SingleLevel' Term -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel) (NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc))
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall a b. (a -> b) -> a -> b
$ Level -> NonEmpty (SingleLevel' Term)
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level
a
              , TCM Doc
"=<"
              , NonEmpty (TCM Doc) -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ (NonEmpty (TCM Doc) -> TCM Doc) -> NonEmpty (TCM Doc) -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> TCM Doc)
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Level -> TCM Doc)
-> (SingleLevel' Term -> Level) -> SingleLevel' Term -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel) (NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc))
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall a b. (a -> b) -> a -> b
$ Level -> NonEmpty (SingleLevel' Term)
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level
b
              ]

      -- Extra reduce on level atoms, but should be cheap since they are already reduced.
      Level' (Blocked Term)
aB <- (Term -> m (Blocked Term)) -> Level -> m (Level' (Blocked Term))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Level
a
      Level' (Blocked Term)
bB <- (Term -> m (Blocked Term)) -> Level -> m (Level' (Blocked Term))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Level
b

      m () -> m ()
wrap (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ case (Level' (Blocked Term) -> NonEmpty (SingleLevel' (Blocked Term))
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level' (Blocked Term)
aB, Level' (Blocked Term) -> NonEmpty (SingleLevel' (Blocked Term))
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level' (Blocked Term)
bB) of

        -- 0 ≤ any
        (SingleClosed Integer
0 :| [] , NonEmpty (SingleLevel' (Blocked Term))
_) -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

        -- any ≤ 0
        (NonEmpty (SingleLevel' (Blocked Term))
as , SingleClosed Integer
0 :| []) ->
          NonEmpty (SingleLevel' (Blocked Term))
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ NonEmpty (SingleLevel' (Blocked Term))
as ((SingleLevel' (Blocked Term) -> m ()) -> m ())
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ SingleLevel' (Blocked Term)
a' -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel (SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel (SingleLevel' Term -> Level) -> SingleLevel' Term -> Level
forall a b. (a -> b) -> a -> b
$ (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking SingleLevel' (Blocked Term)
a') (Integer -> Level
ClosedLevel Integer
0)

        -- closed ≤ closed
        (SingleClosed Integer
m :| [], SingleClosed Integer
n :| []) -> Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
n) m ()
notok

        -- closed ≤ b
        (SingleClosed Integer
m :| [] , NonEmpty (SingleLevel' (Blocked Term))
_)
          | Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Level -> Integer
levelLowerBound Level
b -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

        -- as ≤ neutral/closed
        (NonEmpty (SingleLevel' (Blocked Term))
as, NonEmpty (SingleLevel' (Blocked Term))
bs)
          | (SingleLevel' (Blocked Term) -> Bool)
-> NonEmpty (SingleLevel' (Blocked Term)) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all SingleLevel' (Blocked Term) -> Bool
forall t a. SingleLevel' (Blocked' t a) -> Bool
neutralOrClosed NonEmpty (SingleLevel' (Blocked Term))
bs , Level -> Integer
levelLowerBound Level
a Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Level -> Integer
levelLowerBound Level
b -> m ()
notok

        -- ⊔ as ≤ single
        (as :: NonEmpty (SingleLevel' (Blocked Term))
as@(SingleLevel' (Blocked Term)
_:|SingleLevel' (Blocked Term)
_:[SingleLevel' (Blocked Term)]
_), SingleLevel' (Blocked Term)
b :| []) ->
          NonEmpty (SingleLevel' (Blocked Term))
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ NonEmpty (SingleLevel' (Blocked Term))
as ((SingleLevel' (Blocked Term) -> m ()) -> m ())
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ SingleLevel' (Blocked Term)
a' -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel (SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel (SingleLevel' Term -> Level) -> SingleLevel' Term -> Level
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SingleLevel' (Blocked Term)
a')
                                      (SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel (SingleLevel' Term -> Level) -> SingleLevel' Term -> Level
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SingleLevel' (Blocked Term)
b)

        -- reduce constants
        (NonEmpty (SingleLevel' (Blocked Term))
as, NonEmpty (SingleLevel' (Blocked Term))
bs)
          | let minN :: Integer
minN = Integer -> Integer -> Integer
forall a. Ord a => a -> a -> a
min ((Integer, Level) -> Integer
forall a b. (a, b) -> a
fst ((Integer, Level) -> Integer) -> (Integer, Level) -> Integer
forall a b. (a -> b) -> a -> b
$ Level -> (Integer, Level)
levelPlusView Level
a) ((Integer, Level) -> Integer
forall a b. (a, b) -> a
fst ((Integer, Level) -> Integer) -> (Integer, Level) -> Integer
forall a b. (a -> b) -> a -> b
$ Level -> (Integer, Level)
levelPlusView Level
b)
                a' :: Level
a'   = Level -> Maybe Level -> Level
forall a. a -> Maybe a -> a
fromMaybe Level
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Level -> Level) -> Maybe Level -> Level
forall a b. (a -> b) -> a -> b
$ Integer -> Level -> Maybe Level
subLevel Integer
minN Level
a
                b' :: Level
b'   = Level -> Maybe Level -> Level
forall a. a -> Maybe a -> a
fromMaybe Level
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Level -> Level) -> Maybe Level -> Level
forall a b. (a -> b) -> a -> b
$ Integer -> Level -> Maybe Level
subLevel Integer
minN Level
b
          , Integer
minN Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
0 -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a' Level
b'

        -- remove subsumed
        -- Andreas, 2014-04-07: This is ok if we do not go back to equalLevel
        (NonEmpty (SingleLevel' (Blocked Term))
as, NonEmpty (SingleLevel' (Blocked Term))
bs)
          | (subsumed :: [SingleLevel' (Blocked Term)]
subsumed@(SingleLevel' (Blocked Term)
_:[SingleLevel' (Blocked Term)]
_) , [SingleLevel' (Blocked Term)]
as') <- (SingleLevel' (Blocked Term) -> Bool)
-> NonEmpty (SingleLevel' (Blocked Term))
-> ([SingleLevel' (Blocked Term)], [SingleLevel' (Blocked Term)])
forall a. (a -> Bool) -> NonEmpty a -> ([a], [a])
List1.partition (SingleLevel' Term -> Bool
isSubsumed (SingleLevel' Term -> Bool)
-> (SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> SingleLevel' (Blocked Term)
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking) NonEmpty (SingleLevel' (Blocked Term))
as
          -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel ([SingleLevel' Term] -> Level
unSingleLevels ([SingleLevel' Term] -> Level) -> [SingleLevel' Term] -> Level
forall a b. (a -> b) -> a -> b
$ ((SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> [SingleLevel' (Blocked Term)] -> [SingleLevel' Term]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((SingleLevel' (Blocked Term) -> SingleLevel' Term)
 -> [SingleLevel' (Blocked Term)] -> [SingleLevel' Term])
-> ((Blocked Term -> Term)
    -> SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> (Blocked Term -> Term)
-> [SingleLevel' (Blocked Term)]
-> [SingleLevel' Term]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking [SingleLevel' (Blocked Term)]
as') Level
b
          where
            isSubsumed :: SingleLevel' Term -> Bool
isSubsumed SingleLevel' Term
a = (SingleLevel' Term -> Bool) -> NonEmpty (SingleLevel' Term) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (SingleLevel' Term -> SingleLevel' Term -> Bool
`subsumes` SingleLevel' Term
a) (NonEmpty (SingleLevel' Term) -> Bool)
-> NonEmpty (SingleLevel' Term) -> Bool
forall a b. (a -> b) -> a -> b
$ ((SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((SingleLevel' (Blocked Term) -> SingleLevel' Term)
 -> NonEmpty (SingleLevel' (Blocked Term))
 -> NonEmpty (SingleLevel' Term))
-> ((Blocked Term -> Term)
    -> SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> (Blocked Term -> Term)
-> NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' Term)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking NonEmpty (SingleLevel' (Blocked Term))
bs

            subsumes :: SingleLevel -> SingleLevel -> Bool
            subsumes :: SingleLevel' Term -> SingleLevel' Term -> Bool
subsumes (SingleClosed Integer
m)        (SingleClosed Integer
n)        = Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
n
            subsumes (SinglePlus (Plus Integer
m Term
_)) (SingleClosed Integer
n)        = Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
n
            subsumes (SinglePlus (Plus Integer
m Term
a)) (SinglePlus (Plus Integer
n Term
b)) = Term
a Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
b Bool -> Bool -> Bool
&& Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
n
            subsumes SingleLevel' Term
_ SingleLevel' Term
_ = Bool
False

        -- as ≤ _l x₁ .. xₙ ⊔ bs
        -- We can solve _l := λ x₁ .. xₙ -> as ⊔ (_l' x₁ .. xₙ)
        -- (where _l' is a new metavariable)
        (NonEmpty (SingleLevel' (Blocked Term))
as , NonEmpty (SingleLevel' (Blocked Term))
bs)
          | Bool
cumulativity
          , Bool -> Bool
not Bool
areWeComputingOverlap
          , Just (mb :: Term
mb@(MetaV MetaId
x Elims
es) , [SingleLevel' Term]
bs') <- [SingleLevel' Term] -> Maybe (Term, [SingleLevel' Term])
singleMetaView ([SingleLevel' Term] -> Maybe (Term, [SingleLevel' Term]))
-> [SingleLevel' Term] -> Maybe (Term, [SingleLevel' Term])
forall a b. (a -> b) -> a -> b
$ ((SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> [SingleLevel' (Blocked Term)] -> [SingleLevel' Term]
forall a b. (a -> b) -> [a] -> [b]
map ((SingleLevel' (Blocked Term) -> SingleLevel' Term)
 -> [SingleLevel' (Blocked Term)] -> [SingleLevel' Term])
-> ((Blocked Term -> Term)
    -> SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> (Blocked Term -> Term)
-> [SingleLevel' (Blocked Term)]
-> [SingleLevel' Term]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (NonEmpty (SingleLevel' (Blocked Term))
-> [SingleLevel' (Blocked Term)]
forall a. NonEmpty a -> [a]
List1.toList NonEmpty (SingleLevel' (Blocked Term))
bs)
          , [SingleLevel' Term] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [SingleLevel' Term]
bs' Bool -> Bool -> Bool
|| (Term, Level) -> Bool
forall a. AllMetas a => a -> Bool
noMetas (Level -> Term
Level Level
a , [SingleLevel' Term] -> Level
unSingleLevels [SingleLevel' Term]
bs') -> do
            MetaVariable
mv <- MetaId -> m MetaVariable
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupMeta MetaId
x
            -- Jesper, 2019-10-13: abort if this is an interaction
            -- meta or a generalizable meta
            Bool
abort <- (Maybe InteractionId -> Bool
forall a. Maybe a -> Bool
isJust (Maybe InteractionId -> Bool) -> m (Maybe InteractionId) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> m (Maybe InteractionId)
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe InteractionId)
isInteractionMeta MetaId
x) m Bool -> m Bool -> m Bool
forall (m :: * -> *). Monad m => m Bool -> m Bool -> m Bool
`or2M`
                     ((DoGeneralize -> DoGeneralize -> Bool
forall a. Eq a => a -> a -> Bool
== DoGeneralize
YesGeneralizeVar) (DoGeneralize -> Bool) -> m DoGeneralize -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> m DoGeneralize
forall (m :: * -> *).
(ReadTCState m, MonadFail m) =>
MetaId -> m DoGeneralize
isGeneralizableMeta MetaId
x)
            if | Bool
abort -> m ()
postpone
               | Bool
otherwise -> do
                  MetaId
x' <- case MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv of
                    IsSort{} -> m MetaId
forall a. HasCallStack => a
__IMPOSSIBLE__
                    HasType MetaId
_ Comparison
cmp Type
t -> do
                      TelV Telescope
tel Type
t' <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
t
                      Frozen
-> MetaInfo
-> MetaPriority
-> Permutation
-> Judgement ()
-> m MetaId
forall (m :: * -> *) a.
MonadMetaSolver m =>
Frozen
-> MetaInfo
-> MetaPriority
-> Permutation
-> Judgement a
-> m MetaId
newMeta Frozen
Instantiable (MetaVariable -> MetaInfo
mvInfo MetaVariable
mv) MetaPriority
normalMetaPriority (Int -> Permutation
idP (Int -> Permutation) -> Int -> Permutation
forall a b. (a -> b) -> a -> b
$ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) (Judgement () -> m MetaId) -> Judgement () -> m MetaId
forall a b. (a -> b) -> a -> b
$ () -> Comparison -> Type -> Judgement ()
forall a. a -> Comparison -> Type -> Judgement a
HasType () Comparison
cmp Type
t
                  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep
                    [ TCM Doc
"attempting to solve" , Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (MetaId -> Elims -> Term
MetaV MetaId
x Elims
es) , TCM Doc
"to the maximum of"
                    , Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (Level -> Term
Level Level
a) , TCM Doc
"and the fresh meta" , Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (MetaId -> Elims -> Term
MetaV MetaId
x' Elims
es)
                    ]
                  Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel (Term -> Level
forall t. t -> Level' t
atomicLevel Term
mb) (Level -> m ()) -> Level -> m ()
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a (Term -> Level
forall t. t -> Level' t
atomicLevel (Term -> Level) -> Term -> Level
forall a b. (a -> b) -> a -> b
$ MetaId -> Elims -> Term
MetaV MetaId
x' Elims
es)


