Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- class Apply t where
- applys :: Apply t => t -> [Term] -> t
- apply1 :: Apply t => t -> Term -> t
- class Abstract t where
- class DeBruijn (SubstArg a) => Subst a where
- type SubstArg a
- applySubst :: Substitution' (SubstArg a) -> a -> a
- type SubstWith t a = (Subst a, SubstArg a ~ t)
- type EndoSubst a = SubstWith a a
- type TermSubst a = SubstWith Term a
- raise :: Subst a => Nat -> a -> a
- raiseFrom :: Subst a => Nat -> Nat -> a -> a
- subst :: Subst a => Int -> SubstArg a -> a -> a
- strengthen :: Subst a => Impossible -> a -> a
- substUnder :: Subst a => Nat -> SubstArg a -> a -> a
- idS :: Substitution' a
- wkS :: Int -> Substitution' a -> Substitution' a
- raiseS :: Int -> Substitution' a
- consS :: DeBruijn a => a -> Substitution' a -> Substitution' a
- singletonS :: DeBruijn a => Int -> a -> Substitution' a
- inplaceS :: EndoSubst a => Int -> a -> Substitution' a
- liftS :: Int -> Substitution' a -> Substitution' a
- dropS :: Int -> Substitution' a -> Substitution' a
- composeS :: EndoSubst a => Substitution' a -> Substitution' a -> Substitution' a
- splitS :: Int -> Substitution' a -> (Substitution' a, Substitution' a)
- (++#) :: DeBruijn a => [a] -> Substitution' a -> Substitution' a
- prependS :: DeBruijn a => Impossible -> [Maybe a] -> Substitution' a -> Substitution' a
- parallelS :: DeBruijn a => [a] -> Substitution' a
- compactS :: DeBruijn a => Impossible -> [Maybe a] -> Substitution' a
- strengthenS :: Impossible -> Int -> Substitution' a
- lookupS :: EndoSubst a => Substitution' a -> Nat -> a
- listS :: EndoSubst a => [(Int, a)] -> Substitution' a
- raiseFromS :: Nat -> Nat -> Substitution' a
- absApp :: Subst a => Abs a -> SubstArg a -> a
- lazyAbsApp :: Subst a => Abs a -> SubstArg a -> a
- noabsApp :: Subst a => Impossible -> Abs a -> a
- absBody :: Subst a => Abs a -> a
- mkAbs :: (Subst a, Free a) => ArgName -> a -> Abs a
- reAbs :: (Subst a, Free a) => Abs a -> Abs a
- underAbs :: Subst a => (a -> b -> b) -> a -> Abs b -> Abs b
- underLambdas :: TermSubst a => Int -> (a -> Term -> Term) -> a -> Term -> Term
Application
Apply something to a bunch of arguments. Preserves blocking tags (application can never resolve blocking).
Instances
Abstraction
class Abstract t where Source #
(abstract args v)
.apply
args --> v[args]
Instances
Substitution and shifting/weakening/strengthening
class DeBruijn (SubstArg a) => Subst a where Source #
Apply a substitution.
Nothing
applySubst :: Substitution' (SubstArg a) -> a -> a Source #
default applySubst :: (a ~ f b, Functor f, Subst b, SubstArg a ~ SubstArg b) => Substitution' (SubstArg a) -> a -> a Source #
Instances
type SubstWith t a = (Subst a, SubstArg a ~ t) Source #
Simple constraint alias for a Subst
instance a
with arg type t
.
subst :: Subst a => Int -> SubstArg a -> a -> a Source #
Replace de Bruijn index i by a Term
in something.
strengthen :: Subst a => Impossible -> a -> a Source #
substUnder :: Subst a => Nat -> SubstArg a -> a -> a Source #
Replace what is now de Bruijn index 0, but go under n binders.
substUnder n u == subst n (raise n u)
.
Identity instances
Explicit substitutions
idS :: Substitution' a Source #
wkS :: Int -> Substitution' a -> Substitution' a Source #
raiseS :: Int -> Substitution' a Source #
consS :: DeBruijn a => a -> Substitution' a -> Substitution' a Source #
singletonS :: DeBruijn a => Int -> a -> Substitution' a Source #
To replace index n
by term u
, do applySubst (singletonS n u)
.
Γ, Δ ⊢ u : A
---------------------------------
Γ, Δ ⊢ singletonS |Δ| u : Γ, A, Δ
inplaceS :: EndoSubst a => Int -> a -> Substitution' a Source #
Single substitution without disturbing any deBruijn indices.
Γ, A, Δ ⊢ u : A
---------------------------------
Γ, A, Δ ⊢ inplace |Δ| u : Γ, A, Δ
liftS :: Int -> Substitution' a -> Substitution' a Source #
Lift a substitution under k binders.
dropS :: Int -> Substitution' a -> Substitution' a Source #
Γ ⊢ ρ : Δ, Ψ ------------------- Γ ⊢ dropS |Ψ| ρ : Δ
composeS :: EndoSubst a => Substitution' a -> Substitution' a -> Substitution' a Source #
applySubst (ρ composeS
σ) v == applySubst ρ (applySubst σ v)
splitS :: Int -> Substitution' a -> (Substitution' a, Substitution' a) Source #
(++#) :: DeBruijn a => [a] -> Substitution' a -> Substitution' a infixr 4 Source #
prependS :: DeBruijn a => Impossible -> [Maybe a] -> Substitution' a -> Substitution' a Source #
Γ ⊢ ρ : Δ Γ ⊢ reverse vs : Θ ----------------------------- (treating Nothing as having any type) Γ ⊢ prependS vs ρ : Δ, Θ
parallelS :: DeBruijn a => [a] -> Substitution' a Source #
compactS :: DeBruijn a => Impossible -> [Maybe a] -> Substitution' a Source #
strengthenS :: Impossible -> Int -> Substitution' a Source #
Γ ⊢ (strengthenS ⊥ |Δ|) : Γ,Δ
listS :: EndoSubst a => [(Int, a)] -> Substitution' a Source #
lookupS (listS [(x0,t0)..(xn,tn)]) xi = ti, assuming x0 < .. < xn.
raiseFromS :: Nat -> Nat -> Substitution' a Source #
Γ, Ξ, Δ ⊢ raiseFromS |Δ| |Ξ| : Γ, Δ
Functions on abstractions
absApp :: Subst a => Abs a -> SubstArg a -> a Source #
Instantiate an abstraction. Strict in the term.
lazyAbsApp :: Subst a => Abs a -> SubstArg a -> a Source #
Instantiate an abstraction. Lazy in the term, which allow it to be
IMPOSSIBLE in the case where the variable shouldn't be used but we
cannot use noabsApp
. Used in Apply.
noabsApp :: Subst a => Impossible -> Abs a -> a Source #
Instantiate an abstraction that doesn't use its argument.
underAbs :: Subst a => (a -> b -> b) -> a -> Abs b -> Abs b Source #
underAbs k a b
applies k
to a
and the content of
abstraction b
and puts the abstraction back.
a
is raised if abstraction was proper such that
at point of application of k
and the content of b
are at the same context.
Precondition: a
and b
are at the same context at call time.