{-# LANGUAGE PatternSynonyms            #-}

module Agda.Syntax.Internal
    ( module Agda.Syntax.Internal
    , module Agda.Syntax.Internal.Blockers
    , module Agda.Syntax.Internal.Elim
    , module Agda.Syntax.Abstract.Name
    , MetaId(..), ProblemId(..)
    ) where

import Prelude hiding (null)

import Control.Monad.Identity
import Control.DeepSeq

import Data.Function
import qualified Data.List as List
import Data.Maybe
import Data.Semigroup ( Semigroup, (<>), Sum(..) )
import qualified Data.Set as Set
import Data.Set (Set)

import Data.Traversable
import Data.Data (Data)

import GHC.Generics (Generic)

import Agda.Syntax.Position
import Agda.Syntax.Common
import Agda.Syntax.Literal
import Agda.Syntax.Concrete.Pretty (prettyHiding)
import Agda.Syntax.Abstract.Name
import Agda.Syntax.Internal.Blockers
import Agda.Syntax.Internal.Elim

import Agda.Utils.CallStack
    ( CallStack
    , HasCallStack
    , prettyCallSite
    , headCallSite
    , withCallerCallStack
    )

import Agda.Utils.Empty

import Agda.Utils.Functor
import Agda.Utils.Lens
import Agda.Utils.Null
import Agda.Utils.Size
import Agda.Utils.Pretty
import Agda.Utils.Tuple

import Agda.Utils.Impossible

---------------------------------------------------------------------------
-- * Function type domain
---------------------------------------------------------------------------

-- | Similar to 'Arg', but we need to distinguish
--   an irrelevance annotation in a function domain
--   (the domain itself is not irrelevant!)
--   from an irrelevant argument.
--
--   @Dom@ is used in 'Pi' of internal syntax, in 'Context' and 'Telescope'.
--   'Arg' is used for actual arguments ('Var', 'Con', 'Def' etc.)
--   and in 'Abstract' syntax and other situations.
--
--   [ cubical ] When @domFinite = True@ for the domain of a 'Pi'
--   type, the elements should be compared by tabulating the domain type.
--   Only supported in case the domain type is primIsOne, to obtain
--   the correct equality for partial elements.
--
data Dom' t e = Dom
  { forall t e. Dom' t e -> ArgInfo
domInfo   :: ArgInfo
  , forall t e. Dom' t e -> Bool
domFinite :: !Bool
  , forall t e. Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
domName   :: Maybe NamedName  -- ^ e.g. @x@ in @{x = y : A} -> B@.
  , forall t e. Dom' t e -> Maybe t
domTactic :: Maybe t        -- ^ "@tactic e".
  , forall t e. Dom' t e -> e
unDom     :: e
  } deriving (Typeable (Dom' t e)
Typeable (Dom' t e)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Dom' t e -> c (Dom' t e))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Dom' t e))
-> (Dom' t e -> Constr)
-> (Dom' t e -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Dom' t e)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (Dom' t e)))
-> ((forall b. Data b => b -> b) -> Dom' t e -> Dom' t e)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Dom' t e -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Dom' t e -> r)
-> (forall u. (forall d. Data d => d -> u) -> Dom' t e -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Dom' t e -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e))
-> Data (Dom' t e)
Dom' t e -> DataType
Dom' t e -> Constr
(forall b. Data b => b -> b) -> Dom' t e -> Dom' t e
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Dom' t e -> u
forall u. (forall d. Data d => d -> u) -> Dom' t e -> [u]
forall {t} {e}. (Data t, Data e) => Typeable (Dom' t e)
forall t e. (Data t, Data e) => Dom' t e -> DataType
forall t e. (Data t, Data e) => Dom' t e -> Constr
forall t e.
(Data t, Data e) =>
(forall b. Data b => b -> b) -> Dom' t e -> Dom' t e
forall t e u.
(Data t, Data e) =>
Int -> (forall d. Data d => d -> u) -> Dom' t e -> u
forall t e u.
(Data t, Data e) =>
(forall d. Data d => d -> u) -> Dom' t e -> [u]
forall t e r r'.
(Data t, Data e) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
forall t e r r'.
(Data t, Data e) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
forall t e (m :: * -> *).
(Data t, Data e, Monad m) =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
forall t e (m :: * -> *).
(Data t, Data e, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
forall t e (c :: * -> *).
(Data t, Data e) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Dom' t e)
forall t e (c :: * -> *).
(Data t, Data e) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Dom' t e -> c (Dom' t e)
forall t e (t :: * -> *) (c :: * -> *).
(Data t, Data e, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Dom' t e))
forall t e (t :: * -> * -> *) (c :: * -> *).
(Data t, Data e, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dom' t e))
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Dom' t e)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Dom' t e -> c (Dom' t e)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Dom' t e))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dom' t e))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
$cgmapMo :: forall t e (m :: * -> *).
(Data t, Data e, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
$cgmapMp :: forall t e (m :: * -> *).
(Data t, Data e, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
$cgmapM :: forall t e (m :: * -> *).
(Data t, Data e, Monad m) =>
(forall d. Data d => d -> m d) -> Dom' t e -> m (Dom' t e)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Dom' t e -> u
$cgmapQi :: forall t e u.
(Data t, Data e) =>
Int -> (forall d. Data d => d -> u) -> Dom' t e -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Dom' t e -> [u]
$cgmapQ :: forall t e u.
(Data t, Data e) =>
(forall d. Data d => d -> u) -> Dom' t e -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
$cgmapQr :: forall t e r r'.
(Data t, Data e) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
$cgmapQl :: forall t e r r'.
(Data t, Data e) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Dom' t e -> r
gmapT :: (forall b. Data b => b -> b) -> Dom' t e -> Dom' t e
$cgmapT :: forall t e.
(Data t, Data e) =>
(forall b. Data b => b -> b) -> Dom' t e -> Dom' t e
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dom' t e))
$cdataCast2 :: forall t e (t :: * -> * -> *) (c :: * -> *).
(Data t, Data e, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dom' t e))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Dom' t e))
$cdataCast1 :: forall t e (t :: * -> *) (c :: * -> *).
(Data t, Data e, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Dom' t e))
dataTypeOf :: Dom' t e -> DataType
$cdataTypeOf :: forall t e. (Data t, Data e) => Dom' t e -> DataType
toConstr :: Dom' t e -> Constr
$ctoConstr :: forall t e. (Data t, Data e) => Dom' t e -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Dom' t e)
$cgunfold :: forall t e (c :: * -> *).
(Data t, Data e) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Dom' t e)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Dom' t e -> c (Dom' t e)
$cgfoldl :: forall t e (c :: * -> *).
(Data t, Data e) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Dom' t e -> c (Dom' t e)
Data, Int -> Dom' t e -> ShowS
[Dom' t e] -> ShowS
Dom' t e -> ArgName
(Int -> Dom' t e -> ShowS)
-> (Dom' t e -> ArgName)
-> ([Dom' t e] -> ShowS)
-> Show (Dom' t e)
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
forall t e. (Show t, Show e) => Int -> Dom' t e -> ShowS
forall t e. (Show t, Show e) => [Dom' t e] -> ShowS
forall t e. (Show t, Show e) => Dom' t e -> ArgName
showList :: [Dom' t e] -> ShowS
$cshowList :: forall t e. (Show t, Show e) => [Dom' t e] -> ShowS
show :: Dom' t e -> ArgName
$cshow :: forall t e. (Show t, Show e) => Dom' t e -> ArgName
showsPrec :: Int -> Dom' t e -> ShowS
$cshowsPrec :: forall t e. (Show t, Show e) => Int -> Dom' t e -> ShowS
Show, (forall a b. (a -> b) -> Dom' t a -> Dom' t b)
-> (forall a b. a -> Dom' t b -> Dom' t a) -> Functor (Dom' t)
forall a b. a -> Dom' t b -> Dom' t a
forall a b. (a -> b) -> Dom' t a -> Dom' t b
forall t a b. a -> Dom' t b -> Dom' t a
forall t a b. (a -> b) -> Dom' t a -> Dom' t b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Dom' t b -> Dom' t a
$c<$ :: forall t a b. a -> Dom' t b -> Dom' t a
fmap :: forall a b. (a -> b) -> Dom' t a -> Dom' t b
$cfmap :: forall t a b. (a -> b) -> Dom' t a -> Dom' t b
Functor, (forall m. Monoid m => Dom' t m -> m)
-> (forall m a. Monoid m => (a -> m) -> Dom' t a -> m)
-> (forall m a. Monoid m => (a -> m) -> Dom' t a -> m)
-> (forall a b. (a -> b -> b) -> b -> Dom' t a -> b)
-> (forall a b. (a -> b -> b) -> b -> Dom' t a -> b)
-> (forall b a. (b -> a -> b) -> b -> Dom' t a -> b)
-> (forall b a. (b -> a -> b) -> b -> Dom' t a -> b)
-> (forall a. (a -> a -> a) -> Dom' t a -> a)
-> (forall a. (a -> a -> a) -> Dom' t a -> a)
-> (forall a. Dom' t a -> [a])
-> (forall a. Dom' t a -> Bool)
-> (forall a. Dom' t a -> Int)
-> (forall a. Eq a => a -> Dom' t a -> Bool)
-> (forall a. Ord a => Dom' t a -> a)
-> (forall a. Ord a => Dom' t a -> a)
-> (forall a. Num a => Dom' t a -> a)
-> (forall a. Num a => Dom' t a -> a)
-> Foldable (Dom' t)
forall a. Eq a => a -> Dom' t a -> Bool
forall a. Num a => Dom' t a -> a
forall a. Ord a => Dom' t a -> a
forall m. Monoid m => Dom' t m -> m
forall a. Dom' t a -> Bool
forall a. Dom' t a -> Int
forall a. Dom' t a -> [a]
forall a. (a -> a -> a) -> Dom' t a -> a
forall t a. Eq a => a -> Dom' t a -> Bool
forall t a. Num a => Dom' t a -> a
forall t a. Ord a => Dom' t a -> a
forall m a. Monoid m => (a -> m) -> Dom' t a -> m
forall t m. Monoid m => Dom' t m -> m
forall t e. Dom' t e -> Bool
forall t a. Dom' t a -> Int
forall t a. Dom' t a -> [a]
forall b a. (b -> a -> b) -> b -> Dom' t a -> b
forall a b. (a -> b -> b) -> b -> Dom' t a -> b
forall t a. (a -> a -> a) -> Dom' t a -> a
forall t m a. Monoid m => (a -> m) -> Dom' t a -> m
forall t b a. (b -> a -> b) -> b -> Dom' t a -> b
forall t a b. (a -> b -> b) -> b -> Dom' t a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Dom' t a -> a
$cproduct :: forall t a. Num a => Dom' t a -> a
sum :: forall a. Num a => Dom' t a -> a
$csum :: forall t a. Num a => Dom' t a -> a
minimum :: forall a. Ord a => Dom' t a -> a
$cminimum :: forall t a. Ord a => Dom' t a -> a
maximum :: forall a. Ord a => Dom' t a -> a
$cmaximum :: forall t a. Ord a => Dom' t a -> a
elem :: forall a. Eq a => a -> Dom' t a -> Bool
$celem :: forall t a. Eq a => a -> Dom' t a -> Bool
length :: forall a. Dom' t a -> Int
$clength :: forall t a. Dom' t a -> Int
null :: forall a. Dom' t a -> Bool
$cnull :: forall t e. Dom' t e -> Bool
toList :: forall a. Dom' t a -> [a]
$ctoList :: forall t a. Dom' t a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Dom' t a -> a
$cfoldl1 :: forall t a. (a -> a -> a) -> Dom' t a -> a
foldr1 :: forall a. (a -> a -> a) -> Dom' t a -> a
$cfoldr1 :: forall t a. (a -> a -> a) -> Dom' t a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Dom' t a -> b
$cfoldl' :: forall t b a. (b -> a -> b) -> b -> Dom' t a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Dom' t a -> b
$cfoldl :: forall t b a. (b -> a -> b) -> b -> Dom' t a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Dom' t a -> b
$cfoldr' :: forall t a b. (a -> b -> b) -> b -> Dom' t a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Dom' t a -> b
$cfoldr :: forall t a b. (a -> b -> b) -> b -> Dom' t a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Dom' t a -> m
$cfoldMap' :: forall t m a. Monoid m => (a -> m) -> Dom' t a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Dom' t a -> m
$cfoldMap :: forall t m a. Monoid m => (a -> m) -> Dom' t a -> m
fold :: forall m. Monoid m => Dom' t m -> m
$cfold :: forall t m. Monoid m => Dom' t m -> m
Foldable, Functor (Dom' t)
Foldable (Dom' t)
Functor (Dom' t)
-> Foldable (Dom' t)
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Dom' t a -> f (Dom' t b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Dom' t (f a) -> f (Dom' t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Dom' t a -> m (Dom' t b))
-> (forall (m :: * -> *) a.
    Monad m =>
    Dom' t (m a) -> m (Dom' t a))
-> Traversable (Dom' t)
forall t. Functor (Dom' t)
forall t. Foldable (Dom' t)
forall t (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
forall t (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
forall (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
sequence :: forall (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
$csequence :: forall t (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
$cmapM :: forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
$csequenceA :: forall t (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
$ctraverse :: forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
Traversable)

type Dom = Dom' Term

instance Decoration (Dom' t) where
  traverseF :: forall (m :: * -> *) a b.
Functor m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
traverseF a -> m b
f (Dom ArgInfo
ai Bool
b Maybe (WithOrigin (Ranged ArgName))
x Maybe t
t a
a) = ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> b
-> Dom' t b
forall t e.
ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
ai Bool
b Maybe (WithOrigin (Ranged ArgName))
x Maybe t
t (b -> Dom' t b) -> m b -> m (Dom' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a

instance HasRange a => HasRange (Dom' t a) where
  getRange :: Dom' t a -> Range
getRange = a -> Range
forall a. HasRange a => a -> Range
getRange (a -> Range) -> (Dom' t a -> a) -> Dom' t a -> Range
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom' t a -> a
forall t e. Dom' t e -> e
unDom

instance (KillRange t, KillRange a) => KillRange (Dom' t a) where
  killRange :: KillRangeT (Dom' t a)
killRange (Dom ArgInfo
info Bool
b Maybe (WithOrigin (Ranged ArgName))
x Maybe t
t a
a) = (ArgInfo
 -> Bool
 -> Maybe (WithOrigin (Ranged ArgName))
 -> Maybe t
 -> a
 -> Dom' t a)
-> ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> a
-> Dom' t a
forall a b c d e f.
(KillRange a, KillRange b, KillRange c, KillRange d,
 KillRange e) =>
(a -> b -> c -> d -> e -> f) -> a -> b -> c -> d -> e -> f
killRange5 ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> a
-> Dom' t a
forall t e.
ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
info Bool
b Maybe (WithOrigin (Ranged ArgName))
x Maybe t
t a
a

-- | Ignores 'Origin' and 'FreeVariables' and tactic.
instance Eq a => Eq (Dom' t a) where
  Dom (ArgInfo Hiding
h1 Modality
m1 Origin
_ FreeVariables
_ Annotation
a1) Bool
b1 Maybe (WithOrigin (Ranged ArgName))
s1 Maybe t
_ a
x1 == :: Dom' t a -> Dom' t a -> Bool
== Dom (ArgInfo Hiding
h2 Modality
m2 Origin
_ FreeVariables
_ Annotation
a2) Bool
b2 Maybe (WithOrigin (Ranged ArgName))
s2 Maybe t
_ a
x2 =
    (Hiding
h1, Modality
m1, Annotation
a1, Bool
b1, Maybe (WithOrigin (Ranged ArgName))
s1, a
x1) (Hiding, Modality, Annotation, Bool,
 Maybe (WithOrigin (Ranged ArgName)), a)
-> (Hiding, Modality, Annotation, Bool,
    Maybe (WithOrigin (Ranged ArgName)), a)
-> Bool
forall a. Eq a => a -> a -> Bool
== (Hiding
h2, Modality
m2, Annotation
a2, Bool
b2, Maybe (WithOrigin (Ranged ArgName))
s2, a
x2)

instance LensNamed (Dom' t e) where
  type NameOf (Dom' t e) = NamedName
  lensNamed :: Lens' (Maybe (NameOf (Dom' t e))) (Dom' t e)
lensNamed Maybe (NameOf (Dom' t e)) -> f (Maybe (NameOf (Dom' t e)))
f Dom' t e
dom = Maybe (NameOf (Dom' t e)) -> f (Maybe (NameOf (Dom' t e)))
f (Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
forall t e. Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
domName Dom' t e
dom) f (Maybe (WithOrigin (Ranged ArgName)))
-> (Maybe (WithOrigin (Ranged ArgName)) -> Dom' t e)
-> f (Dom' t e)
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Maybe (WithOrigin (Ranged ArgName))
nm -> Dom' t e
dom { domName :: Maybe (WithOrigin (Ranged ArgName))
domName = Maybe (WithOrigin (Ranged ArgName))
nm }

instance LensArgInfo (Dom' t e) where
  getArgInfo :: Dom' t e -> ArgInfo
getArgInfo        = Dom' t e -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo
  setArgInfo :: ArgInfo -> Dom' t e -> Dom' t e
setArgInfo ArgInfo
ai Dom' t e
dom = Dom' t e
dom { domInfo :: ArgInfo
domInfo = ArgInfo
ai }
  mapArgInfo :: (ArgInfo -> ArgInfo) -> Dom' t e -> Dom' t e
mapArgInfo ArgInfo -> ArgInfo
f  Dom' t e
dom = Dom' t e
dom { domInfo :: ArgInfo
domInfo = ArgInfo -> ArgInfo
f (ArgInfo -> ArgInfo) -> ArgInfo -> ArgInfo
forall a b. (a -> b) -> a -> b
$ Dom' t e -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo Dom' t e
dom }