        -- Andreas, 2016-09-28: This simplification loses the solution lzero.
        -- Thus, it is invalid.
        -- See test/Succeed/LevelMetaLeqNeutralLevel.agda.
        -- -- [a] ≤ [neutral]
        -- ([a@(Plus n _)], [b@(Plus m NeutralLevel{})])
        --   | m == n -> equalLevel' (Max [a]) (Max [b])
        --   -- Andreas, 2014-04-07: This call to equalLevel is ok even if we removed
        --   -- subsumed terms from the lhs.

        -- anything else
        (NonEmpty (SingleLevel' (Blocked Term)),
 NonEmpty (SingleLevel' (Blocked Term)))
_ | (Level, Level) -> Bool
forall a. AllMetas a => a -> Bool
noMetas (Level
a, Level
b) -> m ()
notok
          | Bool
otherwise      -> m ()
postpone
      where
        neutralOrClosed :: SingleLevel' (Blocked' t a) -> Bool
neutralOrClosed (SingleClosed Integer
_)                   = Bool
True
        neutralOrClosed (SinglePlus (Plus Integer
_ NotBlocked{})) = Bool
True
        neutralOrClosed SingleLevel' (Blocked' t a)
_                                  = Bool
False

        -- Is there exactly one @MetaV@ in the list of single levels?
        singleMetaView :: [SingleLevel] -> Maybe (Term, [SingleLevel])
        singleMetaView :: [SingleLevel' Term] -> Maybe (Term, [SingleLevel' Term])
singleMetaView (SinglePlus (Plus Integer
0 l :: Term
l@(MetaV MetaId
m Elims
es)) : [SingleLevel' Term]
ls)
          | (SingleLevel' Term -> Bool) -> [SingleLevel' Term] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Bool -> Bool
not (Bool -> Bool)
-> (SingleLevel' Term -> Bool) -> SingleLevel' Term -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Bool
isMetaLevel) [SingleLevel' Term]
ls = (Term, [SingleLevel' Term]) -> Maybe (Term, [SingleLevel' Term])
forall a. a -> Maybe a
Just (Term
l,[SingleLevel' Term]
ls)
        singleMetaView (SingleLevel' Term
l : [SingleLevel' Term]
ls)
          | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ SingleLevel' Term -> Bool
isMetaLevel SingleLevel' Term
l = ([SingleLevel' Term] -> [SingleLevel' Term])
-> (Term, [SingleLevel' Term]) -> (Term, [SingleLevel' Term])
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (SingleLevel' Term
lSingleLevel' Term -> [SingleLevel' Term] -> [SingleLevel' Term]
forall a. a -> [a] -> [a]
:) ((Term, [SingleLevel' Term]) -> (Term, [SingleLevel' Term]))
-> Maybe (Term, [SingleLevel' Term])
-> Maybe (Term, [SingleLevel' Term])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [SingleLevel' Term] -> Maybe (Term, [SingleLevel' Term])
singleMetaView [SingleLevel' Term]
ls
        singleMetaView [SingleLevel' Term]
_ = Maybe (Term, [SingleLevel' Term])
forall a. Maybe a
Nothing

        isMetaLevel :: SingleLevel -> Bool
        isMetaLevel :: SingleLevel' Term -> Bool
isMetaLevel (SinglePlus (Plus Integer
_ MetaV{})) = Bool
True
        isMetaLevel SingleLevel' Term
_                             = Bool
False

equalLevel :: forall m. MonadConversion m => Level -> Level -> m ()
equalLevel :: Level -> Level -> m ()
equalLevel Level
a Level
b = do
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCM Doc
"equalLevel", Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => m Doc -> m Doc
parens (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Level
a, Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => m Doc -> m Doc
parens (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Level
b ]
  -- Andreas, 2013-10-31 remove common terms (that don't contain metas!)
  -- THAT's actually UNSOUND when metas are instantiated, because
  --     max a b == max a c  does not imply  b == c
  -- as <- return $ Set.fromList $ closed0 as
  -- bs <- return $ Set.fromList $ closed0 bs
  -- let cs = Set.filter (not . hasMeta) $ Set.intersection as bs
  -- as <- return $ Set.toList $ as Set.\\ cs
  -- bs <- return $ Set.toList $ bs Set.\\ cs

  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCM Doc
"equalLevel"
        , [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Level -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Level
a TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=="
                              , Level -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Level
b
                              ]
               ]
        ]

  (Level
a, Level
b) <- (Level, Level) -> m (Level, Level)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Level
a, Level
b)
  ((Level
a, Level
b), Bool
equal) <- Level -> Level -> m ((Level, Level), Bool)
forall a (m :: * -> *).
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> m ((a, a), Bool)
SynEq.checkSyntacticEquality Level
a Level
b
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
60 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    TCM Doc
"checkSyntacticEquality returns" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Bool -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Bool
equal
  Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
equal (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do

  -- Jesper, 2014-02-02 remove terms that certainly do not contribute
  -- to the maximum
  let (Level
a', Level
b') = Level -> Level -> (Level, Level)
removeSubsumed Level
a Level
b

  let notok :: m ()
notok    = m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM m Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType m ()
notOk
      notOk :: m ()
notOk    = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Level -> Level -> TypeError
UnequalLevel Comparison
CmpEq Level
a' Level
b'
      postpone :: m ()
postpone = do
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc -> Int -> TCM Doc -> TCM Doc
forall (m :: * -> *).
Applicative m =>
m Doc -> Int -> m Doc -> m Doc
hang TCM Doc
"postponing:" Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ TCM Doc -> Int -> TCM Doc -> TCM Doc
forall (m :: * -> *).
Applicative m =>
m Doc -> Int -> m Doc -> m Doc
hang (Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Level
a' TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"==") Int
0 (Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Level
b')
        Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation ((Level, Level) -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn (Level
a', Level
b'))

  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCM Doc
"equalLevel (w/o subsumed)"
        , [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Level -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Level
a' TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=="
                              , Level -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Level
b'
                              ]
               ]
        ]

  let as :: NonEmpty (SingleLevel' Term)
as  = Level -> NonEmpty (SingleLevel' Term)
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level
a'
      bs :: NonEmpty (SingleLevel' Term)
bs  = Level -> NonEmpty (SingleLevel' Term)
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level
b'
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text VerboseKey
"equalLevel"
        , [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ NonEmpty (TCM Doc) -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ (NonEmpty (TCM Doc) -> TCM Doc) -> NonEmpty (TCM Doc) -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> TCM Doc)
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Level -> TCM Doc)
-> (SingleLevel' Term -> Level) -> SingleLevel' Term -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel) NonEmpty (SingleLevel' Term)
as
                              , TCM Doc
"=="
                              , NonEmpty (TCM Doc) -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ (NonEmpty (TCM Doc) -> TCM Doc) -> NonEmpty (TCM Doc) -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> TCM Doc)
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (Level -> TCM Doc)
-> (SingleLevel' Term -> Level) -> SingleLevel' Term -> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel) NonEmpty (SingleLevel' Term)
bs
                              ]
               ]
        ]

  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.level" Int
80 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text VerboseKey
"equalLevel"
        , [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ NonEmpty (TCM Doc) -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ (NonEmpty (TCM Doc) -> TCM Doc) -> NonEmpty (TCM Doc) -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> TCM Doc)
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc)
-> (SingleLevel' Term -> VerboseKey)
-> SingleLevel' Term
-> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Level -> VerboseKey
forall a. Show a => a -> VerboseKey
show (Level -> VerboseKey)
-> (SingleLevel' Term -> Level) -> SingleLevel' Term -> VerboseKey
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel) NonEmpty (SingleLevel' Term)
as
                              , TCM Doc
"=="
                              , NonEmpty (TCM Doc) -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ (NonEmpty (TCM Doc) -> TCM Doc) -> NonEmpty (TCM Doc) -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> TCM Doc)
-> NonEmpty (SingleLevel' Term) -> NonEmpty (TCM Doc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (VerboseKey -> TCM Doc)
-> (SingleLevel' Term -> VerboseKey)
-> SingleLevel' Term
-> TCM Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Level -> VerboseKey
forall a. Show a => a -> VerboseKey
show (Level -> VerboseKey)
-> (SingleLevel' Term -> Level) -> SingleLevel' Term -> VerboseKey
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel) NonEmpty (SingleLevel' Term)
bs
                              ]
               ]
        ]