-- The other lenses are defined through LensArgInfo

instance LensHiding        (Dom' t e) where
instance LensModality      (Dom' t e) where
instance LensOrigin        (Dom' t e) where
instance LensFreeVariables (Dom' t e) where
instance LensAnnotation    (Dom' t e) where

-- Since we have LensModality, we get relevance and quantity by default

instance LensRelevance (Dom' t e) where
instance LensQuantity  (Dom' t e) where
instance LensCohesion  (Dom' t e) where

argFromDom :: Dom' t a -> Arg a
argFromDom :: forall t a. Dom' t a -> Arg a
argFromDom Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
i, unDom :: forall t e. Dom' t e -> e
unDom = a
a} = ArgInfo -> a -> Arg a
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i a
a

namedArgFromDom :: Dom' t a -> NamedArg a
namedArgFromDom :: forall t a. Dom' t a -> NamedArg a
namedArgFromDom Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
i, domName :: forall t e. Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
domName = Maybe (WithOrigin (Ranged ArgName))
s, unDom :: forall t e. Dom' t e -> e
unDom = a
a} = ArgInfo -> Named_ a -> Arg (Named_ a)
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i (Named_ a -> Arg (Named_ a)) -> Named_ a -> Arg (Named_ a)
forall a b. (a -> b) -> a -> b
$ Maybe (WithOrigin (Ranged ArgName)) -> a -> Named_ a
forall name a. Maybe name -> a -> Named name a
Named Maybe (WithOrigin (Ranged ArgName))
s a
a

-- The following functions are less general than they could be:
-- @Dom@ could be replaced by @Dom' t@.
-- However, this causes problems with instance resolution in several places.
-- often for class AddContext.

domFromArg :: Arg a -> Dom a
domFromArg :: forall a. Arg a -> Dom a
domFromArg (Arg ArgInfo
i a
a) = ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe Term
-> a
-> Dom' Term a
forall t e.
ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
i Bool
False Maybe (WithOrigin (Ranged ArgName))
forall a. Maybe a
Nothing Maybe Term
forall a. Maybe a
Nothing a
a

domFromNamedArg :: NamedArg a -> Dom a
domFromNamedArg :: forall a. NamedArg a -> Dom a
domFromNamedArg (Arg ArgInfo
i Named_ a
a) = ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe Term
-> a
-> Dom' Term a
forall t e.
ArgInfo
-> Bool
-> Maybe (WithOrigin (Ranged ArgName))
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
i Bool
False (Named_ a -> Maybe (WithOrigin (Ranged ArgName))
forall name a. Named name a -> Maybe name
nameOf Named_ a
a) Maybe Term
forall a. Maybe a
Nothing (Named_ a -> a
forall name a. Named name a -> a
namedThing Named_ a
a)

defaultDom :: a -> Dom a
defaultDom :: forall a. a -> Dom a
defaultDom = ArgInfo -> a -> Dom a
forall a. ArgInfo -> a -> Dom a
defaultArgDom ArgInfo
defaultArgInfo

defaultArgDom :: ArgInfo -> a -> Dom a
defaultArgDom :: forall a. ArgInfo -> a -> Dom a
defaultArgDom ArgInfo
info a
x = Arg a -> Dom a
forall a. Arg a -> Dom a
domFromArg (ArgInfo -> a -> Arg a
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info a
x)

defaultNamedArgDom :: ArgInfo -> String -> a -> Dom a
defaultNamedArgDom :: forall a. ArgInfo -> ArgName -> a -> Dom a
defaultNamedArgDom ArgInfo
info ArgName
s a
x = (ArgInfo -> a -> Dom a
forall a. ArgInfo -> a -> Dom a
defaultArgDom ArgInfo
info a
x) { domName :: Maybe (WithOrigin (Ranged ArgName))
domName = WithOrigin (Ranged ArgName) -> Maybe (WithOrigin (Ranged ArgName))
forall a. a -> Maybe a
Just (WithOrigin (Ranged ArgName)
 -> Maybe (WithOrigin (Ranged ArgName)))
-> WithOrigin (Ranged ArgName)
-> Maybe (WithOrigin (Ranged ArgName))
forall a b. (a -> b) -> a -> b
$ Origin -> Ranged ArgName -> WithOrigin (Ranged ArgName)
forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted (Ranged ArgName -> WithOrigin (Ranged ArgName))
-> Ranged ArgName -> WithOrigin (Ranged ArgName)
forall a b. (a -> b) -> a -> b
$ ArgName -> Ranged ArgName
forall a. a -> Ranged a
unranged ArgName
s }

-- | Type of argument lists.
--
type Args       = [Arg Term]
type NamedArgs  = [NamedArg Term]

data DataOrRecord
  = IsData
  | IsRecord PatternOrCopattern
  deriving (Typeable DataOrRecord
Typeable DataOrRecord
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> DataOrRecord -> c DataOrRecord)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c DataOrRecord)
-> (DataOrRecord -> Constr)
-> (DataOrRecord -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c DataOrRecord))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c DataOrRecord))
-> ((forall b. Data b => b -> b) -> DataOrRecord -> DataOrRecord)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r)
-> (forall u. (forall d. Data d => d -> u) -> DataOrRecord -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> DataOrRecord -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord)
-> Data DataOrRecord
DataOrRecord -> DataType
DataOrRecord -> Constr
(forall b. Data b => b -> b) -> DataOrRecord -> DataOrRecord
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> DataOrRecord -> u
forall u. (forall d. Data d => d -> u) -> DataOrRecord -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DataOrRecord
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DataOrRecord -> c DataOrRecord
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DataOrRecord)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c DataOrRecord)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DataOrRecord -> m DataOrRecord
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DataOrRecord -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DataOrRecord -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> DataOrRecord -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> DataOrRecord -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DataOrRecord -> r
gmapT :: (forall b. Data b => b -> b) -> DataOrRecord -> DataOrRecord
$cgmapT :: (forall b. Data b => b -> b) -> DataOrRecord -> DataOrRecord
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c DataOrRecord)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c DataOrRecord)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DataOrRecord)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DataOrRecord)
dataTypeOf :: DataOrRecord -> DataType
$cdataTypeOf :: DataOrRecord -> DataType
toConstr :: DataOrRecord -> Constr
$ctoConstr :: DataOrRecord -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DataOrRecord
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DataOrRecord
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DataOrRecord -> c DataOrRecord
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DataOrRecord -> c DataOrRecord
Data, Int -> DataOrRecord -> ShowS
[DataOrRecord] -> ShowS
DataOrRecord -> ArgName
(Int -> DataOrRecord -> ShowS)
-> (DataOrRecord -> ArgName)
-> ([DataOrRecord] -> ShowS)
-> Show DataOrRecord
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [DataOrRecord] -> ShowS
$cshowList :: [DataOrRecord] -> ShowS
show :: DataOrRecord -> ArgName
$cshow :: DataOrRecord -> ArgName
showsPrec :: Int -> DataOrRecord -> ShowS
$cshowsPrec :: Int -> DataOrRecord -> ShowS
Show, DataOrRecord -> DataOrRecord -> Bool
(DataOrRecord -> DataOrRecord -> Bool)
-> (DataOrRecord -> DataOrRecord -> Bool) -> Eq DataOrRecord
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DataOrRecord -> DataOrRecord -> Bool
$c/= :: DataOrRecord -> DataOrRecord -> Bool
== :: DataOrRecord -> DataOrRecord -> Bool
$c== :: DataOrRecord -> DataOrRecord -> Bool
Eq, (forall x. DataOrRecord -> Rep DataOrRecord x)
-> (forall x. Rep DataOrRecord x -> DataOrRecord)
-> Generic DataOrRecord
forall x. Rep DataOrRecord x -> DataOrRecord
forall x. DataOrRecord -> Rep DataOrRecord x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep DataOrRecord x -> DataOrRecord
$cfrom :: forall x. DataOrRecord -> Rep DataOrRecord x
Generic)

-- | Store the names of the record fields in the constructor.
--   This allows reduction of projection redexes outside of TCM.
--   For instance, during substitution and application.
data ConHead = ConHead
  { ConHead -> QName
conName       :: QName         -- ^ The name of the constructor.
  , ConHead -> DataOrRecord
conDataRecord :: DataOrRecord  -- ^ Data or record constructor?
  , ConHead -> Induction
conInductive  :: Induction     -- ^ Record constructors can be coinductive.
  , ConHead -> [Arg QName]
conFields     :: [Arg QName]   -- ^ The name of the record fields.
      --   'Arg' is stored since the info in the constructor args
      --   might not be accurate because of subtyping (issue #2170).
  } deriving (Typeable ConHead
Typeable ConHead
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> ConHead -> c ConHead)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c ConHead)
-> (ConHead -> Constr)
-> (ConHead -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c ConHead))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConHead))
-> ((forall b. Data b => b -> b) -> ConHead -> ConHead)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> ConHead -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> ConHead -> r)
-> (forall u. (forall d. Data d => d -> u) -> ConHead -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> ConHead -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> ConHead -> m ConHead)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> ConHead -> m ConHead)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> ConHead -> m ConHead)
-> Data ConHead
ConHead -> DataType
ConHead -> Constr
(forall b. Data b => b -> b) -> ConHead -> ConHead
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> ConHead -> u
forall u. (forall d. Data d => d -> u) -> ConHead -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ConHead -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ConHead -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ConHead
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ConHead -> c ConHead
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ConHead)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConHead)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ConHead -> m ConHead
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> ConHead -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> ConHead -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> ConHead -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> ConHead -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ConHead -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ConHead -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ConHead -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ConHead -> r
gmapT :: (forall b. Data b => b -> b) -> ConHead -> ConHead
$cgmapT :: (forall b. Data b => b -> b) -> ConHead -> ConHead
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConHead)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConHead)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ConHead)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ConHead)
dataTypeOf :: ConHead -> DataType
$cdataTypeOf :: ConHead -> DataType
toConstr :: ConHead -> Constr
$ctoConstr :: ConHead -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ConHead
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ConHead
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ConHead -> c ConHead
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ConHead -> c ConHead
Data, Int -> ConHead -> ShowS
[ConHead] -> ShowS
ConHead -> ArgName
(Int -> ConHead -> ShowS)
-> (ConHead -> ArgName) -> ([ConHead] -> ShowS) -> Show ConHead
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [ConHead] -> ShowS
$cshowList :: [ConHead] -> ShowS
show :: ConHead -> ArgName
$cshow :: ConHead -> ArgName
showsPrec :: Int -> ConHead -> ShowS
$cshowsPrec :: Int -> ConHead -> ShowS
Show, (forall x. ConHead -> Rep ConHead x)
-> (forall x. Rep ConHead x -> ConHead) -> Generic ConHead
forall x. Rep ConHead x -> ConHead
forall x. ConHead -> Rep ConHead x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep ConHead x -> ConHead
$cfrom :: forall x. ConHead -> Rep ConHead x
Generic)

instance Eq ConHead where
  == :: ConHead -> ConHead -> Bool
(==) = QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
(==) (QName -> QName -> Bool)
-> (ConHead -> QName) -> ConHead -> ConHead -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` ConHead -> QName
conName

instance Ord ConHead where
  <= :: ConHead -> ConHead -> Bool
(<=) = QName -> QName -> Bool
forall a. Ord a => a -> a -> Bool
(<=) (QName -> QName -> Bool)
-> (ConHead -> QName) -> ConHead -> ConHead -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` ConHead -> QName
conName

instance Pretty ConHead where
  pretty :: ConHead -> Doc
pretty = QName -> Doc
forall a. Pretty a => a -> Doc
pretty (QName -> Doc) -> (ConHead -> QName) -> ConHead -> Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConHead -> QName
conName

instance HasRange ConHead where
  getRange :: ConHead -> Range
getRange = QName -> Range
forall a. HasRange a => a -> Range
getRange (QName -> Range) -> (ConHead -> QName) -> ConHead -> Range
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConHead -> QName
conName

instance SetRange ConHead where
  setRange :: Range -> ConHead -> ConHead
setRange Range
r = (QName -> QName) -> ConHead -> ConHead
forall a. LensConName a => (QName -> QName) -> a -> a
mapConName (Range -> QName -> QName
forall a. SetRange a => Range -> a -> a
setRange Range
r)

class LensConName a where
  getConName :: a -> QName
  setConName :: QName -> a -> a
  setConName = (QName -> QName) -> a -> a
forall a. LensConName a => (QName -> QName) -> a -> a
mapConName ((QName -> QName) -> a -> a)
-> (QName -> QName -> QName) -> QName -> a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. QName -> QName -> QName
forall a b. a -> b -> a
const
  mapConName :: (QName -> QName) -> a -> a
  mapConName QName -> QName
f a
a = QName -> a -> a
forall a. LensConName a => QName -> a -> a
setConName (QName -> QName
f (a -> QName
forall a. LensConName a => a -> QName
getConName a
a)) a
a

instance LensConName ConHead where
  getConName :: ConHead -> QName
getConName = ConHead -> QName
conName
  setConName :: QName -> ConHead -> ConHead
setConName QName
c ConHead
con = ConHead
con { conName :: QName
conName = QName
c }


-- | Raw values.
--
--   @Def@ is used for both defined and undefined constants.
--   Assume there is a type declaration and a definition for
--     every constant, even if the definition is an empty
--     list of clauses.
--
data Term = Var {-# UNPACK #-} !Int Elims -- ^ @x es@ neutral
          | Lam ArgInfo (Abs Term)        -- ^ Terms are beta normal. Relevance is ignored
          | Lit Literal
          | Def QName Elims               -- ^ @f es@, possibly a delta/iota-redex
          | Con ConHead ConInfo Elims
          -- ^ @c es@ or @record { fs = es }@
          --   @es@ allows only Apply and IApply eliminations,
          --   and IApply only for data constructors.
          | Pi (Dom Type) (Abs Type)      -- ^ dependent or non-dependent function space
          | Sort Sort
          | Level Level
          | MetaV {-# UNPACK #-} !MetaId Elims
          | DontCare Term
            -- ^ Irrelevant stuff in relevant position, but created
            --   in an irrelevant context.  Basically, an internal
            --   version of the irrelevance axiom @.irrAx : .A -> A@.
          | Dummy String Elims
            -- ^ A (part of a) term or type which is only used for internal purposes.
            --   Replaces the @Sort Prop@ hack.
            --   The @String@ typically describes the location where we create this dummy,
            --   but can contain other information as well.
            --   The second field accumulates eliminations in case we
            --   apply a dummy term to more of them.
  deriving (Typeable Term
Typeable Term
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Term -> c Term)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c Term)
-> (Term -> Constr)
-> (Term -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c Term))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Term))
-> ((forall b. Data b => b -> b) -> Term -> Term)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r)
-> (forall u. (forall d. Data d => d -> u) -> Term -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Term -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Term -> m Term)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Term -> m Term)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Term -> m Term)
-> Data Term
Term -> DataType
Term -> Constr
(forall b. Data b => b -> b) -> Term -> Term
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Term -> u
forall u. (forall d. Data d => d -> u) -> Term -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Term -> m Term
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Term -> m Term
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Term
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Term -> c Term
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Term)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Term)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Term -> m Term
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Term -> m Term
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Term -> m Term
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Term -> m Term
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Term -> m Term
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Term -> m Term
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Term -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Term -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Term -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Term -> [u]
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r
$cgmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r
$cgmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Term -> r
gmapT :: (forall b. Data b => b -> b) -> Term -> Term
$cgmapT :: (forall b. Data b => b -> b) -> Term -> Term
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Term)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Term)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Term)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Term)
dataTypeOf :: Term -> DataType
$cdataTypeOf :: Term -> DataType
toConstr :: Term -> Constr
$ctoConstr :: Term -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Term
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Term
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Term -> c Term
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Term -> c Term
Data, Int -> Term -> ShowS
[Term] -> ShowS
Term -> ArgName
(Int -> Term -> ShowS)
-> (Term -> ArgName) -> ([Term] -> ShowS) -> Show Term
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Term] -> ShowS
$cshowList :: [Term] -> ShowS
show :: Term -> ArgName
$cshow :: Term -> ArgName
showsPrec :: Int -> Term -> ShowS
$cshowsPrec :: Int -> Term -> ShowS
Show)

type ConInfo = ConOrigin

type Elim = Elim' Term
type Elims = [Elim]  -- ^ eliminations ordered left-to-right.

-- | Binder.
--
--   'Abs': The bound variable might appear in the body.
--   'NoAbs' is pseudo-binder, it does not introduce a fresh variable,
--      similar to the @const@ of Haskell.
--
data Abs a = Abs   { forall a. Abs a -> ArgName
absName :: ArgName, forall a. Abs a -> a
unAbs :: a }
               -- ^ The body has (at least) one free variable.
               --   Danger: 'unAbs' doesn't shift variables properly
           | NoAbs { absName :: ArgName, unAbs :: a }
  deriving (Typeable (Abs a)
Typeable (Abs a)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Abs a -> c (Abs a))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Abs a))
-> (Abs a -> Constr)
-> (Abs a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Abs a)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Abs a)))
-> ((forall b. Data b => b -> b) -> Abs a -> Abs a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r)
-> (forall u. (forall d. Data d => d -> u) -> Abs a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Abs a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Abs a -> m (Abs a))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Abs a -> m (Abs a))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Abs a -> m (Abs a))
-> Data (Abs a)
Abs a -> DataType
Abs a -> Constr
(forall b. Data b => b -> b) -> Abs a -> Abs a
forall {a}. Data a => Typeable (Abs a)
forall a. Data a => Abs a -> DataType
forall a. Data a => Abs a -> Constr
forall a. Data a => (forall b. Data b => b -> b) -> Abs a -> Abs a
forall a u.
Data a =>
Int -> (forall d. Data d => d -> u) -> Abs a -> u
forall a u. Data a => (forall d. Data d => d -> u) -> Abs a -> [u]
forall a r r'.
Data a =>
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
forall a r r'.
Data a =>
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
forall a (m :: * -> *).
(Data a, Monad m) =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
forall a (m :: * -> *).
(Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
forall a (c :: * -> *).
Data a =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Abs a)
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Abs a -> c (Abs a)
forall a (t :: * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Abs a))
forall a (t :: * -> * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Abs a))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Abs a -> u
forall u. (forall d. Data d => d -> u) -> Abs a -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Abs a)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Abs a -> c (Abs a)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Abs a))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Abs a))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
$cgmapMo :: forall a (m :: * -> *).
(Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
$cgmapMp :: forall a (m :: * -> *).
(Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
$cgmapM :: forall a (m :: * -> *).
(Data a, Monad m) =>
(forall d. Data d => d -> m d) -> Abs a -> m (Abs a)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Abs a -> u
$cgmapQi :: forall a u.
Data a =>
Int -> (forall d. Data d => d -> u) -> Abs a -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Abs a -> [u]
$cgmapQ :: forall a u. Data a => (forall d. Data d => d -> u) -> Abs a -> [u]
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
$cgmapQr :: forall a r r'.
Data a =>
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
$cgmapQl :: forall a r r'.
Data a =>
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Abs a -> r
gmapT :: (forall b. Data b => b -> b) -> Abs a -> Abs a
$cgmapT :: forall a. Data a => (forall b. Data b => b -> b) -> Abs a -> Abs a
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Abs a))
$cdataCast2 :: forall a (t :: * -> * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Abs a))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Abs a))
$cdataCast1 :: forall a (t :: * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Abs a))
dataTypeOf :: Abs a -> DataType
$cdataTypeOf :: forall a. Data a => Abs a -> DataType
toConstr :: Abs a -> Constr
$ctoConstr :: forall a. Data a => Abs a -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Abs a)
$cgunfold :: forall a (c :: * -> *).
Data a =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Abs a)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Abs a -> c (Abs a)
$cgfoldl :: forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Abs a -> c (Abs a)
Data, (forall a b. (a -> b) -> Abs a -> Abs b)
-> (forall a b. a -> Abs b -> Abs a) -> Functor Abs
forall a b. a -> Abs b -> Abs a
forall a b. (a -> b) -> Abs a -> Abs b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Abs b -> Abs a
$c<$ :: forall a b. a -> Abs b -> Abs a
fmap :: forall a b. (a -> b) -> Abs a -> Abs b
$cfmap :: forall a b. (a -> b) -> Abs a -> Abs b
Functor, (forall m. Monoid m => Abs m -> m)
-> (forall m a. Monoid m => (a -> m) -> Abs a -> m)
-> (forall m a. Monoid m => (a -> m) -> Abs a -> m)
-> (forall a b. (a -> b -> b) -> b -> Abs a -> b)
-> (forall a b. (a -> b -> b) -> b -> Abs a -> b)
-> (forall b a. (b -> a -> b) -> b -> Abs a -> b)
-> (forall b a. (b -> a -> b) -> b -> Abs a -> b)
-> (forall a. (a -> a -> a) -> Abs a -> a)
-> (forall a. (a -> a -> a) -> Abs a -> a)
-> (forall a. Abs a -> [a])
-> (forall a. Abs a -> Bool)
-> (forall a. Abs a -> Int)
-> (forall a. Eq a => a -> Abs a -> Bool)
-> (forall a. Ord a => Abs a -> a)
-> (forall a. Ord a => Abs a -> a)
-> (forall a. Num a => Abs a -> a)
-> (forall a. Num a => Abs a -> a)
-> Foldable Abs
forall a. Eq a => a -> Abs a -> Bool
forall a. Num a => Abs a -> a
forall a. Ord a => Abs a -> a
forall m. Monoid m => Abs m -> m
forall a. Abs a -> Bool
forall a. Abs a -> Int
forall a. Abs a -> [a]
forall a. (a -> a -> a) -> Abs a -> a
forall m a. Monoid m => (a -> m) -> Abs a -> m
forall b a. (b -> a -> b) -> b -> Abs a -> b
forall a b. (a -> b -> b) -> b -> Abs a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Abs a -> a
$cproduct :: forall a. Num a => Abs a -> a
sum :: forall a. Num a => Abs a -> a
$csum :: forall a. Num a => Abs a -> a
minimum :: forall a. Ord a => Abs a -> a
$cminimum :: forall a. Ord a => Abs a -> a
maximum :: forall a. Ord a => Abs a -> a
$cmaximum :: forall a. Ord a => Abs a -> a
elem :: forall a. Eq a => a -> Abs a -> Bool
$celem :: forall a. Eq a => a -> Abs a -> Bool
length :: forall a. Abs a -> Int
$clength :: forall a. Abs a -> Int
null :: forall a. Abs a -> Bool
$cnull :: forall a. Abs a -> Bool
toList :: forall a. Abs a -> [a]
$ctoList :: forall a. Abs a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Abs a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Abs a -> a
foldr1 :: forall a. (a -> a -> a) -> Abs a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Abs a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Abs a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Abs a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Abs a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Abs a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Abs a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Abs a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Abs a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Abs a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Abs a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Abs a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Abs a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Abs a -> m
fold :: forall m. Monoid m => Abs m -> m
$cfold :: forall m. Monoid m => Abs m -> m
Foldable, Functor Abs
Foldable Abs
Functor Abs
-> Foldable Abs
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Abs a -> f (Abs b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Abs (f a) -> f (Abs a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Abs a -> m (Abs b))
-> (forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a))
-> Traversable Abs
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a)
forall (f :: * -> *) a. Applicative f => Abs (f a) -> f (Abs a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Abs a -> m (Abs b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
sequence :: forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a)
$csequence :: forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Abs a -> m (Abs b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Abs a -> m (Abs b)
sequenceA :: forall (f :: * -> *) a. Applicative f => Abs (f a) -> f (Abs a)
$csequenceA :: forall (f :: * -> *) a. Applicative f => Abs (f a) -> f (Abs a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
Traversable, (forall x. Abs a -> Rep (Abs a) x)
-> (forall x. Rep (Abs a) x -> Abs a) -> Generic (Abs a)
forall x. Rep (Abs a) x -> Abs a
forall x. Abs a -> Rep (Abs a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Abs a) x -> Abs a
forall a x. Abs a -> Rep (Abs a) x
$cto :: forall a x. Rep (Abs a) x -> Abs a
$cfrom :: forall a x. Abs a -> Rep (Abs a) x
Generic)

instance Decoration Abs where
  traverseF :: forall (m :: * -> *) a b.
Functor m =>
(a -> m b) -> Abs a -> m (Abs b)
traverseF a -> m b
f (Abs   ArgName
x a
a) = ArgName -> b -> Abs b
forall a. ArgName -> a -> Abs a
Abs   ArgName
x (b -> Abs b) -> m b -> m (Abs b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a
  traverseF a -> m b
f (NoAbs ArgName
x a
a) = ArgName -> b -> Abs b
forall a. ArgName -> a -> Abs a
NoAbs ArgName
x (b -> Abs b) -> m b -> m (Abs b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a

-- | Types are terms with a sort annotation.
--
data Type'' t a = El { forall t a. Type'' t a -> Sort' t
_getSort :: Sort' t, forall t a. Type'' t a -> a
unEl :: a }
  deriving (Typeable (Type'' t a)
Typeable (Type'' t a)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Type'' t a -> c (Type'' t a))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Type'' t a))
-> (Type'' t a -> Constr)
-> (Type'' t a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Type'' t a)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (Type'' t a)))
-> ((forall b. Data b => b -> b) -> Type'' t a -> Type'' t a)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Type'' t a -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Type'' t a -> r)
-> (forall u. (forall d. Data d => d -> u) -> Type'' t a -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> Type'' t a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a))
-> Data (Type'' t a)
Type'' t a -> DataType
Type'' t a -> Constr
(forall b. Data b => b -> b) -> Type'' t a -> Type'' t a
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Type'' t a -> u
forall u. (forall d. Data d => d -> u) -> Type'' t a -> [u]
forall {t} {a}. (Data t, Data a) => Typeable (Type'' t a)
forall t a. (Data t, Data a) => Type'' t a -> DataType
forall t a. (Data t, Data a) => Type'' t a -> Constr
forall t a.
(Data t, Data a) =>
(forall b. Data b => b -> b) -> Type'' t a -> Type'' t a
forall t a u.
(Data t, Data a) =>
Int -> (forall d. Data d => d -> u) -> Type'' t a -> u
forall t a u.
(Data t, Data a) =>
(forall d. Data d => d -> u) -> Type'' t a -> [u]
forall t a r r'.
(Data t, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
forall t a r r'.
(Data t, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
forall t a (m :: * -> *).
(Data t, Data a, Monad m) =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
forall t a (m :: * -> *).
(Data t, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
forall t a (c :: * -> *).
(Data t, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Type'' t a)
forall t a (c :: * -> *).
(Data t, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Type'' t a -> c (Type'' t a)
forall t a (t :: * -> *) (c :: * -> *).
(Data t, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Type'' t a))
forall t a (t :: * -> * -> *) (c :: * -> *).
(Data t, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Type'' t a))
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Type'' t a)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Type'' t a -> c (Type'' t a)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Type'' t a))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Type'' t a))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
$cgmapMo :: forall t a (m :: * -> *).
(Data t, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
$cgmapMp :: forall t a (m :: * -> *).
(Data t, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
$cgmapM :: forall t a (m :: * -> *).
(Data t, Data a, Monad m) =>
(forall d. Data d => d -> m d) -> Type'' t a -> m (Type'' t a)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Type'' t a -> u
$cgmapQi :: forall t a u.
(Data t, Data a) =>
Int -> (forall d. Data d => d -> u) -> Type'' t a -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Type'' t a -> [u]
$cgmapQ :: forall t a u.
(Data t, Data a) =>
(forall d. Data d => d -> u) -> Type'' t a -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
$cgmapQr :: forall t a r r'.
(Data t, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
$cgmapQl :: forall t a r r'.
(Data t, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Type'' t a -> r
gmapT :: (forall b. Data b => b -> b) -> Type'' t a -> Type'' t a
$cgmapT :: forall t a.
(Data t, Data a) =>
(forall b. Data b => b -> b) -> Type'' t a -> Type'' t a
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Type'' t a))
$cdataCast2 :: forall t a (t :: * -> * -> *) (c :: * -> *).
(Data t, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Type'' t a))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Type'' t a))
$cdataCast1 :: forall t a (t :: * -> *) (c :: * -> *).
(Data t, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Type'' t a))
dataTypeOf :: Type'' t a -> DataType
$cdataTypeOf :: forall t a. (Data t, Data a) => Type'' t a -> DataType
toConstr :: Type'' t a -> Constr
$ctoConstr :: forall t a. (Data t, Data a) => Type'' t a -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Type'' t a)
$cgunfold :: forall t a (c :: * -> *).
(Data t, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Type'' t a)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Type'' t a -> c (Type'' t a)
$cgfoldl :: forall t a (c :: * -> *).
(Data t, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Type'' t a -> c (Type'' t a)
Data, Int -> Type'' t a -> ShowS
[Type'' t a] -> ShowS
Type'' t a -> ArgName
(Int -> Type'' t a -> ShowS)
-> (Type'' t a -> ArgName)
-> ([Type'' t a] -> ShowS)
-> Show (Type'' t a)
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
forall t a. (Show t, Show a) => Int -> Type'' t a -> ShowS
forall t a. (Show t, Show a) => [Type'' t a] -> ShowS
forall t a. (Show t, Show a) => Type'' t a -> ArgName
showList :: [Type'' t a] -> ShowS
$cshowList :: forall t a. (Show t, Show a) => [Type'' t a] -> ShowS
show :: Type'' t a -> ArgName
$cshow :: forall t a. (Show t, Show a) => Type'' t a -> ArgName
showsPrec :: Int -> Type'' t a -> ShowS
$cshowsPrec :: forall t a. (Show t, Show a) => Int -> Type'' t a -> ShowS
Show, (forall a b. (a -> b) -> Type'' t a -> Type'' t b)
-> (forall a b. a -> Type'' t b -> Type'' t a)
-> Functor (Type'' t)
forall a b. a -> Type'' t b -> Type'' t a
forall a b. (a -> b) -> Type'' t a -> Type'' t b
forall t a b. a -> Type'' t b -> Type'' t a
forall t a b. (a -> b) -> Type'' t a -> Type'' t b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Type'' t b -> Type'' t a
$c<$ :: forall t a b. a -> Type'' t b -> Type'' t a
fmap :: forall a b. (a -> b) -> Type'' t a -> Type'' t b
$cfmap :: forall t a b. (a -> b) -> Type'' t a -> Type'' t b
Functor, (forall m. Monoid m => Type'' t m -> m)
-> (forall m a. Monoid m => (a -> m) -> Type'' t a -> m)
-> (forall m a. Monoid m => (a -> m) -> Type'' t a -> m)
-> (forall a b. (a -> b -> b) -> b -> Type'' t a -> b)
-> (forall a b. (a -> b -> b) -> b -> Type'' t a -> b)
-> (forall b a. (b -> a -> b) -> b -> Type'' t a -> b)
-> (forall b a. (b -> a -> b) -> b -> Type'' t a -> b)
-> (forall a. (a -> a -> a) -> Type'' t a -> a)
-> (forall a. (a -> a -> a) -> Type'' t a -> a)
-> (forall a. Type'' t a -> [a])
-> (forall a. Type'' t a -> Bool)
-> (forall a. Type'' t a -> Int)
-> (forall a. Eq a => a -> Type'' t a -> Bool)
-> (forall a. Ord a => Type'' t a -> a)
-> (forall a. Ord a => Type'' t a -> a)
-> (forall a. Num a => Type'' t a -> a)
-> (forall a. Num a => Type'' t a -> a)
-> Foldable (Type'' t)
forall a. Eq a => a -> Type'' t a -> Bool
forall a. Num a => Type'' t a -> a
forall a. Ord a => Type'' t a -> a
forall m. Monoid m => Type'' t m -> m
forall a. Type'' t a -> Bool
forall a. Type'' t a -> Int
forall a. Type'' t a -> [a]
forall a. (a -> a -> a) -> Type'' t a -> a
forall t a. Eq a => a -> Type'' t a -> Bool
forall t a. Num a => Type'' t a -> a
forall t a. Ord a => Type'' t a -> a
forall m a. Monoid m => (a -> m) -> Type'' t a -> m
forall t m. Monoid m => Type'' t m -> m
forall t a. Type'' t a -> Bool
forall t a. Type'' t a -> Int
forall t a. Type'' t a -> [a]
forall b a. (b -> a -> b) -> b -> Type'' t a -> b
forall a b. (a -> b -> b) -> b -> Type'' t a -> b
forall t a. (a -> a -> a) -> Type'' t a -> a
forall t m a. Monoid m => (a -> m) -> Type'' t a -> m
forall t b a. (b -> a -> b) -> b -> Type'' t a -> b
forall t a b. (a -> b -> b) -> b -> Type'' t a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Type'' t a -> a
$cproduct :: forall t a. Num a => Type'' t a -> a
sum :: forall a. Num a => Type'' t a -> a
$csum :: forall t a. Num a => Type'' t a -> a
minimum :: forall a. Ord a => Type'' t a -> a
$cminimum :: forall t a. Ord a => Type'' t a -> a
maximum :: forall a. Ord a => Type'' t a -> a
$cmaximum :: forall t a. Ord a => Type'' t a -> a
elem :: forall a. Eq a => a -> Type'' t a -> Bool
$celem :: forall t a. Eq a => a -> Type'' t a -> Bool
length :: forall a. Type'' t a -> Int
$clength :: forall t a. Type'' t a -> Int
null :: forall a. Type'' t a -> Bool
$cnull :: forall t a. Type'' t a -> Bool
toList :: forall a. Type'' t a -> [a]
$ctoList :: forall t a. Type'' t a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Type'' t a -> a
$cfoldl1 :: forall t a. (a -> a -> a) -> Type'' t a -> a
foldr1 :: forall a. (a -> a -> a) -> Type'' t a -> a
$cfoldr1 :: forall t a. (a -> a -> a) -> Type'' t a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Type'' t a -> b
$cfoldl' :: forall t b a. (b -> a -> b) -> b -> Type'' t a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Type'' t a -> b
$cfoldl :: forall t b a. (b -> a -> b) -> b -> Type'' t a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Type'' t a -> b
$cfoldr' :: forall t a b. (a -> b -> b) -> b -> Type'' t a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Type'' t a -> b
$cfoldr :: forall t a b. (a -> b -> b) -> b -> Type'' t a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Type'' t a -> m
$cfoldMap' :: forall t m a. Monoid m => (a -> m) -> Type'' t a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Type'' t a -> m
$cfoldMap :: forall t m a. Monoid m => (a -> m) -> Type'' t a -> m
fold :: forall m. Monoid m => Type'' t m -> m
$cfold :: forall t m. Monoid m => Type'' t m -> m
Foldable, Functor (Type'' t)
Foldable (Type'' t)
Functor (Type'' t)
-> Foldable (Type'' t)
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Type'' t a -> f (Type'' t b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Type'' t (f a) -> f (Type'' t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Type'' t a -> m (Type'' t b))
-> (forall (m :: * -> *) a.
    Monad m =>
    Type'' t (m a) -> m (Type'' t a))
-> Traversable (Type'' t)
forall t. Functor (Type'' t)
forall t. Foldable (Type'' t)
forall t (m :: * -> *) a.
Monad m =>
Type'' t (m a) -> m (Type'' t a)
forall t (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Type'' t (m a) -> m (Type'' t a)
forall (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
sequence :: forall (m :: * -> *) a. Monad m => Type'' t (m a) -> m (Type'' t a)
$csequence :: forall t (m :: * -> *) a.
Monad m =>
Type'' t (m a) -> m (Type'' t a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
$cmapM :: forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
$csequenceA :: forall t (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
$ctraverse :: forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
Traversable)