  -- Extra reduce on level atoms, but should be cheap since they are already reduced.
  NonEmpty (SingleLevel' (Blocked Term))
as <- ((SingleLevel' Term -> m (SingleLevel' (Blocked Term)))
-> NonEmpty (SingleLevel' Term)
-> m (NonEmpty (SingleLevel' (Blocked Term)))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ((SingleLevel' Term -> m (SingleLevel' (Blocked Term)))
 -> NonEmpty (SingleLevel' Term)
 -> m (NonEmpty (SingleLevel' (Blocked Term))))
-> ((Term -> m (Blocked Term))
    -> SingleLevel' Term -> m (SingleLevel' (Blocked Term)))
-> (Term -> m (Blocked Term))
-> NonEmpty (SingleLevel' Term)
-> m (NonEmpty (SingleLevel' (Blocked Term)))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> m (Blocked Term))
-> SingleLevel' Term -> m (SingleLevel' (Blocked Term))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM) Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB NonEmpty (SingleLevel' Term)
as
  NonEmpty (SingleLevel' (Blocked Term))
bs <- ((SingleLevel' Term -> m (SingleLevel' (Blocked Term)))
-> NonEmpty (SingleLevel' Term)
-> m (NonEmpty (SingleLevel' (Blocked Term)))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ((SingleLevel' Term -> m (SingleLevel' (Blocked Term)))
 -> NonEmpty (SingleLevel' Term)
 -> m (NonEmpty (SingleLevel' (Blocked Term))))
-> ((Term -> m (Blocked Term))
    -> SingleLevel' Term -> m (SingleLevel' (Blocked Term)))
-> (Term -> m (Blocked Term))
-> NonEmpty (SingleLevel' Term)
-> m (NonEmpty (SingleLevel' (Blocked Term)))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> m (Blocked Term))
-> SingleLevel' Term -> m (SingleLevel' (Blocked Term))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM) Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB NonEmpty (SingleLevel' Term)
bs

  Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint (Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
CmpEq Level
a Level
b) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ case (NonEmpty (SingleLevel' (Blocked Term))
as, NonEmpty (SingleLevel' (Blocked Term))
bs) of

        -- closed == closed
        (SingleClosed Integer
m :| [], SingleClosed Integer
n :| [])
          | Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
n    -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
          | Bool
otherwise -> m ()
notok

        -- closed == neutral
        (SingleClosed Integer
m :| [] , NonEmpty (SingleLevel' (Blocked Term))
bs) | (SingleLevel' (Blocked Term) -> Bool)
-> NonEmpty (SingleLevel' (Blocked Term)) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any SingleLevel' (Blocked Term) -> Bool
forall t a. SingleLevel' (Blocked' t a) -> Bool
isNeutral NonEmpty (SingleLevel' (Blocked Term))
bs -> m ()
notok
        (NonEmpty (SingleLevel' (Blocked Term))
as , SingleClosed Integer
n :| []) | (SingleLevel' (Blocked Term) -> Bool)
-> NonEmpty (SingleLevel' (Blocked Term)) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any SingleLevel' (Blocked Term) -> Bool
forall t a. SingleLevel' (Blocked' t a) -> Bool
isNeutral NonEmpty (SingleLevel' (Blocked Term))
as -> m ()
notok

        -- closed == b
        (SingleClosed Integer
m :| [] , NonEmpty (SingleLevel' (Blocked Term))
_) | Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Level -> Integer
levelLowerBound Level
b -> m ()
notok
        (NonEmpty (SingleLevel' (Blocked Term))
_ , SingleClosed Integer
n :| []) | Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Level -> Integer
levelLowerBound Level
a -> m ()
notok

        -- 0 == a ⊔ b
        (SingleClosed Integer
0 :| [] , bs :: NonEmpty (SingleLevel' (Blocked Term))
bs@(SingleLevel' (Blocked Term)
_:|SingleLevel' (Blocked Term)
_:[SingleLevel' (Blocked Term)]
_)) ->
          NonEmpty (SingleLevel' (Blocked Term))
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ NonEmpty (SingleLevel' (Blocked Term))
bs ((SingleLevel' (Blocked Term) -> m ()) -> m ())
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ SingleLevel' (Blocked Term)
b' ->  Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel (Integer -> Level
ClosedLevel Integer
0) (SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel (SingleLevel' Term -> Level) -> SingleLevel' Term -> Level
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SingleLevel' (Blocked Term)
b')
        (as :: NonEmpty (SingleLevel' (Blocked Term))
as@(SingleLevel' (Blocked Term)
_:|SingleLevel' (Blocked Term)
_:[SingleLevel' (Blocked Term)]
_) , SingleClosed Integer
0 :| []) ->
          NonEmpty (SingleLevel' (Blocked Term))
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ NonEmpty (SingleLevel' (Blocked Term))
as ((SingleLevel' (Blocked Term) -> m ()) -> m ())
-> (SingleLevel' (Blocked Term) -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ SingleLevel' (Blocked Term)
a' -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel (SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel (SingleLevel' Term -> Level) -> SingleLevel' Term -> Level
forall a b. (a -> b) -> a -> b
$ Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SingleLevel' (Blocked Term)
a') (Integer -> Level
ClosedLevel Integer
0)

        -- meta == any
        (SinglePlus (Plus Integer
k Blocked Term
a) :| [] , SinglePlus (Plus Integer
l Blocked Term
b) :| [])
          -- there is only a potential choice when k == l
          | MetaV MetaId
x Elims
as' <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
a
          , MetaV MetaId
y Elims
bs' <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
b
          , Integer
k Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
l -> do
              Type
lvl <- m Type
forall (m :: * -> *). HasBuiltins m => m Type
levelType
              CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareAs -> Term -> Term -> m ()
equalAtom (Type -> CompareAs
AsTermsOf Type
lvl) (MetaId -> Elims -> Term
MetaV MetaId
x Elims
as') (MetaId -> Elims -> Term
MetaV MetaId
y Elims
bs')
        (SinglePlus (Plus Integer
k Blocked Term
a) :| [] , NonEmpty (SingleLevel' (Blocked Term))
_)
          | MetaV MetaId
x Elims
as' <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
a
          , Just Level
b' <- Integer -> Level -> Maybe Level
subLevel Integer
k Level
b -> MetaId -> Elims -> Level -> m ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadWarning m, MonadStatistics m,
 MonadFresh ProblemId m, MonadFresh Int m) =>
MetaId -> Elims -> Level -> m ()
meta MetaId
x Elims
as' Level
b'
        (NonEmpty (SingleLevel' (Blocked Term))
_ , SinglePlus (Plus Integer
l Blocked Term
b) :| [])
          | MetaV MetaId
y Elims
bs' <- Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
b
          , Just Level
a' <- Integer -> Level -> Maybe Level
subLevel Integer
l Level
a -> MetaId -> Elims -> Level -> m ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadWarning m, MonadStatistics m,
 MonadFresh ProblemId m, MonadFresh Int m) =>
MetaId -> Elims -> Level -> m ()
meta MetaId
y Elims
bs' Level
a'

        -- a' ⊔ b == b
        (NonEmpty (SingleLevel' (Blocked Term)),
 NonEmpty (SingleLevel' (Blocked Term)))
_ | Just Level
a' <- Level -> Level -> Maybe Level
levelMaxDiff Level
a Level
b
          , Level
b Level -> Level -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer -> Level
ClosedLevel Integer
0 -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
a' Level
b

        -- a == b' ⊔ a
        (NonEmpty (SingleLevel' (Blocked Term)),
 NonEmpty (SingleLevel' (Blocked Term)))
_ | Just Level
b' <- Level -> Level -> Maybe Level
levelMaxDiff Level
b Level
a
          , Level
a Level -> Level -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer -> Level
ClosedLevel Integer
0 -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
b' Level
a

        -- neutral/closed == neutral/closed
        (NonEmpty (SingleLevel' (Blocked Term))
as , NonEmpty (SingleLevel' (Blocked Term))
bs)
          | (SingleLevel' (Blocked Term) -> Bool)
-> NonEmpty (SingleLevel' (Blocked Term)) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all SingleLevel' (Blocked Term) -> Bool
forall t a. SingleLevel' (Blocked' t a) -> Bool
isNeutralOrClosed (NonEmpty (SingleLevel' (Blocked Term))
as NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' (Blocked Term))
forall a. Semigroup a => a -> a -> a
<> NonEmpty (SingleLevel' (Blocked Term))
bs)
          -- Andreas, 2013-10-31: There could be metas in neutral levels (see Issue 930).
          -- Should not we postpone there as well?  Yes!
          , Bool -> Bool
not ((SingleLevel' (Blocked Term) -> Bool)
-> NonEmpty (SingleLevel' (Blocked Term)) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any SingleLevel' (Blocked Term) -> Bool
forall a t. AllMetas a => SingleLevel' (Blocked' t a) -> Bool
hasMeta (NonEmpty (SingleLevel' (Blocked Term))
as NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' (Blocked Term))
forall a. Semigroup a => a -> a -> a
<> NonEmpty (SingleLevel' (Blocked Term))
bs))
          , NonEmpty (SingleLevel' (Blocked Term)) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length NonEmpty (SingleLevel' (Blocked Term))
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== NonEmpty (SingleLevel' (Blocked Term)) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length NonEmpty (SingleLevel' (Blocked Term))
bs -> do
              VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.conv.level" Int
60 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"equalLevel: all are neutral or closed"
              (SingleLevel' (Blocked Term)
 -> SingleLevel' (Blocked Term) -> m ())
-> NonEmpty (SingleLevel' (Blocked Term))
-> NonEmpty (SingleLevel' (Blocked Term))
-> m ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> List1 a -> List1 b -> m ()
List1.zipWithM_ (Term -> Term -> m ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadWarning m, MonadStatistics m,
 MonadFresh ProblemId m, MonadFresh Int m) =>
Term -> Term -> m ()
(===) (Term -> Term -> m ())
-> (SingleLevel' (Blocked Term) -> Term)
-> SingleLevel' (Blocked Term)
-> SingleLevel' (Blocked Term)
-> m ()
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Level -> Term
levelTm (Level -> Term)
-> (SingleLevel' (Blocked Term) -> Level)
-> SingleLevel' (Blocked Term)
-> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SingleLevel' Term -> Level
forall t. SingleLevel' t -> Level' t
unSingleLevel (SingleLevel' Term -> Level)
-> (SingleLevel' (Blocked Term) -> SingleLevel' Term)
-> SingleLevel' (Blocked Term)
-> Level
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Blocked Term -> Term)
-> SingleLevel' (Blocked Term) -> SingleLevel' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking) NonEmpty (SingleLevel' (Blocked Term))
as NonEmpty (SingleLevel' (Blocked Term))
bs

        -- more cases?
        (NonEmpty (SingleLevel' (Blocked Term)),
 NonEmpty (SingleLevel' (Blocked Term)))
_ | (Term, Term) -> Bool
forall a. AllMetas a => a -> Bool
noMetas (Level -> Term
Level Level
a , Level -> Term
Level Level
b) -> m ()
notok
          | Bool
otherwise                   -> m ()
postpone

      where
        Term
a === :: Term -> Term -> m ()
=== Term
b = m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM m Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
          Type
lvl <- m Type
forall (m :: * -> *). HasBuiltins m => m Type
levelType
          CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareAs -> Term -> Term -> m ()
equalAtom (Type -> CompareAs
AsTermsOf Type
lvl) Term
a Term
b