type Type' a = Type'' Term a

type Type = Type' Term

instance Decoration (Type'' t) where
  traverseF :: forall (m :: * -> *) a b.
Functor m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
traverseF a -> m b
f (El Sort' t
s a
a) = Sort' t -> b -> Type'' t b
forall t a. Sort' t -> a -> Type'' t a
El Sort' t
s (b -> Type'' t b) -> m b -> m (Type'' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a

class LensSort a where
  lensSort ::  Lens' Sort a
  getSort  :: a -> Sort
  getSort a
a = a
a a -> Lens' Sort a -> Sort
forall o i. o -> Lens' i o -> i
^. forall a. LensSort a => Lens' Sort a
Lens' Sort a
lensSort

instance LensSort Sort where
  lensSort :: Lens' Sort Sort
lensSort Sort -> f Sort
f Sort
s = Sort -> f Sort
f Sort
s f Sort -> (Sort -> Sort) -> f Sort
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Sort
s' -> Sort
s'

instance LensSort (Type' a) where
  lensSort :: Lens' Sort (Type' a)
lensSort Sort -> f Sort
f (El Sort
s a
a) = Sort -> f Sort
f Sort
s f Sort -> (Sort -> Type' a) -> f (Type' a)
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Sort
s' -> Sort -> a -> Type' a
forall t a. Sort' t -> a -> Type'' t a
El Sort
s' a
a

-- General instance leads to overlapping instances.
-- instance (Decoration f, LensSort a) => LensSort (f a) where
instance LensSort a => LensSort (Dom a) where
  lensSort :: Lens' Sort (Dom a)
lensSort = (a -> f a) -> Dom a -> f (Dom a)
forall (t :: * -> *) (m :: * -> *) a b.
(Decoration t, Functor m) =>
(a -> m b) -> t a -> m (t b)
traverseF ((a -> f a) -> Dom a -> f (Dom a))
-> ((Sort -> f Sort) -> a -> f a)
-> (Sort -> f Sort)
-> Dom a
-> f (Dom a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Sort -> f Sort) -> a -> f a
forall a. LensSort a => Lens' Sort a
lensSort

instance LensSort a => LensSort (Arg a) where
  lensSort :: Lens' Sort (Arg a)
lensSort = (a -> f a) -> Arg a -> f (Arg a)
forall (t :: * -> *) (m :: * -> *) a b.
(Decoration t, Functor m) =>
(a -> m b) -> t a -> m (t b)
traverseF ((a -> f a) -> Arg a -> f (Arg a))
-> ((Sort -> f Sort) -> a -> f a)
-> (Sort -> f Sort)
-> Arg a
-> f (Arg a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Sort -> f Sort) -> a -> f a
forall a. LensSort a => Lens' Sort a
lensSort


-- | Sequence of types. An argument of the first type is bound in later types
--   and so on.
data Tele a = EmptyTel
            | ExtendTel a (Abs (Tele a))  -- ^ 'Abs' is never 'NoAbs'.
  deriving (Typeable (Tele a)
Typeable (Tele a)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Tele a -> c (Tele a))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Tele a))
-> (Tele a -> Constr)
-> (Tele a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Tele a)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tele a)))
-> ((forall b. Data b => b -> b) -> Tele a -> Tele a)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Tele a -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Tele a -> r)
-> (forall u. (forall d. Data d => d -> u) -> Tele a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Tele a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Tele a -> m (Tele a))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Tele a -> m (Tele a))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Tele a -> m (Tele a))
-> Data (Tele a)
Tele a -> DataType
Tele a -> Constr
(forall b. Data b => b -> b) -> Tele a -> Tele a
forall {a}. Data a => Typeable (Tele a)
forall a. Data a => Tele a -> DataType
forall a. Data a => Tele a -> Constr
forall a.
Data a =>
(forall b. Data b => b -> b) -> Tele a -> Tele a
forall a u.
Data a =>
Int -> (forall d. Data d => d -> u) -> Tele a -> u
forall a u. Data a => (forall d. Data d => d -> u) -> Tele a -> [u]
forall a r r'.
Data a =>
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
forall a r r'.
Data a =>
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
forall a (m :: * -> *).
(Data a, Monad m) =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
forall a (m :: * -> *).
(Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
forall a (c :: * -> *).
Data a =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Tele a)
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Tele a -> c (Tele a)
forall a (t :: * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Tele a))
forall a (t :: * -> * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tele a))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Tele a -> u
forall u. (forall d. Data d => d -> u) -> Tele a -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Tele a)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Tele a -> c (Tele a)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Tele a))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tele a))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
$cgmapMo :: forall a (m :: * -> *).
(Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
$cgmapMp :: forall a (m :: * -> *).
(Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
$cgmapM :: forall a (m :: * -> *).
(Data a, Monad m) =>
(forall d. Data d => d -> m d) -> Tele a -> m (Tele a)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Tele a -> u
$cgmapQi :: forall a u.
Data a =>
Int -> (forall d. Data d => d -> u) -> Tele a -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Tele a -> [u]
$cgmapQ :: forall a u. Data a => (forall d. Data d => d -> u) -> Tele a -> [u]
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
$cgmapQr :: forall a r r'.
Data a =>
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
$cgmapQl :: forall a r r'.
Data a =>
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tele a -> r
gmapT :: (forall b. Data b => b -> b) -> Tele a -> Tele a
$cgmapT :: forall a.
Data a =>
(forall b. Data b => b -> b) -> Tele a -> Tele a
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tele a))
$cdataCast2 :: forall a (t :: * -> * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tele a))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Tele a))
$cdataCast1 :: forall a (t :: * -> *) (c :: * -> *).
(Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Tele a))
dataTypeOf :: Tele a -> DataType
$cdataTypeOf :: forall a. Data a => Tele a -> DataType
toConstr :: Tele a -> Constr
$ctoConstr :: forall a. Data a => Tele a -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Tele a)
$cgunfold :: forall a (c :: * -> *).
Data a =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Tele a)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Tele a -> c (Tele a)
$cgfoldl :: forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Tele a -> c (Tele a)
Data, Int -> Tele a -> ShowS
[Tele a] -> ShowS
Tele a -> ArgName
(Int -> Tele a -> ShowS)
-> (Tele a -> ArgName) -> ([Tele a] -> ShowS) -> Show (Tele a)
forall a. Show a => Int -> Tele a -> ShowS
forall a. Show a => [Tele a] -> ShowS
forall a. Show a => Tele a -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Tele a] -> ShowS
$cshowList :: forall a. Show a => [Tele a] -> ShowS
show :: Tele a -> ArgName
$cshow :: forall a. Show a => Tele a -> ArgName
showsPrec :: Int -> Tele a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> Tele a -> ShowS
Show, (forall a b. (a -> b) -> Tele a -> Tele b)
-> (forall a b. a -> Tele b -> Tele a) -> Functor Tele
forall a b. a -> Tele b -> Tele a
forall a b. (a -> b) -> Tele a -> Tele b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Tele b -> Tele a
$c<$ :: forall a b. a -> Tele b -> Tele a
fmap :: forall a b. (a -> b) -> Tele a -> Tele b
$cfmap :: forall a b. (a -> b) -> Tele a -> Tele b
Functor, (forall m. Monoid m => Tele m -> m)
-> (forall m a. Monoid m => (a -> m) -> Tele a -> m)
-> (forall m a. Monoid m => (a -> m) -> Tele a -> m)
-> (forall a b. (a -> b -> b) -> b -> Tele a -> b)
-> (forall a b. (a -> b -> b) -> b -> Tele a -> b)
-> (forall b a. (b -> a -> b) -> b -> Tele a -> b)
-> (forall b a. (b -> a -> b) -> b -> Tele a -> b)
-> (forall a. (a -> a -> a) -> Tele a -> a)
-> (forall a. (a -> a -> a) -> Tele a -> a)
-> (forall a. Tele a -> [a])
-> (forall a. Tele a -> Bool)
-> (forall a. Tele a -> Int)
-> (forall a. Eq a => a -> Tele a -> Bool)
-> (forall a. Ord a => Tele a -> a)
-> (forall a. Ord a => Tele a -> a)
-> (forall a. Num a => Tele a -> a)
-> (forall a. Num a => Tele a -> a)
-> Foldable Tele
forall a. Eq a => a -> Tele a -> Bool
forall a. Num a => Tele a -> a
forall a. Ord a => Tele a -> a
forall m. Monoid m => Tele m -> m
forall a. Tele a -> Bool
forall a. Tele a -> Int
forall a. Tele a -> [a]
forall a. (a -> a -> a) -> Tele a -> a
forall m a. Monoid m => (a -> m) -> Tele a -> m
forall b a. (b -> a -> b) -> b -> Tele a -> b
forall a b. (a -> b -> b) -> b -> Tele a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Tele a -> a
$cproduct :: forall a. Num a => Tele a -> a
sum :: forall a. Num a => Tele a -> a
$csum :: forall a. Num a => Tele a -> a
minimum :: forall a. Ord a => Tele a -> a
$cminimum :: forall a. Ord a => Tele a -> a
maximum :: forall a. Ord a => Tele a -> a
$cmaximum :: forall a. Ord a => Tele a -> a
elem :: forall a. Eq a => a -> Tele a -> Bool
$celem :: forall a. Eq a => a -> Tele a -> Bool
length :: forall a. Tele a -> Int
$clength :: forall a. Tele a -> Int
null :: forall a. Tele a -> Bool
$cnull :: forall a. Tele a -> Bool
toList :: forall a. Tele a -> [a]
$ctoList :: forall a. Tele a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Tele a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Tele a -> a
foldr1 :: forall a. (a -> a -> a) -> Tele a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Tele a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Tele a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Tele a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Tele a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Tele a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Tele a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Tele a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Tele a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Tele a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Tele a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Tele a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Tele a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Tele a -> m
fold :: forall m. Monoid m => Tele m -> m
$cfold :: forall m. Monoid m => Tele m -> m
Foldable, Functor Tele
Foldable Tele
Functor Tele
-> Foldable Tele
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Tele a -> f (Tele b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Tele (f a) -> f (Tele a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Tele a -> m (Tele b))
-> (forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a))
-> Traversable Tele
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a)
forall (f :: * -> *) a. Applicative f => Tele (f a) -> f (Tele a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tele a -> m (Tele b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tele a -> f (Tele b)
sequence :: forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a)
$csequence :: forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tele a -> m (Tele b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tele a -> m (Tele b)
sequenceA :: forall (f :: * -> *) a. Applicative f => Tele (f a) -> f (Tele a)
$csequenceA :: forall (f :: * -> *) a. Applicative f => Tele (f a) -> f (Tele a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tele a -> f (Tele b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tele a -> f (Tele b)
Traversable, (forall x. Tele a -> Rep (Tele a) x)
-> (forall x. Rep (Tele a) x -> Tele a) -> Generic (Tele a)
forall x. Rep (Tele a) x -> Tele a
forall x. Tele a -> Rep (Tele a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Tele a) x -> Tele a
forall a x. Tele a -> Rep (Tele a) x
$cto :: forall a x. Rep (Tele a) x -> Tele a
$cfrom :: forall a x. Tele a -> Rep (Tele a) x
Generic)

type Telescope = Tele (Dom Type)

data IsFibrant = IsFibrant | IsStrict
  deriving (Typeable IsFibrant
Typeable IsFibrant
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> IsFibrant -> c IsFibrant)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c IsFibrant)
-> (IsFibrant -> Constr)
-> (IsFibrant -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c IsFibrant))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IsFibrant))
-> ((forall b. Data b => b -> b) -> IsFibrant -> IsFibrant)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> IsFibrant -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> IsFibrant -> r)
-> (forall u. (forall d. Data d => d -> u) -> IsFibrant -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> IsFibrant -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant)
-> Data IsFibrant
IsFibrant -> DataType
IsFibrant -> Constr
(forall b. Data b => b -> b) -> IsFibrant -> IsFibrant
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> IsFibrant -> u
forall u. (forall d. Data d => d -> u) -> IsFibrant -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> IsFibrant -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> IsFibrant -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c IsFibrant
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IsFibrant -> c IsFibrant
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c IsFibrant)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IsFibrant)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> IsFibrant -> m IsFibrant
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> IsFibrant -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> IsFibrant -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> IsFibrant -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> IsFibrant -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> IsFibrant -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> IsFibrant -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> IsFibrant -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> IsFibrant -> r
gmapT :: (forall b. Data b => b -> b) -> IsFibrant -> IsFibrant
$cgmapT :: (forall b. Data b => b -> b) -> IsFibrant -> IsFibrant
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IsFibrant)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IsFibrant)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c IsFibrant)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c IsFibrant)
dataTypeOf :: IsFibrant -> DataType
$cdataTypeOf :: IsFibrant -> DataType
toConstr :: IsFibrant -> Constr
$ctoConstr :: IsFibrant -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c IsFibrant
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c IsFibrant
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IsFibrant -> c IsFibrant
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IsFibrant -> c IsFibrant
Data, Int -> IsFibrant -> ShowS
[IsFibrant] -> ShowS
IsFibrant -> ArgName
(Int -> IsFibrant -> ShowS)
-> (IsFibrant -> ArgName)
-> ([IsFibrant] -> ShowS)
-> Show IsFibrant
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [IsFibrant] -> ShowS
$cshowList :: [IsFibrant] -> ShowS
show :: IsFibrant -> ArgName
$cshow :: IsFibrant -> ArgName
showsPrec :: Int -> IsFibrant -> ShowS
$cshowsPrec :: Int -> IsFibrant -> ShowS
Show, IsFibrant -> IsFibrant -> Bool
(IsFibrant -> IsFibrant -> Bool)
-> (IsFibrant -> IsFibrant -> Bool) -> Eq IsFibrant
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: IsFibrant -> IsFibrant -> Bool
$c/= :: IsFibrant -> IsFibrant -> Bool
== :: IsFibrant -> IsFibrant -> Bool
$c== :: IsFibrant -> IsFibrant -> Bool
Eq, Eq IsFibrant
Eq IsFibrant
-> (IsFibrant -> IsFibrant -> Ordering)
-> (IsFibrant -> IsFibrant -> Bool)
-> (IsFibrant -> IsFibrant -> Bool)
-> (IsFibrant -> IsFibrant -> Bool)
-> (IsFibrant -> IsFibrant -> Bool)
-> (IsFibrant -> IsFibrant -> IsFibrant)
-> (IsFibrant -> IsFibrant -> IsFibrant)
-> Ord IsFibrant
IsFibrant -> IsFibrant -> Bool
IsFibrant -> IsFibrant -> Ordering
IsFibrant -> IsFibrant -> IsFibrant
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: IsFibrant -> IsFibrant -> IsFibrant
$cmin :: IsFibrant -> IsFibrant -> IsFibrant
max :: IsFibrant -> IsFibrant -> IsFibrant
$cmax :: IsFibrant -> IsFibrant -> IsFibrant
>= :: IsFibrant -> IsFibrant -> Bool
$c>= :: IsFibrant -> IsFibrant -> Bool
> :: IsFibrant -> IsFibrant -> Bool
$c> :: IsFibrant -> IsFibrant -> Bool
<= :: IsFibrant -> IsFibrant -> Bool
$c<= :: IsFibrant -> IsFibrant -> Bool
< :: IsFibrant -> IsFibrant -> Bool
$c< :: IsFibrant -> IsFibrant -> Bool
compare :: IsFibrant -> IsFibrant -> Ordering
$ccompare :: IsFibrant -> IsFibrant -> Ordering
Ord, (forall x. IsFibrant -> Rep IsFibrant x)
-> (forall x. Rep IsFibrant x -> IsFibrant) -> Generic IsFibrant
forall x. Rep IsFibrant x -> IsFibrant
forall x. IsFibrant -> Rep IsFibrant x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep IsFibrant x -> IsFibrant
$cfrom :: forall x. IsFibrant -> Rep IsFibrant x
Generic)

-- | Sorts.
--
data Sort' t
  = Type (Level' t)  -- ^ @Set ℓ@.
  | Prop (Level' t)  -- ^ @Prop ℓ@.
  | Inf IsFibrant Integer      -- ^ @Setωᵢ@.
  | SSet (Level' t)  -- ^ @SSet ℓ@.
  | SizeUniv    -- ^ @SizeUniv@, a sort inhabited by type @Size@.
  | LockUniv    -- ^ @LockUniv@, a sort for locks.
  | PiSort (Dom' t t) (Sort' t) (Abs (Sort' t)) -- ^ Sort of the pi type.
  | FunSort (Sort' t) (Sort' t) -- ^ Sort of a (non-dependent) function type.
  | UnivSort (Sort' t) -- ^ Sort of another sort.
  | MetaS {-# UNPACK #-} !MetaId [Elim' t]
  | DefS QName [Elim' t] -- ^ A postulated sort.
  | DummyS String
    -- ^ A (part of a) term or type which is only used for internal purposes.
    --   Replaces the abuse of @Prop@ for a dummy sort.
    --   The @String@ typically describes the location where we create this dummy,
    --   but can contain other information as well.
  deriving (Typeable (Sort' t)
Typeable (Sort' t)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Sort' t -> c (Sort' t))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Sort' t))
-> (Sort' t -> Constr)
-> (Sort' t -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Sort' t)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sort' t)))
-> ((forall b. Data b => b -> b) -> Sort' t -> Sort' t)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Sort' t -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Sort' t -> r)
-> (forall u. (forall d. Data d => d -> u) -> Sort' t -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Sort' t -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t))
-> Data (Sort' t)
Sort' t -> DataType
Sort' t -> Constr
(forall b. Data b => b -> b) -> Sort' t -> Sort' t
forall {t}. Data t => Typeable (Sort' t)
forall t. Data t => Sort' t -> DataType
forall t. Data t => Sort' t -> Constr
forall t.
Data t =>
(forall b. Data b => b -> b) -> Sort' t -> Sort' t
forall t u.
Data t =>
Int -> (forall d. Data d => d -> u) -> Sort' t -> u
forall t u.
Data t =>
(forall d. Data d => d -> u) -> Sort' t -> [u]
forall t r r'.
Data t =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
forall t r r'.
Data t =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
forall t (m :: * -> *).
(Data t, Monad m) =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
forall t (c :: * -> *).
Data t =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Sort' t)
forall t (c :: * -> *).
Data t =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Sort' t -> c (Sort' t)
forall t (t :: * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Sort' t))
forall t (t :: * -> * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sort' t))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Sort' t -> u
forall u. (forall d. Data d => d -> u) -> Sort' t -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Sort' t)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Sort' t -> c (Sort' t)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Sort' t))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sort' t))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
$cgmapMo :: forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
$cgmapMp :: forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
$cgmapM :: forall t (m :: * -> *).
(Data t, Monad m) =>
(forall d. Data d => d -> m d) -> Sort' t -> m (Sort' t)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Sort' t -> u
$cgmapQi :: forall t u.
Data t =>
Int -> (forall d. Data d => d -> u) -> Sort' t -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Sort' t -> [u]
$cgmapQ :: forall t u.
Data t =>
(forall d. Data d => d -> u) -> Sort' t -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
$cgmapQr :: forall t r r'.
Data t =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
$cgmapQl :: forall t r r'.
Data t =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Sort' t -> r
gmapT :: (forall b. Data b => b -> b) -> Sort' t -> Sort' t
$cgmapT :: forall t.
Data t =>
(forall b. Data b => b -> b) -> Sort' t -> Sort' t
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sort' t))
$cdataCast2 :: forall t (t :: * -> * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sort' t))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Sort' t))
$cdataCast1 :: forall t (t :: * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Sort' t))
dataTypeOf :: Sort' t -> DataType
$cdataTypeOf :: forall t. Data t => Sort' t -> DataType
toConstr :: Sort' t -> Constr
$ctoConstr :: forall t. Data t => Sort' t -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Sort' t)
$cgunfold :: forall t (c :: * -> *).
Data t =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Sort' t)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Sort' t -> c (Sort' t)
$cgfoldl :: forall t (c :: * -> *).
Data t =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Sort' t -> c (Sort' t)
Data, Int -> Sort' t -> ShowS
[Sort' t] -> ShowS
Sort' t -> ArgName
(Int -> Sort' t -> ShowS)
-> (Sort' t -> ArgName) -> ([Sort' t] -> ShowS) -> Show (Sort' t)
forall t. Show t => Int -> Sort' t -> ShowS
forall t. Show t => [Sort' t] -> ShowS
forall t. Show t => Sort' t -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Sort' t] -> ShowS
$cshowList :: forall t. Show t => [Sort' t] -> ShowS
show :: Sort' t -> ArgName
$cshow :: forall t. Show t => Sort' t -> ArgName
showsPrec :: Int -> Sort' t -> ShowS
$cshowsPrec :: forall t. Show t => Int -> Sort' t -> ShowS
Show)

type Sort = Sort' Term

-- | A level is a maximum expression of a closed level and 0..n
--   'PlusLevel' expressions each of which is an atom plus a number.
data Level' t = Max Integer [PlusLevel' t]
  deriving (Int -> Level' t -> ShowS
[Level' t] -> ShowS
Level' t -> ArgName
(Int -> Level' t -> ShowS)
-> (Level' t -> ArgName)
-> ([Level' t] -> ShowS)
-> Show (Level' t)
forall t. Show t => Int -> Level' t -> ShowS
forall t. Show t => [Level' t] -> ShowS
forall t. Show t => Level' t -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Level' t] -> ShowS
$cshowList :: forall t. Show t => [Level' t] -> ShowS
show :: Level' t -> ArgName
$cshow :: forall t. Show t => Level' t -> ArgName
showsPrec :: Int -> Level' t -> ShowS
$cshowsPrec :: forall t. Show t => Int -> Level' t -> ShowS
Show, Typeable (Level' t)
Typeable (Level' t)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Level' t -> c (Level' t))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Level' t))
-> (Level' t -> Constr)
-> (Level' t -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Level' t)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (Level' t)))
-> ((forall b. Data b => b -> b) -> Level' t -> Level' t)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Level' t -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Level' t -> r)
-> (forall u. (forall d. Data d => d -> u) -> Level' t -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Level' t -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Level' t -> m (Level' t))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Level' t -> m (Level' t))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Level' t -> m (Level' t))
-> Data (Level' t)
Level' t -> DataType
Level' t -> Constr
(forall b. Data b => b -> b) -> Level' t -> Level' t
forall {t}. Data t => Typeable (Level' t)
forall t. Data t => Level' t -> DataType
forall t. Data t => Level' t -> Constr
forall t.
Data t =>
(forall b. Data b => b -> b) -> Level' t -> Level' t
forall t u.
Data t =>
Int -> (forall d. Data d => d -> u) -> Level' t -> u
forall t u.
Data t =>
(forall d. Data d => d -> u) -> Level' t -> [u]
forall t r r'.
Data t =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
forall t r r'.
Data t =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
forall t (m :: * -> *).
(Data t, Monad m) =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
forall t (c :: * -> *).
Data t =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Level' t)
forall t (c :: * -> *).
Data t =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Level' t -> c (Level' t)
forall t (t :: * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Level' t))
forall t (t :: * -> * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Level' t))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Level' t -> u
forall u. (forall d. Data d => d -> u) -> Level' t -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Level' t)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Level' t -> c (Level' t)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Level' t))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Level' t))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
$cgmapMo :: forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
$cgmapMp :: forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
$cgmapM :: forall t (m :: * -> *).
(Data t, Monad m) =>
(forall d. Data d => d -> m d) -> Level' t -> m (Level' t)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Level' t -> u
$cgmapQi :: forall t u.
Data t =>
Int -> (forall d. Data d => d -> u) -> Level' t -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Level' t -> [u]
$cgmapQ :: forall t u.
Data t =>
(forall d. Data d => d -> u) -> Level' t -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
$cgmapQr :: forall t r r'.
Data t =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
$cgmapQl :: forall t r r'.
Data t =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Level' t -> r
gmapT :: (forall b. Data b => b -> b) -> Level' t -> Level' t
$cgmapT :: forall t.
Data t =>
(forall b. Data b => b -> b) -> Level' t -> Level' t
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Level' t))
$cdataCast2 :: forall t (t :: * -> * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Level' t))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Level' t))
$cdataCast1 :: forall t (t :: * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Level' t))
dataTypeOf :: Level' t -> DataType
$cdataTypeOf :: forall t. Data t => Level' t -> DataType
toConstr :: Level' t -> Constr
$ctoConstr :: forall t. Data t => Level' t -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Level' t)
$cgunfold :: forall t (c :: * -> *).
Data t =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Level' t)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Level' t -> c (Level' t)
$cgfoldl :: forall t (c :: * -> *).
Data t =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Level' t -> c (Level' t)
Data, (forall a b. (a -> b) -> Level' a -> Level' b)
-> (forall a b. a -> Level' b -> Level' a) -> Functor Level'
forall a b. a -> Level' b -> Level' a
forall a b. (a -> b) -> Level' a -> Level' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Level' b -> Level' a
$c<$ :: forall a b. a -> Level' b -> Level' a
fmap :: forall a b. (a -> b) -> Level' a -> Level' b
$cfmap :: forall a b. (a -> b) -> Level' a -> Level' b
Functor, (forall m. Monoid m => Level' m -> m)
-> (forall m a. Monoid m => (a -> m) -> Level' a -> m)
-> (forall m a. Monoid m => (a -> m) -> Level' a -> m)
-> (forall a b. (a -> b -> b) -> b -> Level' a -> b)
-> (forall a b. (a -> b -> b) -> b -> Level' a -> b)
-> (forall b a. (b -> a -> b) -> b -> Level' a -> b)
-> (forall b a. (b -> a -> b) -> b -> Level' a -> b)
-> (forall a. (a -> a -> a) -> Level' a -> a)
-> (forall a. (a -> a -> a) -> Level' a -> a)
-> (forall a. Level' a -> [a])
-> (forall a. Level' a -> Bool)
-> (forall a. Level' a -> Int)
-> (forall a. Eq a => a -> Level' a -> Bool)
-> (forall a. Ord a => Level' a -> a)
-> (forall a. Ord a => Level' a -> a)
-> (forall a. Num a => Level' a -> a)
-> (forall a. Num a => Level' a -> a)
-> Foldable Level'
forall a. Eq a => a -> Level' a -> Bool
forall a. Num a => Level' a -> a
forall a. Ord a => Level' a -> a
forall m. Monoid m => Level' m -> m
forall a. Level' a -> Bool
forall a. Level' a -> Int
forall a. Level' a -> [a]
forall a. (a -> a -> a) -> Level' a -> a
forall m a. Monoid m => (a -> m) -> Level' a -> m
forall b a. (b -> a -> b) -> b -> Level' a -> b
forall a b. (a -> b -> b) -> b -> Level' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Level' a -> a
$cproduct :: forall a. Num a => Level' a -> a
sum :: forall a. Num a => Level' a -> a
$csum :: forall a. Num a => Level' a -> a
minimum :: forall a. Ord a => Level' a -> a
$cminimum :: forall a. Ord a => Level' a -> a
maximum :: forall a. Ord a => Level' a -> a
$cmaximum :: forall a. Ord a => Level' a -> a
elem :: forall a. Eq a => a -> Level' a -> Bool
$celem :: forall a. Eq a => a -> Level' a -> Bool
length :: forall a. Level' a -> Int
$clength :: forall a. Level' a -> Int
null :: forall a. Level' a -> Bool
$cnull :: forall a. Level' a -> Bool
toList :: forall a. Level' a -> [a]
$ctoList :: forall a. Level' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Level' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Level' a -> a
foldr1 :: forall a. (a -> a -> a) -> Level' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Level' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Level' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Level' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Level' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Level' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Level' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Level' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Level' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Level' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Level' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Level' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Level' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Level' a -> m
fold :: forall m. Monoid m => Level' m -> m
$cfold :: forall m. Monoid m => Level' m -> m
Foldable, Functor Level'
Foldable Level'
Functor Level'
-> Foldable Level'
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Level' a -> f (Level' b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Level' (f a) -> f (Level' a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Level' a -> m (Level' b))
-> (forall (m :: * -> *) a.
    Monad m =>
    Level' (m a) -> m (Level' a))
-> Traversable Level'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Level' (m a) -> m (Level' a)
forall (f :: * -> *) a.
Applicative f =>
Level' (f a) -> f (Level' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Level' a -> m (Level' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Level' a -> f (Level' b)
sequence :: forall (m :: * -> *) a. Monad m => Level' (m a) -> m (Level' a)
$csequence :: forall (m :: * -> *) a. Monad m => Level' (m a) -> m (Level' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Level' a -> m (Level' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Level' a -> m (Level' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Level' (f a) -> f (Level' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
Level' (f a) -> f (Level' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Level' a -> f (Level' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Level' a -> f (Level' b)
Traversable)