        -- perform assignment (MetaV x as) := b
        meta :: MetaId -> Elims -> Level -> m ()
meta MetaId
x Elims
as Level
b = do
          VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.meta.level" Int
30 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"Assigning meta level"
          VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.meta.level" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"meta" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [[TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (Elim' Term -> TCM Doc) -> Elims -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map Elim' Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Elims
as, Level -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Level
b]
          Type
lvl <- m Type
forall (m :: * -> *). HasBuiltins m => m Type
levelType
          CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
assignE CompareDirection
DirEq MetaId
x Elims
as (Level -> Term
levelTm Level
b) (Type -> CompareAs
AsTermsOf Type
lvl) Term -> Term -> m ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadWarning m, MonadStatistics m,
 MonadFresh ProblemId m, MonadFresh Int m) =>
Term -> Term -> m ()
(===) -- fallback: check equality as atoms

        isNeutral :: SingleLevel' (Blocked' t a) -> Bool
isNeutral (SinglePlus (Plus Integer
_ NotBlocked{})) = Bool
True
        isNeutral SingleLevel' (Blocked' t a)
_                                  = Bool
False

        isNeutralOrClosed :: SingleLevel' (Blocked' t a) -> Bool
isNeutralOrClosed (SingleClosed Integer
_)                   = Bool
True
        isNeutralOrClosed (SinglePlus (Plus Integer
_ NotBlocked{})) = Bool
True
        isNeutralOrClosed SingleLevel' (Blocked' t a)
_                                  = Bool
False

        hasMeta :: SingleLevel' (Blocked' t a) -> Bool
hasMeta (SinglePlus (Plus Integer
_ Blocked{})) = Bool
True
        hasMeta (SinglePlus (Plus Integer
_ Blocked' t a
a))         = Maybe MetaId -> Bool
forall a. Maybe a -> Bool
isJust (Maybe MetaId -> Bool) -> Maybe MetaId -> Bool
forall a b. (a -> b) -> a -> b
$ a -> Maybe MetaId
forall a. AllMetas a => a -> Maybe MetaId
firstMeta (a -> Maybe MetaId) -> a -> Maybe MetaId
forall a b. (a -> b) -> a -> b
$ Blocked' t a -> a
forall t a. Blocked' t a -> a
ignoreBlocking Blocked' t a
a
        hasMeta (SingleClosed Integer
_)                = Bool
False

        removeSubsumed :: Level -> Level -> (Level, Level)
removeSubsumed Level
a Level
b =
          let as :: [SingleLevel' Term]
as = NonEmpty (SingleLevel' Term) -> [SingleLevel' Term]
forall a. NonEmpty a -> [a]
List1.toList (NonEmpty (SingleLevel' Term) -> [SingleLevel' Term])
-> NonEmpty (SingleLevel' Term) -> [SingleLevel' Term]
forall a b. (a -> b) -> a -> b
$ Level -> NonEmpty (SingleLevel' Term)
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level
a
              bs :: [SingleLevel' Term]
bs = NonEmpty (SingleLevel' Term) -> [SingleLevel' Term]
forall a. NonEmpty a -> [a]
List1.toList (NonEmpty (SingleLevel' Term) -> [SingleLevel' Term])
-> NonEmpty (SingleLevel' Term) -> [SingleLevel' Term]
forall a b. (a -> b) -> a -> b
$ Level -> NonEmpty (SingleLevel' Term)
forall t. Level' t -> NonEmpty (SingleLevel' t)
levelMaxView Level
b
              a' :: Level
a' = [SingleLevel' Term] -> Level
unSingleLevels ([SingleLevel' Term] -> Level) -> [SingleLevel' Term] -> Level
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> Bool)
-> [SingleLevel' Term] -> [SingleLevel' Term]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool)
-> (SingleLevel' Term -> Bool) -> SingleLevel' Term -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (SingleLevel' Term -> [SingleLevel' Term] -> Bool
forall (t :: * -> *) a.
(Foldable t, Eq a) =>
SingleLevel' a -> t (SingleLevel' a) -> Bool
`isStrictlySubsumedBy` [SingleLevel' Term]
bs)) [SingleLevel' Term]
as
              b' :: Level
b' = [SingleLevel' Term] -> Level
unSingleLevels ([SingleLevel' Term] -> Level) -> [SingleLevel' Term] -> Level
forall a b. (a -> b) -> a -> b
$ (SingleLevel' Term -> Bool)
-> [SingleLevel' Term] -> [SingleLevel' Term]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool)
-> (SingleLevel' Term -> Bool) -> SingleLevel' Term -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (SingleLevel' Term -> [SingleLevel' Term] -> Bool
forall (t :: * -> *) a.
(Foldable t, Eq a) =>
SingleLevel' a -> t (SingleLevel' a) -> Bool
`isStrictlySubsumedBy` [SingleLevel' Term]
as)) [SingleLevel' Term]
bs
          in (Level
a',Level
b')

        SingleLevel' a
x isStrictlySubsumedBy :: SingleLevel' a -> t (SingleLevel' a) -> Bool
`isStrictlySubsumedBy` t (SingleLevel' a)
ys = (SingleLevel' a -> Bool) -> t (SingleLevel' a) -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (SingleLevel' a -> SingleLevel' a -> Bool
forall a. Eq a => SingleLevel' a -> SingleLevel' a -> Bool
`strictlySubsumes` SingleLevel' a
x) t (SingleLevel' a)
ys

        SingleClosed Integer
m        strictlySubsumes :: SingleLevel' a -> SingleLevel' a -> Bool
`strictlySubsumes` SingleClosed Integer
n        = Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
n
        SinglePlus (Plus Integer
m a
a) `strictlySubsumes` SingleClosed Integer
n        = Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
n
        SinglePlus (Plus Integer
m a
a) `strictlySubsumes` SinglePlus (Plus Integer
n a
b) = a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
b Bool -> Bool -> Bool
&& Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
n
        SingleLevel' a
_                     `strictlySubsumes` SingleLevel' a
_                     = Bool
False


-- | Check that the first sort equal to the second.
equalSort :: forall m. MonadConversion m => Sort -> Sort -> m ()
equalSort :: Sort -> Sort -> m ()
equalSort Sort
s1 Sort
s2 = do
    Constraint -> m () -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Constraint -> m () -> m ()
catchConstraint (Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
CmpEq Sort
s1 Sort
s2) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
        (Sort
s1,Sort
s2) <- (Sort, Sort) -> m (Sort, Sort)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Sort
s1,Sort
s2)
        let yes :: m ()
yes      = () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
            no :: m ()
no       = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> TypeError
UnequalSorts Sort
s1 Sort
s2

        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.sort" Int
30 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
          [ TCM Doc
"equalSort"
          , [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat [ Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s1 TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=="
                                 , Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s2 ]
                 , Int -> TCM Doc -> TCM Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCM Doc -> TCM Doc) -> TCM Doc -> TCM Doc
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ Sort -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Sort
s1 TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=="
                                 , Sort -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Sort
s2 ]
                 ]
          ]

        Bool
propEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
isPropEnabled
        Bool
typeInTypeEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType
        Bool
omegaInOmegaEnabled <- PragmaOptions -> Bool
optOmegaInOmega (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions

        case (Sort
s1, Sort
s2) of

            -- Andreas, 2018-09-03: crash on dummy sort
            (DummyS VerboseKey
s, Sort
_) -> VerboseKey -> m ()
forall (m :: * -> *) a b.
(ReportS [a], MonadDebug m, IsString a) =>
a -> m b
impossibleSort VerboseKey
s
            (Sort
_, DummyS VerboseKey
s) -> VerboseKey -> m ()
forall (m :: * -> *) a b.
(ReportS [a], MonadDebug m, IsString a) =>
a -> m b
impossibleSort VerboseKey
s

            -- one side is a meta sort: try to instantiate
            -- In case both sides are meta sorts, instantiate the
            -- bigger (i.e. more recent) one.
            (MetaS MetaId
x Elims
es , MetaS MetaId
y Elims
es')
              | MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
y                 -> Sort -> Sort -> m ()
synEq Sort
s1 Sort
s2
              | MetaId
x MetaId -> MetaId -> Bool
forall a. Ord a => a -> a -> Bool
< MetaId
y                  -> MetaId -> Elims -> Sort -> m ()
meta MetaId
y Elims
es' Sort
s1
              | Bool
otherwise              -> MetaId -> Elims -> Sort -> m ()
meta MetaId
x Elims
es Sort
s2
            (MetaS MetaId
x Elims
es , Sort
_          ) -> MetaId -> Elims -> Sort -> m ()
meta MetaId
x Elims
es Sort
s2
            (Sort
_          , MetaS MetaId
x Elims
es ) -> MetaId -> Elims -> Sort -> m ()
meta MetaId
x Elims
es Sort
s1

            -- diagonal cases for rigid sorts
            (Type Level
a     , Type Level
b     ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
a Level
b m () -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => m a -> m a -> m a
`catchInequalLevel` m ()
no
            (Sort
SizeUniv   , Sort
SizeUniv   ) -> m ()
yes
            (Sort
LockUniv   , Sort
LockUniv   ) -> m ()
yes
            (Prop Level
a     , Prop Level
b     ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
a Level
b m () -> m () -> m ()
forall (m :: * -> *) a. MonadError TCErr m => m a -> m a -> m a
`catchInequalLevel` m ()
no
            (Inf IsFibrant
f Integer
m    , Inf IsFibrant
f' Integer
n   ) ->
              if IsFibrant
f IsFibrant -> IsFibrant -> Bool
forall a. Eq a => a -> a -> Bool
== IsFibrant
f' Bool -> Bool -> Bool
&& (Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
n Bool -> Bool -> Bool
|| Bool
typeInTypeEnabled Bool -> Bool -> Bool
|| Bool
omegaInOmegaEnabled) then m ()
yes else m ()
no
            (SSet Level
a     , SSet Level
b     ) -> Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
a Level
b

            -- if --type-in-type is enabled, Setωᵢ is equal to any Set ℓ (see #3439)
            (Type{}     , Inf{}      )
              | Bool
typeInTypeEnabled      -> m ()
yes
            (Inf{}      , Type{}     )
              | Bool
typeInTypeEnabled      -> m ()
yes

            -- equating @PiSort a b@ to another sort
            (Sort
s1 , PiSort Dom' Term Term
a Sort
b Abs Sort
c) -> Sort -> Dom' Term Term -> Sort -> Abs Sort -> m ()
piSortEquals Sort
s1 Dom' Term Term
a Sort
b Abs Sort
c
            (PiSort Dom' Term Term
a Sort
b Abs Sort
c , Sort
s2) -> Sort -> Dom' Term Term -> Sort -> Abs Sort -> m ()
piSortEquals Sort
s2 Dom' Term Term
a Sort
b Abs Sort
c

            -- equating @FunSort a b@ to another sort
            (Sort
s1 , FunSort Sort
a Sort
b) -> Sort -> Sort -> Sort -> m ()
funSortEquals Sort
s1 Sort
a Sort
b
            (FunSort Sort
a Sort
b , Sort
s2) -> Sort -> Sort -> Sort -> m ()
funSortEquals Sort
s2 Sort
a Sort
b

            -- equating @UnivSort s@ to another sort
            (Sort
s1          , UnivSort Sort
s2) -> Sort -> Sort -> m ()
univSortEquals Sort
s1 Sort
s2
            (UnivSort Sort
s1 , Sort
s2         ) -> Sort -> Sort -> m ()
univSortEquals Sort
s2 Sort
s1