type Level = Level' Term

data PlusLevel' t = Plus Integer t
  deriving (Int -> PlusLevel' t -> ShowS
[PlusLevel' t] -> ShowS
PlusLevel' t -> ArgName
(Int -> PlusLevel' t -> ShowS)
-> (PlusLevel' t -> ArgName)
-> ([PlusLevel' t] -> ShowS)
-> Show (PlusLevel' t)
forall t. Show t => Int -> PlusLevel' t -> ShowS
forall t. Show t => [PlusLevel' t] -> ShowS
forall t. Show t => PlusLevel' t -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [PlusLevel' t] -> ShowS
$cshowList :: forall t. Show t => [PlusLevel' t] -> ShowS
show :: PlusLevel' t -> ArgName
$cshow :: forall t. Show t => PlusLevel' t -> ArgName
showsPrec :: Int -> PlusLevel' t -> ShowS
$cshowsPrec :: forall t. Show t => Int -> PlusLevel' t -> ShowS
Show, Typeable (PlusLevel' t)
Typeable (PlusLevel' t)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> PlusLevel' t -> c (PlusLevel' t))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (PlusLevel' t))
-> (PlusLevel' t -> Constr)
-> (PlusLevel' t -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (PlusLevel' t)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (PlusLevel' t)))
-> ((forall b. Data b => b -> b) -> PlusLevel' t -> PlusLevel' t)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r)
-> (forall u. (forall d. Data d => d -> u) -> PlusLevel' t -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> PlusLevel' t -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t))
-> Data (PlusLevel' t)
PlusLevel' t -> DataType
PlusLevel' t -> Constr
(forall b. Data b => b -> b) -> PlusLevel' t -> PlusLevel' t
forall {t}. Data t => Typeable (PlusLevel' t)
forall t. Data t => PlusLevel' t -> DataType
forall t. Data t => PlusLevel' t -> Constr
forall t.
Data t =>
(forall b. Data b => b -> b) -> PlusLevel' t -> PlusLevel' t
forall t u.
Data t =>
Int -> (forall d. Data d => d -> u) -> PlusLevel' t -> u
forall t u.
Data t =>
(forall d. Data d => d -> u) -> PlusLevel' t -> [u]
forall t r r'.
Data t =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
forall t r r'.
Data t =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
forall t (m :: * -> *).
(Data t, Monad m) =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
forall t (c :: * -> *).
Data t =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (PlusLevel' t)
forall t (c :: * -> *).
Data t =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PlusLevel' t -> c (PlusLevel' t)
forall t (t :: * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (PlusLevel' t))
forall t (t :: * -> * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (PlusLevel' t))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> PlusLevel' t -> u
forall u. (forall d. Data d => d -> u) -> PlusLevel' t -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (PlusLevel' t)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PlusLevel' t -> c (PlusLevel' t)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (PlusLevel' t))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (PlusLevel' t))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
$cgmapMo :: forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
$cgmapMp :: forall t (m :: * -> *).
(Data t, MonadPlus m) =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
$cgmapM :: forall t (m :: * -> *).
(Data t, Monad m) =>
(forall d. Data d => d -> m d) -> PlusLevel' t -> m (PlusLevel' t)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PlusLevel' t -> u
$cgmapQi :: forall t u.
Data t =>
Int -> (forall d. Data d => d -> u) -> PlusLevel' t -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> PlusLevel' t -> [u]
$cgmapQ :: forall t u.
Data t =>
(forall d. Data d => d -> u) -> PlusLevel' t -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
$cgmapQr :: forall t r r'.
Data t =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
$cgmapQl :: forall t r r'.
Data t =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PlusLevel' t -> r
gmapT :: (forall b. Data b => b -> b) -> PlusLevel' t -> PlusLevel' t
$cgmapT :: forall t.
Data t =>
(forall b. Data b => b -> b) -> PlusLevel' t -> PlusLevel' t
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (PlusLevel' t))
$cdataCast2 :: forall t (t :: * -> * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (PlusLevel' t))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (PlusLevel' t))
$cdataCast1 :: forall t (t :: * -> *) (c :: * -> *).
(Data t, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (PlusLevel' t))
dataTypeOf :: PlusLevel' t -> DataType
$cdataTypeOf :: forall t. Data t => PlusLevel' t -> DataType
toConstr :: PlusLevel' t -> Constr
$ctoConstr :: forall t. Data t => PlusLevel' t -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (PlusLevel' t)
$cgunfold :: forall t (c :: * -> *).
Data t =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (PlusLevel' t)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PlusLevel' t -> c (PlusLevel' t)
$cgfoldl :: forall t (c :: * -> *).
Data t =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PlusLevel' t -> c (PlusLevel' t)
Data, (forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b)
-> (forall a b. a -> PlusLevel' b -> PlusLevel' a)
-> Functor PlusLevel'
forall a b. a -> PlusLevel' b -> PlusLevel' a
forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> PlusLevel' b -> PlusLevel' a
$c<$ :: forall a b. a -> PlusLevel' b -> PlusLevel' a
fmap :: forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b
$cfmap :: forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b
Functor, (forall m. Monoid m => PlusLevel' m -> m)
-> (forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m)
-> (forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m)
-> (forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b)
-> (forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b)
-> (forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b)
-> (forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b)
-> (forall a. (a -> a -> a) -> PlusLevel' a -> a)
-> (forall a. (a -> a -> a) -> PlusLevel' a -> a)
-> (forall a. PlusLevel' a -> [a])
-> (forall a. PlusLevel' a -> Bool)
-> (forall a. PlusLevel' a -> Int)
-> (forall a. Eq a => a -> PlusLevel' a -> Bool)
-> (forall a. Ord a => PlusLevel' a -> a)
-> (forall a. Ord a => PlusLevel' a -> a)
-> (forall a. Num a => PlusLevel' a -> a)
-> (forall a. Num a => PlusLevel' a -> a)
-> Foldable PlusLevel'
forall a. Eq a => a -> PlusLevel' a -> Bool
forall a. Num a => PlusLevel' a -> a
forall a. Ord a => PlusLevel' a -> a
forall m. Monoid m => PlusLevel' m -> m
forall a. PlusLevel' a -> Bool
forall a. PlusLevel' a -> Int
forall a. PlusLevel' a -> [a]
forall a. (a -> a -> a) -> PlusLevel' a -> a
forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => PlusLevel' a -> a
$cproduct :: forall a. Num a => PlusLevel' a -> a
sum :: forall a. Num a => PlusLevel' a -> a
$csum :: forall a. Num a => PlusLevel' a -> a
minimum :: forall a. Ord a => PlusLevel' a -> a
$cminimum :: forall a. Ord a => PlusLevel' a -> a
maximum :: forall a. Ord a => PlusLevel' a -> a
$cmaximum :: forall a. Ord a => PlusLevel' a -> a
elem :: forall a. Eq a => a -> PlusLevel' a -> Bool
$celem :: forall a. Eq a => a -> PlusLevel' a -> Bool
length :: forall a. PlusLevel' a -> Int
$clength :: forall a. PlusLevel' a -> Int
null :: forall a. PlusLevel' a -> Bool
$cnull :: forall a. PlusLevel' a -> Bool
toList :: forall a. PlusLevel' a -> [a]
$ctoList :: forall a. PlusLevel' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
foldr1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
fold :: forall m. Monoid m => PlusLevel' m -> m
$cfold :: forall m. Monoid m => PlusLevel' m -> m
Foldable, Functor PlusLevel'
Foldable PlusLevel'
Functor PlusLevel'
-> Foldable PlusLevel'
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> PlusLevel' a -> f (PlusLevel' b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    PlusLevel' (f a) -> f (PlusLevel' a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> PlusLevel' a -> m (PlusLevel' b))
-> (forall (m :: * -> *) a.
    Monad m =>
    PlusLevel' (m a) -> m (PlusLevel' a))
-> Traversable PlusLevel'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
PlusLevel' (m a) -> m (PlusLevel' a)
forall (f :: * -> *) a.
Applicative f =>
PlusLevel' (f a) -> f (PlusLevel' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PlusLevel' a -> m (PlusLevel' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PlusLevel' a -> f (PlusLevel' b)
sequence :: forall (m :: * -> *) a.
Monad m =>
PlusLevel' (m a) -> m (PlusLevel' a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
PlusLevel' (m a) -> m (PlusLevel' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PlusLevel' a -> m (PlusLevel' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PlusLevel' a -> m (PlusLevel' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
PlusLevel' (f a) -> f (PlusLevel' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
PlusLevel' (f a) -> f (PlusLevel' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PlusLevel' a -> f (PlusLevel' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PlusLevel' a -> f (PlusLevel' b)
Traversable)

type PlusLevel = PlusLevel' Term
type LevelAtom = Term

---------------------------------------------------------------------------
-- * Brave Terms
---------------------------------------------------------------------------

-- | Newtypes for terms that produce a dummy, rather than crash, when
--   applied to incompatible eliminations.
newtype BraveTerm = BraveTerm { BraveTerm -> Term
unBrave :: Term } deriving (Typeable BraveTerm
Typeable BraveTerm
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> BraveTerm -> c BraveTerm)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c BraveTerm)
-> (BraveTerm -> Constr)
-> (BraveTerm -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c BraveTerm))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BraveTerm))
-> ((forall b. Data b => b -> b) -> BraveTerm -> BraveTerm)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> BraveTerm -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> BraveTerm -> r)
-> (forall u. (forall d. Data d => d -> u) -> BraveTerm -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> BraveTerm -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm)
-> Data BraveTerm
BraveTerm -> DataType
BraveTerm -> Constr
(forall b. Data b => b -> b) -> BraveTerm -> BraveTerm
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> BraveTerm -> u
forall u. (forall d. Data d => d -> u) -> BraveTerm -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BraveTerm -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BraveTerm -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BraveTerm
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BraveTerm -> c BraveTerm
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BraveTerm)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BraveTerm)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> BraveTerm -> m BraveTerm
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> BraveTerm -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> BraveTerm -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> BraveTerm -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> BraveTerm -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BraveTerm -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BraveTerm -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BraveTerm -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BraveTerm -> r
gmapT :: (forall b. Data b => b -> b) -> BraveTerm -> BraveTerm
$cgmapT :: (forall b. Data b => b -> b) -> BraveTerm -> BraveTerm
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BraveTerm)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BraveTerm)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BraveTerm)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BraveTerm)
dataTypeOf :: BraveTerm -> DataType
$cdataTypeOf :: BraveTerm -> DataType
toConstr :: BraveTerm -> Constr
$ctoConstr :: BraveTerm -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BraveTerm
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BraveTerm
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BraveTerm -> c BraveTerm
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BraveTerm -> c BraveTerm
Data, Int -> BraveTerm -> ShowS
[BraveTerm] -> ShowS
BraveTerm -> ArgName
(Int -> BraveTerm -> ShowS)
-> (BraveTerm -> ArgName)
-> ([BraveTerm] -> ShowS)
-> Show BraveTerm
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [BraveTerm] -> ShowS
$cshowList :: [BraveTerm] -> ShowS
show :: BraveTerm -> ArgName
$cshow :: BraveTerm -> ArgName
showsPrec :: Int -> BraveTerm -> ShowS
$cshowsPrec :: Int -> BraveTerm -> ShowS
Show)

---------------------------------------------------------------------------
-- * Blocked Terms
---------------------------------------------------------------------------

type Blocked    = Blocked' Term
type NotBlocked = NotBlocked' Term
--
-- | @'Blocked a@ without the @a@.
type Blocked_ = Blocked ()

---------------------------------------------------------------------------
-- * Definitions
---------------------------------------------------------------------------

-- | Named pattern arguments.
type NAPs = [NamedArg DeBruijnPattern]

-- | A clause is a list of patterns and the clause body.
--
--  The telescope contains the types of the pattern variables and the
--  de Bruijn indices say how to get from the order the variables occur in
--  the patterns to the order they occur in the telescope. The body
--  binds the variables in the order they appear in the telescope.
--
--  @clauseTel ~ permute clausePerm (patternVars namedClausePats)@
--
--  Terms in dot patterns are valid in the clause telescope.
--
--  For the purpose of the permutation and the body dot patterns count
--  as variables. TODO: Change this!
data Clause = Clause
    { Clause -> Range
clauseLHSRange  :: Range
    , Clause -> Range
clauseFullRange :: Range
    , Clause -> Telescope
clauseTel       :: Telescope
      -- ^ @Δ@: The types of the pattern variables in dependency order.
    , Clause -> NAPs
namedClausePats :: NAPs
      -- ^ @Δ ⊢ ps@.  The de Bruijn indices refer to @Δ@.
    , Clause -> Maybe Term
clauseBody      :: Maybe Term
      -- ^ @Just v@ with @Δ ⊢ v@ for a regular clause, or @Nothing@ for an
      --   absurd one.
    , Clause -> Maybe (Arg Type)
clauseType      :: Maybe (Arg Type)
      -- ^ @Δ ⊢ t@.  The type of the rhs under @clauseTel@.
      --   Used, e.g., by @TermCheck@.
      --   Can be 'Irrelevant' if we encountered an irrelevant projection
      --   pattern on the lhs.
    , Clause -> Bool
clauseCatchall  :: Bool
      -- ^ Clause has been labelled as CATCHALL.
    , Clause -> Maybe Bool
clauseExact       :: Maybe Bool
      -- ^ Pattern matching of this clause is exact, no catch-all case.
      --   Computed by the coverage checker.
      --   @Nothing@ means coverage checker has not run yet (clause may be inexact).
      --   @Just False@ means clause is not exact.
      --   @Just True@ means clause is exact.
    , Clause -> Maybe Bool
clauseRecursive   :: Maybe Bool
      -- ^ @clauseBody@ contains recursive calls; computed by termination checker.
      --   @Nothing@ means that termination checker has not run yet,
      --   or that @clauseBody@ contains meta-variables;
      --   these could be filled with recursive calls later!
      --   @Just False@ means definitely no recursive call.
      --   @Just True@ means definitely a recursive call.
    , Clause -> Maybe Bool
clauseUnreachable :: Maybe Bool
      -- ^ Clause has been labelled as unreachable by the coverage checker.
      --   @Nothing@ means coverage checker has not run yet (clause may be unreachable).
      --   @Just False@ means clause is not unreachable.
      --   @Just True@ means clause is unreachable.
    , Clause -> ExpandedEllipsis
clauseEllipsis  :: ExpandedEllipsis
      -- ^ Was this clause created by expansion of an ellipsis?
    }
  deriving (Typeable Clause
Typeable Clause
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Clause -> c Clause)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c Clause)
-> (Clause -> Constr)
-> (Clause -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c Clause))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause))
-> ((forall b. Data b => b -> b) -> Clause -> Clause)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Clause -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Clause -> r)
-> (forall u. (forall d. Data d => d -> u) -> Clause -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Clause -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Clause -> m Clause)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Clause -> m Clause)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Clause -> m Clause)
-> Data Clause
Clause -> DataType
Clause -> Constr
(forall b. Data b => b -> b) -> Clause -> Clause
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Clause -> u
forall u. (forall d. Data d => d -> u) -> Clause -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Clause
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Clause -> c Clause
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Clause)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Clause -> m Clause
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Clause -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Clause -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Clause -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Clause -> [u]
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r
$cgmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r
$cgmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r
gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause
$cgmapT :: (forall b. Data b => b -> b) -> Clause -> Clause
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Clause)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Clause)
dataTypeOf :: Clause -> DataType
$cdataTypeOf :: Clause -> DataType
toConstr :: Clause -> Constr
$ctoConstr :: Clause -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Clause
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Clause
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Clause -> c Clause
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Clause -> c Clause
Data, Int -> Clause -> ShowS
[Clause] -> ShowS
Clause -> ArgName
(Int -> Clause -> ShowS)
-> (Clause -> ArgName) -> ([Clause] -> ShowS) -> Show Clause
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Clause] -> ShowS
$cshowList :: [Clause] -> ShowS
show :: Clause -> ArgName
$cshow :: Clause -> ArgName
showsPrec :: Int -> Clause -> ShowS
$cshowsPrec :: Int -> Clause -> ShowS
Show, (forall x. Clause -> Rep Clause x)
-> (forall x. Rep Clause x -> Clause) -> Generic Clause
forall x. Rep Clause x -> Clause
forall x. Clause -> Rep Clause x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep Clause x -> Clause
$cfrom :: forall x. Clause -> Rep Clause x
Generic)

clausePats :: Clause -> [Arg DeBruijnPattern]
clausePats :: Clause -> [Arg DeBruijnPattern]
clausePats = (Arg (Named_ DeBruijnPattern) -> Arg DeBruijnPattern)
-> NAPs -> [Arg DeBruijnPattern]
forall a b. (a -> b) -> [a] -> [b]
map ((Named_ DeBruijnPattern -> DeBruijnPattern)
-> Arg (Named_ DeBruijnPattern) -> Arg DeBruijnPattern
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Named_ DeBruijnPattern -> DeBruijnPattern
forall name a. Named name a -> a
namedThing) (NAPs -> [Arg DeBruijnPattern])
-> (Clause -> NAPs) -> Clause -> [Arg DeBruijnPattern]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Clause -> NAPs
namedClausePats

instance HasRange Clause where
  getRange :: Clause -> Range
getRange = Clause -> Range
clauseLHSRange