            -- postulated sorts can only be equal if they have the same head
            (DefS QName
d Elims
es  , DefS QName
d' Elims
es')
              | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d'                -> Sort -> Sort -> m ()
synEq Sort
s1 Sort
s2
              | Bool
otherwise              -> m ()
no

            -- any other combinations of sorts are not equal
            (Sort
_          , Sort
_          ) -> m ()
no

    where
      -- perform assignment (MetaS x es) := s
      meta :: MetaId -> [Elim' Term] -> Sort -> m ()
      meta :: MetaId -> Elims -> Sort -> m ()
meta MetaId
x Elims
es Sort
s = do
        VerboseKey -> Int -> VerboseKey -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> VerboseKey -> m ()
reportSLn VerboseKey
"tc.meta.sort" Int
30 (VerboseKey -> m ()) -> VerboseKey -> m ()
forall a b. (a -> b) -> a -> b
$ VerboseKey
"Assigning meta sort"
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.meta.sort" Int
50 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"meta" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [MetaId -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty MetaId
x, [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCM Doc] -> TCM Doc) -> [TCM Doc] -> TCM Doc
forall a b. (a -> b) -> a -> b
$ (Elim' Term -> TCM Doc) -> Elims -> [TCM Doc]
forall a b. (a -> b) -> [a] -> [b]
map Elim' Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Elims
es, Sort -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Sort
s]
        CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
forall (m :: * -> *).
MonadConversion m =>
CompareDirection
-> MetaId
-> Elims
-> Term
-> CompareAs
-> (Term -> Term -> m ())
-> m ()
assignE CompareDirection
DirEq MetaId
x Elims
es (Sort -> Term
Sort Sort
s) CompareAs
AsTypes Term -> Term -> m ()
forall a. HasCallStack => a
__IMPOSSIBLE__

      -- fall back to syntactic equality check, postpone if it fails
      synEq :: Sort -> Sort -> m ()
      synEq :: Sort -> Sort -> m ()
synEq Sort
s1 Sort
s2 = do
        let postpone :: m ()
postpone = Blocker -> Constraint -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Blocker -> Constraint -> m ()
addConstraint ((Sort, Sort) -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn (Sort
s1, Sort
s2)) (Constraint -> m ()) -> Constraint -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
CmpEq Sort
s1 Sort
s2
        Bool
doSynEq <- PragmaOptions -> Bool
optSyntacticEquality (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
        if | Bool
doSynEq -> do
               ((Sort
s1,Sort
s2) , Bool
equal) <- Sort -> Sort -> m ((Sort, Sort), Bool)
forall a (m :: * -> *).
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> m ((a, a), Bool)
SynEq.checkSyntacticEquality Sort
s1 Sort
s2
               if | Bool
equal     -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
                  | Bool
otherwise -> m ()
postpone
           | Bool
otherwise -> m ()
postpone

      -- Equate a sort @s1@ to @univSort s2@
      -- Precondition: @s1@ and @univSort s2@ are already reduced.
      univSortEquals :: Sort -> Sort -> m ()
      univSortEquals :: Sort -> Sort -> m ()
univSortEquals Sort
s1 Sort
s2 = do
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.sort" Int
35 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
          [ TCM Doc
"univSortEquals"
          , TCM Doc
"  s1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s1
          , TCM Doc
"  s2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s2
          ]
        let no :: m ()
no = TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> TypeError
UnequalSorts Sort
s1 (Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s2)
        case Sort
s1 of
          -- @Set l1@ is the successor sort of either @Set l2@ or
          -- @Prop l2@ where @l1 == lsuc l2@.
          Type Level
l1 -> do
            Bool
propEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
isPropEnabled
               -- @s2@ is definitely not @Inf n@ or @SizeUniv@
            if | Inf IsFibrant
_ Integer
n  <- Sort
s2 -> m ()
no
               | Sort
SizeUniv <- Sort
s2 -> m ()
no
               -- If @Prop@ is not used, then @s2@ must be of the form
               -- @Set l2@
               | Bool -> Bool
not Bool
propEnabled -> do
                   Level
l2 <- case Integer -> Level -> Maybe Level
subLevel Integer
1 Level
l1 of
                     Just Level
l2 -> Level -> m Level
forall (m :: * -> *) a. Monad m => a -> m a
return Level
l2
                     Maybe Level
Nothing -> do
                       Level
l2 <- m Level
forall (m :: * -> *). MonadMetaSolver m => m Level
newLevelMeta
                       Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
l1 (Level -> Level
levelSuc Level
l2)
                       Level -> m Level
forall (m :: * -> *) a. Monad m => a -> m a
return Level
l2
                   Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l2) Sort
s2
               -- Otherwise we postpone
               | Bool
otherwise -> Sort -> Sort -> m ()
synEq (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l1) (Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s2)
          -- @Setωᵢ@ is a successor sort if n > 0, or if
          -- --type-in-type or --omega-in-omega is enabled.
          Inf IsFibrant
f Integer
n | Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
0 -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f (Integer -> Sort) -> Integer -> Sort
forall a b. (a -> b) -> a -> b
$ Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1) Sort
s2
          Inf IsFibrant
f Integer
0 -> do
            Bool
infInInf <- (PragmaOptions -> Bool
optOmegaInOmega (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions) m Bool -> m Bool -> m Bool
forall (m :: * -> *). Monad m => m Bool -> m Bool -> m Bool
`or2M` m Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType
            if | Bool
infInInf  -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
0) Sort
s2
               | Bool
otherwise -> m ()
no
          -- @Prop l@ and @SizeUniv@ are not successor sorts
          Prop{}     -> m ()
no
          SizeUniv{} -> m ()
no
          -- Anything else: postpone
          Sort
_          -> Sort -> Sort -> m ()
synEq Sort
s1 (Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s2)


      -- Equate a sort @s@ to @piSort a s1 s2@
      -- Precondition: @s@ and @piSort a s1 s2@ are already reduced.
      piSortEquals :: Sort -> Dom Term -> Sort -> Abs Sort -> m ()
      piSortEquals :: Sort -> Dom' Term Term -> Sort -> Abs Sort -> m ()
piSortEquals Sort
s Dom' Term Term
a Sort
s1 NoAbs{} = m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
      piSortEquals Sort
s Dom' Term Term
a Sort
s1 s2Abs :: Abs Sort
s2Abs@(Abs VerboseKey
x Sort
s2) = do
        let adom :: Dom Type
adom = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s1 (Term -> Type) -> Dom' Term Term -> Dom Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term Term
a
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.sort" Int
35 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
          [ TCM Doc
"piSortEquals"
          , TCM Doc
"  s  =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s
          , TCM Doc
"  a  =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Dom Type -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Dom Type
adom
          , TCM Doc
"  s1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s1
          , TCM Doc
"  s2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> (VerboseKey, Dom Type) -> TCM Doc -> TCM Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (VerboseKey
x,Dom Type
adom) (Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s2)
          ]
        Bool
propEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
isPropEnabled
           -- If @s2@ is dependent, then @piSort a s1 s2@ computes to
           -- @Setωi@. Hence, if @s@ is small, then @s2@
           -- cannot be dependent.
        if | Just (Bool
True,IsFibrant
_) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s -> do
               -- We force @s2@ to be non-dependent by unifying it with
               -- a fresh meta that does not depend on @x : a@
               Sort
s2' <- m Sort
forall (m :: * -> *). MonadMetaSolver m => m Sort
newSortMeta
               (VerboseKey, Dom Type) -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (VerboseKey
x , Dom Type
adom) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s2 (Int -> Sort -> Sort
forall a. Subst a => Int -> a -> a
raise Int
1 Sort
s2')
               Sort -> Sort -> Sort -> m ()
funSortEquals Sort
s Sort
s1 Sort
s2'
           -- Otherwise: postpone
           | Bool
otherwise                  -> Sort -> Sort -> m ()
synEq (Dom' Term Term -> Sort -> Abs Sort -> Sort
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2Abs) Sort
s

      -- Equate a sort @s@ to @funSort s1 s2@
      -- Precondition: @s@ and @funSort s1 s2@ are already reduced
      funSortEquals :: Sort -> Sort -> Sort -> m ()
      funSortEquals :: Sort -> Sort -> Sort -> m ()
funSortEquals Sort
s0 Sort
s1 Sort
s2 = do
        VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.sort" Int
35 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
          [ TCM Doc
"funSortEquals"
          , TCM Doc
"  s0 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s0
          , TCM Doc
"  s1 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s1
          , TCM Doc
"  s2 =" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Sort -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort
s2
          ]
        Bool
propEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
isPropEnabled
        Bool
sizedTypesEnabled <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
sizedTypesOption
        case Sort
s0 of
          -- If @Setωᵢ == funSort s1 s2@, then either @s1@ or @s2@ must
          -- be @Setωᵢ@.
          Inf IsFibrant
f Integer
n | Just (Bool
True,IsFibrant
_) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s1, Just (Bool
True,IsFibrant
_) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s2 -> do
                    TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> TypeError
UnequalSorts Sort
s0 (Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 Sort
s2)
                  | Just (Bool
True, IsFibrant
IsFibrant) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s1 -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
n) Sort
s2
                  | Just (Bool
True, IsFibrant
IsFibrant) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s2 -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
n) Sort
s1
                  -- TODO 2ltt: handle IsStrict cases.
                  | Bool
otherwise                   -> Sort -> Sort -> m ()
synEq Sort
s0 (Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 Sort
s2)
          -- If @Set l == funSort s1 s2@, then @s2@ must be of the
          -- form @Set l2@. @s1@ can be one of @Set l1@, @Prop l1@, or
          -- @SizeUniv@.
          Type Level
l -> do
            Level
l2 <- Sort -> m Level
forceType Sort
s2
            -- We must have @l2 =< l@, this might help us to solve
            -- more constraints (in particular when @l == 0@).
            Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
l2 Level
l
            -- Jesper, 2019-12-27: SizeUniv is disabled at the moment.
            if | {- sizedTypesEnabled || -} Bool
propEnabled -> case Sort -> Sort -> Maybe Sort
funSort' Sort
s1 (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l2) of
                   -- If the work we did makes the @funSort@ compute,
                   -- continue working.
                   Just Sort
s  -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l) Sort
s
                   -- Otherwise: postpone
                   Maybe Sort
Nothing -> Sort -> Sort -> m ()
synEq (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l) (Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 (Sort -> Sort) -> Sort -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l2)
               -- If both Prop and sized types are disabled, only the
               -- case @s1 == Set l1@ remains.
               | Bool
otherwise -> do
                   Level
l1 <- Sort -> m Level
forceType Sort
s1
                   Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
equalLevel Level
l (Level -> Level -> Level
levelLub Level
l1 Level
l2)
          -- If @Prop l == funSort s1 s2@, then @s2@ must be of the
          -- form @Prop l2@, and @s1@ can be one of @Set l1@, Prop
          -- l1@, or @SizeUniv@.
          Prop Level
l -> do
            Level
l2 <- Sort -> m Level
forceProp Sort
s2
            Level -> Level -> m ()
forall (m :: * -> *). MonadConversion m => Level -> Level -> m ()
leqLevel Level
l2 Level
l
            case Sort -> Sort -> Maybe Sort
funSort' Sort
s1 (Level -> Sort
forall t. Level' t -> Sort' t
Prop Level
l2) of
                   -- If the work we did makes the @funSort@ compute,
                   -- continue working.
                   Just Sort
s  -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (Level -> Sort
forall t. Level' t -> Sort' t
Prop Level
l) Sort
s
                   -- Otherwise: postpone
                   Maybe Sort
Nothing -> Sort -> Sort -> m ()
synEq (Level -> Sort
forall t. Level' t -> Sort' t
Prop Level
l) (Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 (Sort -> Sort) -> Sort -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Prop Level
l2)
          -- We have @SizeUniv == funSort s1 s2@ iff @s2 == SizeUniv@
          Sort
SizeUniv -> Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
forall t. Sort' t
SizeUniv Sort
s2
          -- Anything else: postpone
          Sort
_        -> Sort -> Sort -> m ()
synEq Sort
s0 (Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 Sort
s2)