-- | Pattern variables.
type PatVarName = ArgName

patVarNameToString :: PatVarName -> String
patVarNameToString :: ShowS
patVarNameToString = ShowS
argNameToString

nameToPatVarName :: Name -> PatVarName
nameToPatVarName :: Name -> ArgName
nameToPatVarName = Name -> ArgName
nameToArgName

data PatternInfo = PatternInfo
  { PatternInfo -> PatOrigin
patOrigin :: PatOrigin
  , PatternInfo -> [Name]
patAsNames :: [Name]
  } deriving (Typeable PatternInfo
Typeable PatternInfo
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> PatternInfo -> c PatternInfo)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c PatternInfo)
-> (PatternInfo -> Constr)
-> (PatternInfo -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c PatternInfo))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c PatternInfo))
-> ((forall b. Data b => b -> b) -> PatternInfo -> PatternInfo)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> PatternInfo -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> PatternInfo -> r)
-> (forall u. (forall d. Data d => d -> u) -> PatternInfo -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> PatternInfo -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo)
-> Data PatternInfo
PatternInfo -> DataType
PatternInfo -> Constr
(forall b. Data b => b -> b) -> PatternInfo -> PatternInfo
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> PatternInfo -> u
forall u. (forall d. Data d => d -> u) -> PatternInfo -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PatternInfo -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PatternInfo -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PatternInfo
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PatternInfo -> c PatternInfo
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PatternInfo)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PatternInfo)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PatternInfo -> m PatternInfo
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PatternInfo -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PatternInfo -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> PatternInfo -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> PatternInfo -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PatternInfo -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PatternInfo -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PatternInfo -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PatternInfo -> r
gmapT :: (forall b. Data b => b -> b) -> PatternInfo -> PatternInfo
$cgmapT :: (forall b. Data b => b -> b) -> PatternInfo -> PatternInfo
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PatternInfo)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PatternInfo)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PatternInfo)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PatternInfo)
dataTypeOf :: PatternInfo -> DataType
$cdataTypeOf :: PatternInfo -> DataType
toConstr :: PatternInfo -> Constr
$ctoConstr :: PatternInfo -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PatternInfo
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PatternInfo
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PatternInfo -> c PatternInfo
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PatternInfo -> c PatternInfo
Data, Int -> PatternInfo -> ShowS
[PatternInfo] -> ShowS
PatternInfo -> ArgName
(Int -> PatternInfo -> ShowS)
-> (PatternInfo -> ArgName)
-> ([PatternInfo] -> ShowS)
-> Show PatternInfo
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [PatternInfo] -> ShowS
$cshowList :: [PatternInfo] -> ShowS
show :: PatternInfo -> ArgName
$cshow :: PatternInfo -> ArgName
showsPrec :: Int -> PatternInfo -> ShowS
$cshowsPrec :: Int -> PatternInfo -> ShowS
Show, PatternInfo -> PatternInfo -> Bool
(PatternInfo -> PatternInfo -> Bool)
-> (PatternInfo -> PatternInfo -> Bool) -> Eq PatternInfo
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: PatternInfo -> PatternInfo -> Bool
$c/= :: PatternInfo -> PatternInfo -> Bool
== :: PatternInfo -> PatternInfo -> Bool
$c== :: PatternInfo -> PatternInfo -> Bool
Eq, (forall x. PatternInfo -> Rep PatternInfo x)
-> (forall x. Rep PatternInfo x -> PatternInfo)
-> Generic PatternInfo
forall x. Rep PatternInfo x -> PatternInfo
forall x. PatternInfo -> Rep PatternInfo x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep PatternInfo x -> PatternInfo
$cfrom :: forall x. PatternInfo -> Rep PatternInfo x
Generic)

defaultPatternInfo :: PatternInfo
defaultPatternInfo :: PatternInfo
defaultPatternInfo = PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
PatOSystem []

-- | Origin of the pattern: what did the user write in this position?
data PatOrigin
  = PatOSystem         -- ^ Pattern inserted by the system
  | PatOSplit          -- ^ Pattern generated by case split
  | PatOVar Name       -- ^ User wrote a variable pattern
  | PatODot            -- ^ User wrote a dot pattern
  | PatOWild           -- ^ User wrote a wildcard pattern
  | PatOCon            -- ^ User wrote a constructor pattern
  | PatORec            -- ^ User wrote a record pattern
  | PatOLit            -- ^ User wrote a literal pattern
  | PatOAbsurd         -- ^ User wrote an absurd pattern
  deriving (Typeable PatOrigin
Typeable PatOrigin
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> PatOrigin -> c PatOrigin)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c PatOrigin)
-> (PatOrigin -> Constr)
-> (PatOrigin -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c PatOrigin))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatOrigin))
-> ((forall b. Data b => b -> b) -> PatOrigin -> PatOrigin)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> PatOrigin -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> PatOrigin -> r)
-> (forall u. (forall d. Data d => d -> u) -> PatOrigin -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> PatOrigin -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin)
-> Data PatOrigin
PatOrigin -> DataType
PatOrigin -> Constr
(forall b. Data b => b -> b) -> PatOrigin -> PatOrigin
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> PatOrigin -> u
forall u. (forall d. Data d => d -> u) -> PatOrigin -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PatOrigin -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PatOrigin -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PatOrigin
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PatOrigin -> c PatOrigin
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PatOrigin)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatOrigin)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PatOrigin -> m PatOrigin
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PatOrigin -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PatOrigin -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> PatOrigin -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> PatOrigin -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PatOrigin -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PatOrigin -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PatOrigin -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PatOrigin -> r
gmapT :: (forall b. Data b => b -> b) -> PatOrigin -> PatOrigin
$cgmapT :: (forall b. Data b => b -> b) -> PatOrigin -> PatOrigin
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatOrigin)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatOrigin)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PatOrigin)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PatOrigin)
dataTypeOf :: PatOrigin -> DataType
$cdataTypeOf :: PatOrigin -> DataType
toConstr :: PatOrigin -> Constr
$ctoConstr :: PatOrigin -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PatOrigin
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PatOrigin
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PatOrigin -> c PatOrigin
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PatOrigin -> c PatOrigin
Data, Int -> PatOrigin -> ShowS
[PatOrigin] -> ShowS
PatOrigin -> ArgName
(Int -> PatOrigin -> ShowS)
-> (PatOrigin -> ArgName)
-> ([PatOrigin] -> ShowS)
-> Show PatOrigin
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [PatOrigin] -> ShowS
$cshowList :: [PatOrigin] -> ShowS
show :: PatOrigin -> ArgName
$cshow :: PatOrigin -> ArgName
showsPrec :: Int -> PatOrigin -> ShowS
$cshowsPrec :: Int -> PatOrigin -> ShowS
Show, PatOrigin -> PatOrigin -> Bool
(PatOrigin -> PatOrigin -> Bool)
-> (PatOrigin -> PatOrigin -> Bool) -> Eq PatOrigin
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: PatOrigin -> PatOrigin -> Bool
$c/= :: PatOrigin -> PatOrigin -> Bool
== :: PatOrigin -> PatOrigin -> Bool
$c== :: PatOrigin -> PatOrigin -> Bool
Eq, (forall x. PatOrigin -> Rep PatOrigin x)
-> (forall x. Rep PatOrigin x -> PatOrigin) -> Generic PatOrigin
forall x. Rep PatOrigin x -> PatOrigin
forall x. PatOrigin -> Rep PatOrigin x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep PatOrigin x -> PatOrigin
$cfrom :: forall x. PatOrigin -> Rep PatOrigin x
Generic)

-- | Patterns are variables, constructors, or wildcards.
--   @QName@ is used in @ConP@ rather than @Name@ since
--     a constructor might come from a particular namespace.
--     This also meshes well with the fact that values (i.e.
--     the arguments we are matching with) use @QName@.
--
data Pattern' x
  = VarP PatternInfo x
    -- ^ @x@
  | DotP PatternInfo Term
    -- ^ @.t@
  | ConP ConHead ConPatternInfo [NamedArg (Pattern' x)]
    -- ^ @c ps@
    --   The subpatterns do not contain any projection copatterns.
  | LitP PatternInfo Literal
    -- ^ E.g. @5@, @"hello"@.
  | ProjP ProjOrigin QName
    -- ^ Projection copattern.  Can only appear by itself.
  | IApplyP PatternInfo Term Term x
    -- ^ Path elimination pattern, like @VarP@ but keeps track of endpoints.
  | DefP PatternInfo QName [NamedArg (Pattern' x)]
    -- ^ Used for HITs, the QName should be the one from primHComp.
  deriving (Typeable (Pattern' x)
Typeable (Pattern' x)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> Pattern' x -> c (Pattern' x))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (Pattern' x))
-> (Pattern' x -> Constr)
-> (Pattern' x -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (Pattern' x)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (Pattern' x)))
-> ((forall b. Data b => b -> b) -> Pattern' x -> Pattern' x)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Pattern' x -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Pattern' x -> r)
-> (forall u. (forall d. Data d => d -> u) -> Pattern' x -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> Pattern' x -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x))
-> Data (Pattern' x)
Pattern' x -> DataType
Pattern' x -> Constr
(forall b. Data b => b -> b) -> Pattern' x -> Pattern' x
forall {x}. Data x => Typeable (Pattern' x)
forall x. Data x => Pattern' x -> DataType
forall x. Data x => Pattern' x -> Constr
forall x.
Data x =>
(forall b. Data b => b -> b) -> Pattern' x -> Pattern' x
forall x u.
Data x =>
Int -> (forall d. Data d => d -> u) -> Pattern' x -> u
forall x u.
Data x =>
(forall d. Data d => d -> u) -> Pattern' x -> [u]
forall x r r'.
Data x =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
forall x r r'.
Data x =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
forall x (m :: * -> *).
(Data x, Monad m) =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
forall x (m :: * -> *).
(Data x, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
forall x (c :: * -> *).
Data x =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Pattern' x)
forall x (c :: * -> *).
Data x =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Pattern' x -> c (Pattern' x)
forall x (t :: * -> *) (c :: * -> *).
(Data x, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Pattern' x))
forall x (t :: * -> * -> *) (c :: * -> *).
(Data x, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Pattern' x))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Pattern' x -> u
forall u. (forall d. Data d => d -> u) -> Pattern' x -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Pattern' x)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Pattern' x -> c (Pattern' x)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Pattern' x))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Pattern' x))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
$cgmapMo :: forall x (m :: * -> *).
(Data x, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
$cgmapMp :: forall x (m :: * -> *).
(Data x, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
$cgmapM :: forall x (m :: * -> *).
(Data x, Monad m) =>
(forall d. Data d => d -> m d) -> Pattern' x -> m (Pattern' x)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Pattern' x -> u
$cgmapQi :: forall x u.
Data x =>
Int -> (forall d. Data d => d -> u) -> Pattern' x -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Pattern' x -> [u]
$cgmapQ :: forall x u.
Data x =>
(forall d. Data d => d -> u) -> Pattern' x -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
$cgmapQr :: forall x r r'.
Data x =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
$cgmapQl :: forall x r r'.
Data x =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Pattern' x -> r
gmapT :: (forall b. Data b => b -> b) -> Pattern' x -> Pattern' x
$cgmapT :: forall x.
Data x =>
(forall b. Data b => b -> b) -> Pattern' x -> Pattern' x
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Pattern' x))
$cdataCast2 :: forall x (t :: * -> * -> *) (c :: * -> *).
(Data x, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Pattern' x))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Pattern' x))
$cdataCast1 :: forall x (t :: * -> *) (c :: * -> *).
(Data x, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Pattern' x))
dataTypeOf :: Pattern' x -> DataType
$cdataTypeOf :: forall x. Data x => Pattern' x -> DataType
toConstr :: Pattern' x -> Constr
$ctoConstr :: forall x. Data x => Pattern' x -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Pattern' x)
$cgunfold :: forall x (c :: * -> *).
Data x =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Pattern' x)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Pattern' x -> c (Pattern' x)
$cgfoldl :: forall x (c :: * -> *).
Data x =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Pattern' x -> c (Pattern' x)
Data, Int -> Pattern' x -> ShowS
[Pattern' x] -> ShowS
Pattern' x -> ArgName
(Int -> Pattern' x -> ShowS)
-> (Pattern' x -> ArgName)
-> ([Pattern' x] -> ShowS)
-> Show (Pattern' x)
forall x. Show x => Int -> Pattern' x -> ShowS
forall x. Show x => [Pattern' x] -> ShowS
forall x. Show x => Pattern' x -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Pattern' x] -> ShowS
$cshowList :: forall x. Show x => [Pattern' x] -> ShowS
show :: Pattern' x -> ArgName
$cshow :: forall x. Show x => Pattern' x -> ArgName
showsPrec :: Int -> Pattern' x -> ShowS
$cshowsPrec :: forall x. Show x => Int -> Pattern' x -> ShowS
Show, (forall a b. (a -> b) -> Pattern' a -> Pattern' b)
-> (forall a b. a -> Pattern' b -> Pattern' a) -> Functor Pattern'
forall a b. a -> Pattern' b -> Pattern' a
forall a b. (a -> b) -> Pattern' a -> Pattern' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Pattern' b -> Pattern' a
$c<$ :: forall a b. a -> Pattern' b -> Pattern' a
fmap :: forall a b. (a -> b) -> Pattern' a -> Pattern' b
$cfmap :: forall a b. (a -> b) -> Pattern' a -> Pattern' b
Functor, (forall m. Monoid m => Pattern' m -> m)
-> (forall m a. Monoid m => (a -> m) -> Pattern' a -> m)
-> (forall m a. Monoid m => (a -> m) -> Pattern' a -> m)
-> (forall a b. (a -> b -> b) -> b -> Pattern' a -> b)
-> (forall a b. (a -> b -> b) -> b -> Pattern' a -> b)
-> (forall b a. (b -> a -> b) -> b -> Pattern' a -> b)
-> (forall b a. (b -> a -> b) -> b -> Pattern' a -> b)
-> (forall a. (a -> a -> a) -> Pattern' a -> a)
-> (forall a. (a -> a -> a) -> Pattern' a -> a)
-> (forall a. Pattern' a -> [a])
-> (forall a. Pattern' a -> Bool)
-> (forall a. Pattern' a -> Int)
-> (forall a. Eq a => a -> Pattern' a -> Bool)
-> (forall a. Ord a => Pattern' a -> a)
-> (forall a. Ord a => Pattern' a -> a)
-> (forall a. Num a => Pattern' a -> a)
-> (forall a. Num a => Pattern' a -> a)
-> Foldable Pattern'
forall a. Eq a => a -> Pattern' a -> Bool
forall a. Num a => Pattern' a -> a
forall a. Ord a => Pattern' a -> a
forall m. Monoid m => Pattern' m -> m
forall a. Pattern' a -> Bool
forall a. Pattern' a -> Int
forall a. Pattern' a -> [a]
forall a. (a -> a -> a) -> Pattern' a -> a
forall m a. Monoid m => (a -> m) -> Pattern' a -> m
forall b a. (b -> a -> b) -> b -> Pattern' a -> b
forall a b. (a -> b -> b) -> b -> Pattern' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Pattern' a -> a
$cproduct :: forall a. Num a => Pattern' a -> a
sum :: forall a. Num a => Pattern' a -> a
$csum :: forall a. Num a => Pattern' a -> a
minimum :: forall a. Ord a => Pattern' a -> a
$cminimum :: forall a. Ord a => Pattern' a -> a
maximum :: forall a. Ord a => Pattern' a -> a
$cmaximum :: forall a. Ord a => Pattern' a -> a
elem :: forall a. Eq a => a -> Pattern' a -> Bool
$celem :: forall a. Eq a => a -> Pattern' a -> Bool
length :: forall a. Pattern' a -> Int
$clength :: forall a. Pattern' a -> Int
null :: forall a. Pattern' a -> Bool
$cnull :: forall a. Pattern' a -> Bool
toList :: forall a. Pattern' a -> [a]
$ctoList :: forall a. Pattern' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Pattern' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Pattern' a -> a
foldr1 :: forall a. (a -> a -> a) -> Pattern' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Pattern' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
fold :: forall m. Monoid m => Pattern' m -> m
$cfold :: forall m. Monoid m => Pattern' m -> m
Foldable, Functor Pattern'
Foldable Pattern'
Functor Pattern'
-> Foldable Pattern'
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Pattern' a -> f (Pattern' b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Pattern' (f a) -> f (Pattern' a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Pattern' a -> m (Pattern' b))
-> (forall (m :: * -> *) a.
    Monad m =>
    Pattern' (m a) -> m (Pattern' a))
-> Traversable Pattern'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Pattern' (m a) -> m (Pattern' a)
forall (f :: * -> *) a.
Applicative f =>
Pattern' (f a) -> f (Pattern' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Pattern' a -> m (Pattern' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Pattern' a -> f (Pattern' b)
sequence :: forall (m :: * -> *) a. Monad m => Pattern' (m a) -> m (Pattern' a)
$csequence :: forall (m :: * -> *) a. Monad m => Pattern' (m a) -> m (Pattern' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Pattern' a -> m (Pattern' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Pattern' a -> m (Pattern' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Pattern' (f a) -> f (Pattern' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
Pattern' (f a) -> f (Pattern' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Pattern' a -> f (Pattern' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Pattern' a -> f (Pattern' b)
Traversable, (forall x. Pattern' x -> Rep (Pattern' x) x)
-> (forall x. Rep (Pattern' x) x -> Pattern' x)
-> Generic (Pattern' x)
forall x. Rep (Pattern' x) x -> Pattern' x
forall x. Pattern' x -> Rep (Pattern' x) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall x x. Rep (Pattern' x) x -> Pattern' x
forall x x. Pattern' x -> Rep (Pattern' x) x
$cto :: forall x x. Rep (Pattern' x) x -> Pattern' x
$cfrom :: forall x x. Pattern' x -> Rep (Pattern' x) x
Generic)