      -- check if the given sort @s0@ is a (closed) bottom sort
      -- i.e. @piSort a b == s0@ implies @b == s0@.
      isBottomSort :: Bool -> Sort -> Bool
      isBottomSort :: Bool -> Sort -> Bool
isBottomSort Bool
propEnabled (Prop (ClosedLevel Integer
0)) = Bool
True
      isBottomSort Bool
propEnabled (Type (ClosedLevel Integer
0)) = Bool -> Bool
not Bool
propEnabled
      isBottomSort Bool
propEnabled Sort
_                      = Bool
False
      -- (NB: Defined but not currently used)

      forceType :: Sort -> m Level
      forceType :: Sort -> m Level
forceType (Type Level
l) = Level -> m Level
forall (m :: * -> *) a. Monad m => a -> m a
return Level
l
      forceType Sort
s = do
        Level
l <- m Level
forall (m :: * -> *). MonadMetaSolver m => m Level
newLevelMeta
        Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s (Level -> Sort
forall t. Level' t -> Sort' t
Type Level
l)
        Level -> m Level
forall (m :: * -> *) a. Monad m => a -> m a
return Level
l

      forceProp :: Sort -> m Level
      forceProp :: Sort -> m Level
forceProp (Prop Level
l) = Level -> m Level
forall (m :: * -> *) a. Monad m => a -> m a
return Level
l
      forceProp Sort
s = do
        Level
l <- m Level
forall (m :: * -> *). MonadMetaSolver m => m Level
newLevelMeta
        Sort -> Sort -> m ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
s (Level -> Sort
forall t. Level' t -> Sort' t
Prop Level
l)
        Level -> m Level
forall (m :: * -> *) a. Monad m => a -> m a
return Level
l

      impossibleSort :: a -> m b
impossibleSort a
s = do
        VerboseKey -> Int -> [a] -> m ()
forall a (m :: * -> *).
(ReportS a, MonadDebug m) =>
VerboseKey -> Int -> a -> m ()
reportS VerboseKey
"impossible" Int
10
          [ a
"equalSort: found dummy sort with description:"
          , a
s
          ]
        m b
forall a. HasCallStack => a
__IMPOSSIBLE__

      catchInequalLevel :: m a -> m a -> m a
catchInequalLevel m a
m m a
fail = m a
m m a -> (TCErr -> m a) -> m a
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \case
        TypeError{} -> m a
fail
        TCErr
err         -> TCErr -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err


-- -- This should probably represent face maps with a more precise type
-- toFaceMaps :: Term -> TCM [[(Int,Term)]]
-- toFaceMaps t = do
--   view <- intervalView'
--   iz <- primIZero
--   io <- primIOne
--   ineg <- (\ q t -> Def q [Apply $ Arg defaultArgInfo t]) <$> fromMaybe __IMPOSSIBLE__ <$> getPrimitiveName' "primINeg"

--   let f IZero = mzero
--       f IOne  = return []
--       f (IMin x y) = do xs <- (f . view . unArg) x; ys <- (f . view . unArg) y; return (xs ++ ys)
--       f (IMax x y) = msum $ map (f . view . unArg) [x,y]
--       f (INeg x)   = map (id -*- not) <$> (f . view . unArg) x
--       f (OTerm (Var i [])) = return [(i,True)]
--       f (OTerm _) = return [] -- what about metas? we should suspend? maybe no metas is a precondition?
--       isConsistent xs = all (\ xs -> length xs == 1) . map nub . Map.elems $ xs  -- optimize by not doing generate + filter
--       as = map (map (id -*- head) . Map.toAscList) . filter isConsistent . map (Map.fromListWith (++) . map (id -*- (:[]))) $ (f (view t))
--   xs <- mapM (mapM (\ (i,b) -> (,) i <$> intervalUnview (if b then IOne else IZero))) as
--   return xs

forallFaceMaps :: MonadConversion m => Term -> (Map.Map Int Bool -> Blocker -> Term -> m a) -> (Substitution -> m a) -> m [a]
forallFaceMaps :: Term
-> (Map Int Bool -> Blocker -> Term -> m a)
-> (Substitution -> m a)
-> m [a]
forallFaceMaps Term
t Map Int Bool -> Blocker -> Term -> m a
kb Substitution -> m a
k = do
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"conv.forall" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [TCM Doc
"forallFaceMaps"
           , Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
t
           ]
  [(Map Int Bool, [Term])]
as <- Term -> m [(Map Int Bool, [Term])]
forall (m :: * -> *).
HasBuiltins m =>
Term -> m [(Map Int Bool, [Term])]
decomposeInterval Term
t
  Bool -> Term
boolToI <- do
    Term
io <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
    Term
iz <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
    (Bool -> Term) -> m (Bool -> Term)
forall (m :: * -> *) a. Monad m => a -> m a
return (\Bool
b -> if Bool
b then Term
io else Term
iz)
  [(Map Int Bool, [Term])]
-> ((Map Int Bool, [Term]) -> m a) -> m [a]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [(Map Int Bool, [Term])]
as (((Map Int Bool, [Term]) -> m a) -> m [a])
-> ((Map Int Bool, [Term]) -> m a) -> m [a]
forall a b. (a -> b) -> a -> b
$ \ (Map Int Bool
ms,[Term]
ts) -> do
   [Term]
-> (Blocker -> Term -> m a) -> (NotBlocked -> Term -> m a) -> m a
forall (m :: * -> *) (t :: * -> *) b.
(HasBuiltins m, MonadError TCErr m, Foldable t, MonadReduce m) =>
t Term
-> (Blocker -> Term -> m b) -> (NotBlocked -> Term -> m b) -> m b
ifBlockeds [Term]
ts (Map Int Bool -> Blocker -> Term -> m a
kb Map Int Bool
ms) ((NotBlocked -> Term -> m a) -> m a)
-> (NotBlocked -> Term -> m a) -> m a
forall a b. (a -> b) -> a -> b
$ \ NotBlocked
_ Term
_ -> do
    let xs :: [(Int, Term)]
xs = ((Int, Bool) -> (Int, Term)) -> [(Int, Bool)] -> [(Int, Term)]
forall a b. (a -> b) -> [a] -> [b]
map ((Bool -> Term) -> (Int, Bool) -> (Int, Term)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second Bool -> Term
boolToI) ([(Int, Bool)] -> [(Int, Term)]) -> [(Int, Bool)] -> [(Int, Term)]
forall a b. (a -> b) -> a -> b
$ Map Int Bool -> [(Int, Bool)]
forall k a. Map k a -> [(k, a)]
Map.toAscList Map Int Bool
ms
    [Dom (Name, Type)]
cxt <- m [Dom (Name, Type)]
forall (m :: * -> *). MonadTCEnv m => m [Dom (Name, Type)]
getContext
    VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"conv.forall" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [TCM Doc
"substContextN"
           , [Dom (Name, Type)] -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Dom (Name, Type)]
cxt
           , [(Int, Term)] -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [(Int, Term)]
xs
           ]
    ([Dom (Name, Type)]
cxt',Substitution
sigma) <- [Dom (Name, Type)]
-> [(Int, Term)] -> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *).
MonadConversion m =>
[Dom (Name, Type)]
-> [(Int, Term)] -> m ([Dom (Name, Type)], Substitution)
substContextN [Dom (Name, Type)]
cxt [(Int, Term)]
xs
    [(Dom (Name, Type), Term)]
resolved <- [(Int, Term)]
-> ((Int, Term) -> m (Dom (Name, Type), Term))
-> m [(Dom (Name, Type), Term)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [(Int, Term)]
xs (\ (Int
i,Term
t) -> (,) (Dom (Name, Type) -> Term -> (Dom (Name, Type), Term))
-> m (Dom (Name, Type)) -> m (Term -> (Dom (Name, Type), Term))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> m (Dom (Name, Type))
forall (m :: * -> *).
(MonadFail m, MonadTCEnv m) =>
Int -> m (Dom (Name, Type))
lookupBV Int
i m (Term -> (Dom (Name, Type), Term))
-> m Term -> m (Dom (Name, Type), Term)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
sigma Term
t))
    Substitution
-> ([Dom (Name, Type)] -> [Dom (Name, Type)]) -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Substitution
-> ([Dom (Name, Type)] -> [Dom (Name, Type)]) -> m a -> m a
updateContext Substitution
sigma ([Dom (Name, Type)] -> [Dom (Name, Type)] -> [Dom (Name, Type)]
forall a b. a -> b -> a
const [Dom (Name, Type)]
cxt') (m a -> m a) -> m a -> m a
forall a b. (a -> b) -> a -> b
$
      [(Dom (Name, Type), Term)] -> m a -> m a
forall (m :: * -> *) t a.
MonadAddContext m =>
[(Dom' t (Name, Type), Term)] -> m a -> m a
addBindings [(Dom (Name, Type), Term)]
resolved (m a -> m a) -> m a -> m a
forall a b. (a -> b) -> a -> b
$ do
        Closure ()
cl <- () -> m (Closure ())
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m) =>
a -> m (Closure a)
buildClosure ()
        Telescope
tel <- m Telescope
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Telescope
getContextTelescope
        ModuleName
m <- m ModuleName
forall (m :: * -> *). MonadTCEnv m => m ModuleName
currentModule
        Maybe Substitution
sub <- ModuleName -> m (Maybe Substitution)
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
ModuleName -> m (Maybe Substitution)
getModuleParameterSub ModuleName
m
        VerboseKey -> Int -> Names -> m ()
forall a (m :: * -> *).
(ReportS a, MonadDebug m) =>
VerboseKey -> Int -> a -> m ()
reportS VerboseKey
"conv.forall" Int
10
          [ Int -> Char -> VerboseKey
forall a. Int -> a -> [a]
replicate Int
10 Char
'-'
          , ModuleName -> VerboseKey
forall a. Show a => a -> VerboseKey
show (TCEnv -> ModuleName
envCurrentModule (TCEnv -> ModuleName) -> TCEnv -> ModuleName
forall a b. (a -> b) -> a -> b
$ Closure () -> TCEnv
forall a. Closure a -> TCEnv
clEnv Closure ()
cl)
          , LetBindings -> VerboseKey
forall a. Show a => a -> VerboseKey
show (TCEnv -> LetBindings
envLetBindings (TCEnv -> LetBindings) -> TCEnv -> LetBindings
forall a b. (a -> b) -> a -> b
$ Closure () -> TCEnv
forall a. Closure a -> TCEnv
clEnv Closure ()
cl)
          , Telescope -> VerboseKey
forall a. Show a => a -> VerboseKey
show Telescope
tel -- (toTelescope $ envContext $ clEnv cl)
          , Substitution -> VerboseKey
forall a. Show a => a -> VerboseKey
show Substitution
sigma
          , ModuleName -> VerboseKey
forall a. Show a => a -> VerboseKey
show ModuleName
m
          , Maybe Substitution -> VerboseKey
forall a. Show a => a -> VerboseKey
show Maybe Substitution
sub
          ]
        Substitution -> m a
k Substitution
sigma
  where
    -- TODO Andrea: inefficient because we try to reduce the ts which we know are in whnf
    ifBlockeds :: t Term
-> (Blocker -> Term -> m b) -> (NotBlocked -> Term -> m b) -> m b
ifBlockeds t Term
ts Blocker -> Term -> m b
blocked NotBlocked -> Term -> m b
unblocked = do
      Term
and <- VerboseKey -> m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
VerboseKey -> m Term
getPrimitiveTerm VerboseKey
"primIMin"
      Term
io  <- m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
      let t :: Term
t = (Term -> Term -> Term) -> Term -> t Term -> Term
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\ Term
x Term
r -> Term
and Term -> [Arg Term] -> Term
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Term -> Arg Term
forall e. e -> Arg e
argN Term
x,Term -> Arg Term
forall e. e -> Arg e
argN Term
r]) Term
io t Term
ts
      Term
-> (Blocker -> Term -> m b) -> (NotBlocked -> Term -> m b) -> m b
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked Term
t Blocker -> Term -> m b
blocked NotBlocked -> Term -> m b
unblocked
    addBindings :: [(Dom' t (Name, Type), Term)] -> m a -> m a
addBindings [] m a
m = m a
m
    addBindings ((Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info,unDom :: forall t e. Dom' t e -> e
unDom = (Name
nm,Type
ty)},Term
t):[(Dom' t (Name, Type), Term)]
bs) m a
m = ArgInfo -> Name -> Term -> Type -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
ArgInfo -> Name -> Term -> Type -> m a -> m a
addLetBinding ArgInfo
info Name
nm Term
t Type
ty ([(Dom' t (Name, Type), Term)] -> m a -> m a
addBindings [(Dom' t (Name, Type), Term)]
bs m a
m)

    substContextN :: MonadConversion m => Context -> [(Int,Term)] -> m (Context , Substitution)
    substContextN :: [Dom (Name, Type)]
-> [(Int, Term)] -> m ([Dom (Name, Type)], Substitution)
substContextN [Dom (Name, Type)]
c [] = ([Dom (Name, Type)], Substitution)
-> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *) a. Monad m => a -> m a
return ([Dom (Name, Type)]
c, Substitution
forall a. Substitution' a
idS)
    substContextN [Dom (Name, Type)]
c ((Int
i,Term
t):[(Int, Term)]
xs) = do
      ([Dom (Name, Type)]
c', Substitution
sigma) <- Int
-> Term
-> [Dom (Name, Type)]
-> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *).
MonadConversion m =>
Int
-> Term
-> [Dom (Name, Type)]
-> m ([Dom (Name, Type)], Substitution)
substContext Int
i Term
t [Dom (Name, Type)]
c
      ([Dom (Name, Type)]
c'', Substitution
sigma')  <- [Dom (Name, Type)]
-> [(Int, Term)] -> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *).
MonadConversion m =>
[Dom (Name, Type)]
-> [(Int, Term)] -> m ([Dom (Name, Type)], Substitution)
substContextN [Dom (Name, Type)]
c' (((Int, Term) -> (Int, Term)) -> [(Int, Term)] -> [(Int, Term)]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Int -> Int
forall a. Num a => a -> a -> a
subtract Int
1 (Int -> Int) -> (Term -> Term) -> (Int, Term) -> (Int, Term)
forall a c b d. (a -> c) -> (b -> d) -> (a, b) -> (c, d)
-*- Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
sigma) [(Int, Term)]
xs)
      ([Dom (Name, Type)], Substitution)
-> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *) a. Monad m => a -> m a
return ([Dom (Name, Type)]
c'', Substitution' (SubstArg Substitution)
-> Substitution -> Substitution
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Substitution)
sigma' Substitution
sigma)


    -- assumes the term can be typed in the shorter telescope
    -- the terms we get from toFaceMaps are closed.
    substContext :: MonadConversion m => Int -> Term -> Context -> m (Context , Substitution)
    substContext :: Int
-> Term
-> [Dom (Name, Type)]
-> m ([Dom (Name, Type)], Substitution)
substContext Int
i Term
t [] = m ([Dom (Name, Type)], Substitution)
forall a. HasCallStack => a
__IMPOSSIBLE__
    substContext Int
i Term
t (Dom (Name, Type)
x:[Dom (Name, Type)]
xs) | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = ([Dom (Name, Type)], Substitution)
-> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *) a. Monad m => a -> m a
return (([Dom (Name, Type)], Substitution)
 -> m ([Dom (Name, Type)], Substitution))
-> ([Dom (Name, Type)], Substitution)
-> m ([Dom (Name, Type)], Substitution)
forall a b. (a -> b) -> a -> b
$ ([Dom (Name, Type)]
xs , Int -> Term -> Substitution
forall a. DeBruijn a => Int -> a -> Substitution' a
singletonS Int
0 Term
t)
    substContext Int
i Term
t (Dom (Name, Type)
x:[Dom (Name, Type)]
xs) | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = do
                                  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"conv.forall" Int
20 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
                                    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [TCM Doc
"substContext"
                                        , VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text (Int -> VerboseKey
forall a. Show a => a -> VerboseKey
show (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1))
                                        , Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
t
                                        , [Dom (Name, Type)] -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Dom (Name, Type)]
xs
                                        ]
                                  ([Dom (Name, Type)]
c,Substitution
sigma) <- Int
-> Term
-> [Dom (Name, Type)]
-> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *).
MonadConversion m =>
Int
-> Term
-> [Dom (Name, Type)]
-> m ([Dom (Name, Type)], Substitution)
substContext (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Term
t [Dom (Name, Type)]
xs
                                  let e :: Dom (Name, Type)
e = Substitution' (SubstArg (Dom (Name, Type)))
-> Dom (Name, Type) -> Dom (Name, Type)
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg (Dom (Name, Type)))
sigma Dom (Name, Type)
x
                                  ([Dom (Name, Type)], Substitution)
-> m ([Dom (Name, Type)], Substitution)
forall (m :: * -> *) a. Monad m => a -> m a
return (Dom (Name, Type)
eDom (Name, Type) -> [Dom (Name, Type)] -> [Dom (Name, Type)]
forall a. a -> [a] -> [a]
:[Dom (Name, Type)]
c, Int -> Substitution -> Substitution
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
1 Substitution
sigma)
    substContext Int
i Term
t (Dom (Name, Type)
x:[Dom (Name, Type)]
xs) = m ([Dom (Name, Type)], Substitution)
forall a. HasCallStack => a
__IMPOSSIBLE__

compareInterval :: MonadConversion m => Comparison -> Type -> Term -> Term -> m ()
compareInterval :: Comparison -> Type -> Term -> Term -> m ()
compareInterval Comparison
cmp Type
i Term
t Term
u = do
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.interval" Int
15 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    [TCM Doc] -> TCM Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCM Doc
"{ compareInterval" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
t TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"=" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u ]
  Blocked Term
tb <- Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Term
t
  Blocked Term
ub <- Term -> m (Blocked Term)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB Term
u
  let t :: Term
t = Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
tb
      u :: Term
u = Blocked Term -> Term
forall t a. Blocked' t a -> a
ignoreBlocking Blocked Term
ub
  [(Map Int (Set Bool), [Term])]
it <- Term -> m [(Map Int (Set Bool), [Term])]
forall (m :: * -> *).
HasBuiltins m =>
Term -> m [(Map Int (Set Bool), [Term])]
decomposeInterval' Term
t
  [(Map Int (Set Bool), [Term])]
iu <- Term -> m [(Map Int (Set Bool), [Term])]
forall (m :: * -> *).
HasBuiltins m =>
Term -> m [(Map Int (Set Bool), [Term])]
decomposeInterval' Term
u
  case () of
    ()
_ | Blocked Term -> Bool
forall t a. Blocked' t a -> Bool
isBlocked Blocked Term
tb Bool -> Bool -> Bool
|| Blocked Term -> Bool
forall t a. Blocked' t a -> Bool
isBlocked Blocked Term
ub -> do
      -- in case of metas we wouldn't be able to make progress by how we deal with de morgan laws.
      -- (because the constraints generated by decomposition are sufficient but not necessary).
      -- but we could still prune/solve some metas by comparing the terms as atoms.
      -- also if blocked we won't find the terms conclusively unequal(?) so compareAtom
      -- won't report type errors when we should accept.
      Type
interval <- m Type
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
      Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
CmpEq (Type -> CompareAs
AsTermsOf Type
interval) Term
t Term
u
    ()
_ | Bool
otherwise -> do
      Bool
x <- [(Map Int (Set Bool), [Term])]
-> [(Map Int (Set Bool), [Term])] -> m Bool
forall (m :: * -> *).
MonadConversion m =>
[(Map Int (Set Bool), [Term])]
-> [(Map Int (Set Bool), [Term])] -> m Bool
leqInterval [(Map Int (Set Bool), [Term])]
it [(Map Int (Set Bool), [Term])]
iu
      Bool
y <- [(Map Int (Set Bool), [Term])]
-> [(Map Int (Set Bool), [Term])] -> m Bool
forall (m :: * -> *).
MonadConversion m =>
[(Map Int (Set Bool), [Term])]
-> [(Map Int (Set Bool), [Term])] -> m Bool
leqInterval [(Map Int (Set Bool), [Term])]
iu [(Map Int (Set Bool), [Term])]
it
      let final :: Bool
final = [(Map Int (Set Bool), [Term])] -> Bool
isCanonical [(Map Int (Set Bool), [Term])]
it Bool -> Bool -> Bool
&& [(Map Int (Set Bool), [Term])] -> Bool
isCanonical [(Map Int (Set Bool), [Term])]
iu
      if Bool
x Bool -> Bool -> Bool
&& Bool
y then VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.interval" Int
15 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"Ok! }" else
        if Bool
final then TypeError -> m ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError (TypeError -> m ()) -> TypeError -> m ()
forall a b. (a -> b) -> a -> b
$ Comparison -> Term -> Term -> CompareAs -> TypeError
UnequalTerms Comparison
cmp Term
t Term
u (Type -> CompareAs
AsTermsOf Type
i)
                 else do
                   VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.interval" Int
15 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCM Doc
"Giving up! }"
                   Blocker -> m ()
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation ((Term, Term) -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn (Term
t, Term
u))
 where
   isBlocked :: Blocked' t a -> Bool
isBlocked Blocked{}    = Bool
True
   isBlocked NotBlocked{} = Bool
False


type Conj = (Map.Map Int (Set.Set Bool),[Term])

isCanonical :: [Conj] -> Bool
isCanonical :: [(Map Int (Set Bool), [Term])] -> Bool
isCanonical = ((Map Int (Set Bool), [Term]) -> Bool)
-> [(Map Int (Set Bool), [Term])] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all ([Term] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([Term] -> Bool)
-> ((Map Int (Set Bool), [Term]) -> [Term])
-> (Map Int (Set Bool), [Term])
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Map Int (Set Bool), [Term]) -> [Term]
forall a b. (a, b) -> b
snd)

-- | leqInterval r q = r ≤ q in the I lattice.
-- (∨ r_i) ≤ (∨ q_j)  iff  ∀ i. ∃ j. r_i ≤ q_j
leqInterval :: MonadConversion m => [Conj] -> [Conj] -> m Bool
leqInterval :: [(Map Int (Set Bool), [Term])]
-> [(Map Int (Set Bool), [Term])] -> m Bool
leqInterval [(Map Int (Set Bool), [Term])]
r [(Map Int (Set Bool), [Term])]
q =
  [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ([Bool] -> Bool) -> m [Bool] -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [(Map Int (Set Bool), [Term])]
-> ((Map Int (Set Bool), [Term]) -> m Bool) -> m [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [(Map Int (Set Bool), [Term])]
r (\ (Map Int (Set Bool), [Term])
r_i ->
   [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ([Bool] -> Bool) -> m [Bool] -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [(Map Int (Set Bool), [Term])]
-> ((Map Int (Set Bool), [Term]) -> m Bool) -> m [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [(Map Int (Set Bool), [Term])]
q (\ (Map Int (Set Bool), [Term])
q_j -> (Map Int (Set Bool), [Term])
-> (Map Int (Set Bool), [Term]) -> m Bool
forall (m :: * -> *).
MonadConversion m =>
(Map Int (Set Bool), [Term])
-> (Map Int (Set Bool), [Term]) -> m Bool
leqConj (Map Int (Set Bool), [Term])
r_i (Map Int (Set Bool), [Term])
q_j))  -- TODO shortcut

-- | leqConj r q = r ≤ q in the I lattice, when r and q are conjuctions.
-- ' (∧ r_i)   ≤ (∧ q_j)               iff
-- ' (∧ r_i)   ∧ (∧ q_j)   = (∧ r_i)   iff
-- ' {r_i | i} ∪ {q_j | j} = {r_i | i} iff
-- ' {q_j | j} ⊆ {r_i | i}
leqConj :: MonadConversion m => Conj -> Conj -> m Bool
leqConj :: (Map Int (Set Bool), [Term])
-> (Map Int (Set Bool), [Term]) -> m Bool
leqConj (Map Int (Set Bool)
rs, [Term]
rst) (Map Int (Set Bool)
qs, [Term]
qst) = do
  if Map Int (Set Bool) -> Set (Int, Bool)
forall a b. (Ord a, Ord b) => Map a (Set b) -> Set (a, b)
toSet Map Int (Set Bool)
qs Set (Int, Bool) -> Set (Int, Bool) -> Bool
forall a. Ord a => Set a -> Set a -> Bool
`Set.isSubsetOf` Map Int (Set Bool) -> Set (Int, Bool)
forall a b. (Ord a, Ord b) => Map a (Set b) -> Set (a, b)
toSet Map Int (Set Bool)
rs
    then do
      Type
interval <-
        m Term -> m Type
forall (m :: * -> *). Functor m => m Term -> m Type
elSSet (m Term -> m Type) -> m Term -> m Type
forall a b. (a -> b) -> a -> b
$ Term -> Maybe Term -> Term
forall a. a -> Maybe a -> a
fromMaybe Term
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Term -> Term) -> m (Maybe Term) -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VerboseKey -> m (Maybe Term)
forall (m :: * -> *). HasBuiltins m => VerboseKey -> m (Maybe Term)
getBuiltin' VerboseKey
builtinInterval
      -- we don't want to generate new constraints here because
      -- 1. in some situations the same constraint would get generated twice.
      -- 2. unless things are completely accepted we are going to
      --    throw patternViolation in compareInterval.
      let eqT :: Term -> Term -> m Bool
eqT Term
t Term
u = m () -> m Bool
forall (m :: * -> *).
(MonadConstraint m, MonadWarning m, MonadError TCErr m,
 MonadFresh ProblemId m) =>
m () -> m Bool
tryConversion (Comparison -> CompareAs -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom Comparison
CmpEq (Type -> CompareAs
AsTermsOf Type
interval) Term
t Term
u)
      let listSubset :: [Term] -> [Term] -> m Bool
listSubset [Term]
ts [Term]
us =
            [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ([Bool] -> Bool) -> m [Bool] -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Term] -> (Term -> m Bool) -> m [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Term]
ts (\Term
t -> [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ([Bool] -> Bool) -> m [Bool] -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Term] -> (Term -> m Bool) -> m [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Term]
us (\Term
u -> Term -> Term -> m Bool
eqT Term
t Term
u)) -- TODO shortcut
      [Term] -> [Term] -> m Bool
listSubset [Term]
qst [Term]
rst
    else
      Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
  where
    toSet :: Map a (Set b) -> Set (a, b)
toSet Map a (Set b)
m = [(a, b)] -> Set (a, b)
forall a. Ord a => [a] -> Set a
Set.fromList [(a
i, b
b) | (a
i, Set b
bs) <- Map a (Set b) -> [(a, Set b)]
forall k a. Map k a -> [(k, a)]
Map.toList Map a (Set b)
m, b
b <- Set b -> [b]
forall a. Set a -> [a]
Set.toList Set b
bs]

-- | equalTermOnFace φ A u v = _ , φ ⊢ u = v : A
equalTermOnFace :: MonadConversion m => Term -> Type -> Term -> Term -> m ()
equalTermOnFace :: Term -> Type -> Term -> Term -> m ()
equalTermOnFace = Comparison -> Term -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace Comparison
CmpEq

compareTermOnFace :: MonadConversion m => Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace :: Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace = (Comparison -> Type -> Term -> Term -> m ())
-> Comparison -> Term -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
(Comparison -> Type -> Term -> Term -> m ())
-> Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace' Comparison -> Type -> Term -> Term -> m ()
forall (m :: * -> *).
MonadConversion m =>
Comparison -> Type -> Term -> Term -> m ()
compareTerm

compareTermOnFace' :: MonadConversion m => (Comparison -> Type -> Term -> Term -> m ()) -> Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace' :: (Comparison -> Type -> Term -> Term -> m ())
-> Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace' Comparison -> Type -> Term -> Term -> m ()
k Comparison
cmp Term
phi Type
ty Term
u Term
v = do
  VerboseKey -> Int -> TCM Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
VerboseKey -> Int -> TCM Doc -> m ()
reportSDoc VerboseKey
"tc.conv.face" Int
40 (TCM Doc -> m ()) -> TCM Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    VerboseKey -> TCM Doc
forall (m :: * -> *). Applicative m => VerboseKey -> m Doc
text VerboseKey
"compareTermOnFace:" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
phi TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"|-" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
u TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
"==" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Term
v TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCM Doc
":" TCM Doc -> TCM Doc -> TCM Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCM Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
ty

  Term
phi <- Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
phi
  [()]
_ <- Term
-> (Map Int Bool -> Blocker -> Term -> m ())
-> (Substitution -> m ())
-> m [()]
forall (m :: * -> *) a.
MonadConversion m =>
Term
-> (Map Int Bool -> Blocker -> Term -> m a)
-> (Substitution -> m a)
-> m [a]
forallFaceMaps Term
phi Map Int Bool -> Blocker -> Term -> m ()
postponed
         ((Substitution -> m ()) -> m [()])
-> (Substitution -> m ()) -> m [()]
forall a b. (a -> b) -> a -> b
$ \ Substitution
alpha -> Comparison -> Type -> Term -> Term -> m ()
k Comparison
cmp (Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Type)
alpha Type
ty) (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
alpha Term
u) (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
alpha Term
v)
  () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
 where
  postponed :: Map Int Bool -> Blocker -> Term -> m ()
postponed Map Int Bool
ms Blocker
blocker Term
psi = do
    Term
phi <- Names -> NamesT m Term -> m Term
forall (m :: * -> *) a. Names -> NamesT m a -> m a
runNamesT [] (NamesT m Term -> m Term) -> NamesT m Term -> m Term
forall a b. (a -> b) -> a -> b
$ do
             Term
imin <- m Term -> NamesT m Term
forall (m :: * -> *) a. Monad m => m a -> NamesT m a
cl (m Term -> NamesT m Term) -> m Term -> NamesT m Term
forall a b. (a -> b) -> a -> b
$ VerboseKey -> m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
VerboseKey -> m Term
getPrimitiveTerm VerboseKey
"primIMin"
             Term
ineg <- m Term -> NamesT m Term
forall (m :: * -> *) a. Monad m => m a -> NamesT m a
cl (m Term -> NamesT m Term) -> m Term -> NamesT m Term
forall a b. (a -> b) -> a -> b
$ VerboseKey -> m Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
VerboseKey -> m Term
getPrimitiveTerm VerboseKey
"primINeg"
             NamesT m Term
psi <- Term -> NamesT m (NamesT m Term)
forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
psi
             let phi :: NamesT m Term
phi = ((Int, Bool) -> NamesT m Term -> NamesT m Term)
-> NamesT m Term -> [(Int, Bool)] -> NamesT m Term
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\ (Int
i,Bool
b) NamesT m Term
r -> do NamesT m Term
i <- Term -> NamesT m (NamesT m Term)
forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (Int -> Term
var Int
i); Term -> NamesT m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
imin NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (if Bool
b then NamesT m Term
i else Term -> NamesT m Term
forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
ineg NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
i) NamesT m Term -> NamesT m Term -> NamesT m Term
forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
r)
                          NamesT m Term
psi (Map Int Bool -> [(Int, Bool)]
forall k a. Map k a -> [(k, a)]
Map.toList Map Int Bool
ms) -- TODO Andrea: make a view?
             NamesT m Term
phi
    Blocker -> Constraint -> m ()
forall (m :: * -> *).
MonadConstraint m =>
Blocker -> Constraint -> m ()
addConstraint Blocker
blocker (Comparison -> Term -> Type -> Term -> Term -> Constraint
ValueCmpOnFace Comparison
cmp Term
phi Type
ty Term
u Term
v)

---------------------------------------------------------------------------
-- * Definitions
---------------------------------------------------------------------------

bothAbsurd :: MonadConversion m => QName -> QName -> m Bool
bothAbsurd :: QName -> QName -> m Bool
bothAbsurd QName
f QName
f'
  | QName -> Bool
isAbsurdLambdaName QName
f, QName -> Bool
isAbsurdLambdaName QName
f' = do
      -- Double check we are really dealing with absurd lambdas:
      -- Their functions should not have bodies.
      Definition
def  <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f
      Definition
def' <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
f'
      case (Definition -> Defn
theDef Definition
def, Definition -> Defn
theDef Definition
def') of
        (Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause{ clauseBody :: Clause -> Maybe Term
clauseBody = Maybe Term
Nothing }] },
         Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause{ clauseBody :: Clause -> Maybe Term
clauseBody = Maybe Term
Nothing }] }) -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
        (Defn, Defn)
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
  | Bool
otherwise = Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False