type Pattern = Pattern' PatVarName
    -- ^ The @PatVarName@ is a name suggestion.

varP :: a -> Pattern' a
varP :: forall a. a -> Pattern' a
varP = PatternInfo -> a -> Pattern' a
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
defaultPatternInfo

dotP :: Term -> Pattern' a
dotP :: forall a. Term -> Pattern' a
dotP = PatternInfo -> Term -> Pattern' a
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
defaultPatternInfo

litP :: Literal -> Pattern' a
litP :: forall a. Literal -> Pattern' a
litP = PatternInfo -> Literal -> Pattern' a
forall x. PatternInfo -> Literal -> Pattern' x
LitP PatternInfo
defaultPatternInfo

-- | Type used when numbering pattern variables.
data DBPatVar = DBPatVar
  { DBPatVar -> ArgName
dbPatVarName  :: PatVarName
  , DBPatVar -> Int
dbPatVarIndex :: Int
  } deriving (Typeable DBPatVar
Typeable DBPatVar
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> DBPatVar -> c DBPatVar)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c DBPatVar)
-> (DBPatVar -> Constr)
-> (DBPatVar -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c DBPatVar))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DBPatVar))
-> ((forall b. Data b => b -> b) -> DBPatVar -> DBPatVar)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> DBPatVar -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> DBPatVar -> r)
-> (forall u. (forall d. Data d => d -> u) -> DBPatVar -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> DBPatVar -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar)
-> Data DBPatVar
DBPatVar -> DataType
DBPatVar -> Constr
(forall b. Data b => b -> b) -> DBPatVar -> DBPatVar
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> DBPatVar -> u
forall u. (forall d. Data d => d -> u) -> DBPatVar -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DBPatVar -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DBPatVar -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DBPatVar
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DBPatVar -> c DBPatVar
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DBPatVar)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DBPatVar)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DBPatVar -> m DBPatVar
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DBPatVar -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DBPatVar -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> DBPatVar -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> DBPatVar -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DBPatVar -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DBPatVar -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DBPatVar -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DBPatVar -> r
gmapT :: (forall b. Data b => b -> b) -> DBPatVar -> DBPatVar
$cgmapT :: (forall b. Data b => b -> b) -> DBPatVar -> DBPatVar
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DBPatVar)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DBPatVar)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DBPatVar)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DBPatVar)
dataTypeOf :: DBPatVar -> DataType
$cdataTypeOf :: DBPatVar -> DataType
toConstr :: DBPatVar -> Constr
$ctoConstr :: DBPatVar -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DBPatVar
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DBPatVar
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DBPatVar -> c DBPatVar
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DBPatVar -> c DBPatVar
Data, Int -> DBPatVar -> ShowS
[DBPatVar] -> ShowS
DBPatVar -> ArgName
(Int -> DBPatVar -> ShowS)
-> (DBPatVar -> ArgName) -> ([DBPatVar] -> ShowS) -> Show DBPatVar
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [DBPatVar] -> ShowS
$cshowList :: [DBPatVar] -> ShowS
show :: DBPatVar -> ArgName
$cshow :: DBPatVar -> ArgName
showsPrec :: Int -> DBPatVar -> ShowS
$cshowsPrec :: Int -> DBPatVar -> ShowS
Show, DBPatVar -> DBPatVar -> Bool
(DBPatVar -> DBPatVar -> Bool)
-> (DBPatVar -> DBPatVar -> Bool) -> Eq DBPatVar
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DBPatVar -> DBPatVar -> Bool
$c/= :: DBPatVar -> DBPatVar -> Bool
== :: DBPatVar -> DBPatVar -> Bool
$c== :: DBPatVar -> DBPatVar -> Bool
Eq, (forall x. DBPatVar -> Rep DBPatVar x)
-> (forall x. Rep DBPatVar x -> DBPatVar) -> Generic DBPatVar
forall x. Rep DBPatVar x -> DBPatVar
forall x. DBPatVar -> Rep DBPatVar x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep DBPatVar x -> DBPatVar
$cfrom :: forall x. DBPatVar -> Rep DBPatVar x
Generic)

type DeBruijnPattern = Pattern' DBPatVar

namedVarP :: PatVarName -> Named_ Pattern
namedVarP :: ArgName -> Named_ Pattern
namedVarP ArgName
x = Maybe (WithOrigin (Ranged ArgName)) -> Pattern -> Named_ Pattern
forall name a. Maybe name -> a -> Named name a
Named Maybe (WithOrigin (Ranged ArgName))
named (Pattern -> Named_ Pattern) -> Pattern -> Named_ Pattern
forall a b. (a -> b) -> a -> b
$ ArgName -> Pattern
forall a. a -> Pattern' a
varP ArgName
x
  where named :: Maybe (WithOrigin (Ranged ArgName))
named = if ArgName -> Bool
forall a. Underscore a => a -> Bool
isUnderscore ArgName
x then Maybe (WithOrigin (Ranged ArgName))
forall a. Maybe a
Nothing else WithOrigin (Ranged ArgName) -> Maybe (WithOrigin (Ranged ArgName))
forall a. a -> Maybe a
Just (WithOrigin (Ranged ArgName)
 -> Maybe (WithOrigin (Ranged ArgName)))
-> WithOrigin (Ranged ArgName)
-> Maybe (WithOrigin (Ranged ArgName))
forall a b. (a -> b) -> a -> b
$ Origin -> Ranged ArgName -> WithOrigin (Ranged ArgName)
forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted (Ranged ArgName -> WithOrigin (Ranged ArgName))
-> Ranged ArgName -> WithOrigin (Ranged ArgName)
forall a b. (a -> b) -> a -> b
$ ArgName -> Ranged ArgName
forall a. a -> Ranged a
unranged ArgName
x

namedDBVarP :: Int -> PatVarName -> Named_ DeBruijnPattern
namedDBVarP :: Int -> ArgName -> Named_ DeBruijnPattern
namedDBVarP Int
m = ((Pattern -> DeBruijnPattern)
-> Named_ Pattern -> Named_ DeBruijnPattern
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Pattern -> DeBruijnPattern)
 -> Named_ Pattern -> Named_ DeBruijnPattern)
-> ((ArgName -> DBPatVar) -> Pattern -> DeBruijnPattern)
-> (ArgName -> DBPatVar)
-> Named_ Pattern
-> Named_ DeBruijnPattern
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (ArgName -> DBPatVar) -> Pattern -> DeBruijnPattern
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) (\ArgName
x -> ArgName -> Int -> DBPatVar
DBPatVar ArgName
x Int
m) (Named_ Pattern -> Named_ DeBruijnPattern)
-> (ArgName -> Named_ Pattern) -> ArgName -> Named_ DeBruijnPattern
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> Named_ Pattern
namedVarP

-- | Make an absurd pattern with the given de Bruijn index.
absurdP :: Int -> DeBruijnPattern
absurdP :: Int -> DeBruijnPattern
absurdP = PatternInfo -> DBPatVar -> DeBruijnPattern
forall x. PatternInfo -> x -> Pattern' x
VarP (PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
PatOAbsurd []) (DBPatVar -> DeBruijnPattern)
-> (Int -> DBPatVar) -> Int -> DeBruijnPattern
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> Int -> DBPatVar
DBPatVar ArgName
absurdPatternName

-- | The @ConPatternInfo@ states whether the constructor belongs to
--   a record type (@True@) or data type (@False@).
--   In the former case, the @PatOrigin@ of the @conPInfo@ says
--   whether the record pattern orginates from the expansion of an
--   implicit pattern.
--   The @Type@ is the type of the whole record pattern.
--   The scope used for the type is given by any outer scope
--   plus the clause's telescope ('clauseTel').
data ConPatternInfo = ConPatternInfo
  { ConPatternInfo -> PatternInfo
conPInfo   :: PatternInfo
    -- ^ Information on the origin of the pattern.
  , ConPatternInfo -> Bool
conPRecord :: Bool
    -- ^ @False@ if data constructor.
    --   @True@ if record constructor.
  , ConPatternInfo -> Bool
conPFallThrough :: Bool
    -- ^ Should the match block on non-canonical terms or can it
    --   proceed to the catch-all clause?
  , ConPatternInfo -> Maybe (Arg Type)
conPType   :: Maybe (Arg Type)
    -- ^ The type of the whole constructor pattern.
    --   Should be present (@Just@) if constructor pattern is
    --   is generated ordinarily by type-checking.
    --   Could be absent (@Nothing@) if pattern comes from some
    --   plugin (like Agsy).
    --   Needed e.g. for with-clause stripping.
  , ConPatternInfo -> Bool
conPLazy :: Bool
    -- ^ Lazy patterns are generated by the forcing translation in the unifier
    --   ('Agda.TypeChecking.Rules.LHS.Unify.unifyStep') and are dropped by
    --   the clause compiler (TODO: not yet)
    --   ('Agda.TypeChecking.CompiledClause.Compile.compileClauses') when the
    --   variables they bind are unused. The GHC backend compiles lazy matches
    --   to lazy patterns in Haskell (TODO: not yet).
  }
  deriving (Typeable ConPatternInfo
Typeable ConPatternInfo
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> ConPatternInfo -> c ConPatternInfo)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c ConPatternInfo)
-> (ConPatternInfo -> Constr)
-> (ConPatternInfo -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c ConPatternInfo))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c ConPatternInfo))
-> ((forall b. Data b => b -> b)
    -> ConPatternInfo -> ConPatternInfo)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r)
-> (forall u.
    (forall d. Data d => d -> u) -> ConPatternInfo -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> ConPatternInfo -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d)
    -> ConPatternInfo -> m ConPatternInfo)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d)
    -> ConPatternInfo -> m ConPatternInfo)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d)
    -> ConPatternInfo -> m ConPatternInfo)
-> Data ConPatternInfo
ConPatternInfo -> DataType
ConPatternInfo -> Constr
(forall b. Data b => b -> b) -> ConPatternInfo -> ConPatternInfo
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> ConPatternInfo -> u
forall u. (forall d. Data d => d -> u) -> ConPatternInfo -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ConPatternInfo
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ConPatternInfo -> c ConPatternInfo
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ConPatternInfo)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ConPatternInfo)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> ConPatternInfo -> m ConPatternInfo
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> ConPatternInfo -> u
$cgmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> ConPatternInfo -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> ConPatternInfo -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> ConPatternInfo -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ConPatternInfo -> r
gmapT :: (forall b. Data b => b -> b) -> ConPatternInfo -> ConPatternInfo
$cgmapT :: (forall b. Data b => b -> b) -> ConPatternInfo -> ConPatternInfo
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ConPatternInfo)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ConPatternInfo)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ConPatternInfo)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ConPatternInfo)
dataTypeOf :: ConPatternInfo -> DataType
$cdataTypeOf :: ConPatternInfo -> DataType
toConstr :: ConPatternInfo -> Constr
$ctoConstr :: ConPatternInfo -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ConPatternInfo
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ConPatternInfo
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ConPatternInfo -> c ConPatternInfo
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ConPatternInfo -> c ConPatternInfo
Data, Int -> ConPatternInfo -> ShowS
[ConPatternInfo] -> ShowS
ConPatternInfo -> ArgName
(Int -> ConPatternInfo -> ShowS)
-> (ConPatternInfo -> ArgName)
-> ([ConPatternInfo] -> ShowS)
-> Show ConPatternInfo
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [ConPatternInfo] -> ShowS
$cshowList :: [ConPatternInfo] -> ShowS
show :: ConPatternInfo -> ArgName
$cshow :: ConPatternInfo -> ArgName
showsPrec :: Int -> ConPatternInfo -> ShowS
$cshowsPrec :: Int -> ConPatternInfo -> ShowS
Show, (forall x. ConPatternInfo -> Rep ConPatternInfo x)
-> (forall x. Rep ConPatternInfo x -> ConPatternInfo)
-> Generic ConPatternInfo
forall x. Rep ConPatternInfo x -> ConPatternInfo
forall x. ConPatternInfo -> Rep ConPatternInfo x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep ConPatternInfo x -> ConPatternInfo
$cfrom :: forall x. ConPatternInfo -> Rep ConPatternInfo x
Generic)

noConPatternInfo :: ConPatternInfo
noConPatternInfo :: ConPatternInfo
noConPatternInfo = PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
defaultPatternInfo Bool
False Bool
False Maybe (Arg Type)
forall a. Maybe a
Nothing Bool
False

-- | Build partial 'ConPatternInfo' from 'ConInfo'
toConPatternInfo :: ConInfo -> ConPatternInfo
toConPatternInfo :: ConInfo -> ConPatternInfo
toConPatternInfo ConInfo
ConORec = ConPatternInfo
noConPatternInfo{ conPInfo :: PatternInfo
conPInfo = PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
PatORec [] , conPRecord :: Bool
conPRecord = Bool
True }
toConPatternInfo ConInfo
_ = ConPatternInfo
noConPatternInfo

-- | Build 'ConInfo' from 'ConPatternInfo'.
fromConPatternInfo :: ConPatternInfo -> ConInfo
fromConPatternInfo :: ConPatternInfo -> ConInfo
fromConPatternInfo ConPatternInfo
i = PatOrigin -> ConInfo
patToConO (PatOrigin -> ConInfo) -> PatOrigin -> ConInfo
forall a b. (a -> b) -> a -> b
$ PatternInfo -> PatOrigin
patOrigin (PatternInfo -> PatOrigin) -> PatternInfo -> PatOrigin
forall a b. (a -> b) -> a -> b
$ ConPatternInfo -> PatternInfo
conPInfo ConPatternInfo
i
  where
    patToConO :: PatOrigin -> ConOrigin
    patToConO :: PatOrigin -> ConInfo
patToConO = \case
      PatOrigin
PatOSystem -> ConInfo
ConOSystem
      PatOrigin
PatOSplit  -> ConInfo
ConOSplit
      PatOVar{}  -> ConInfo
ConOSystem
      PatOrigin
PatODot    -> ConInfo
ConOSystem
      PatOrigin
PatOWild   -> ConInfo
ConOSystem
      PatOrigin
PatOCon    -> ConInfo
ConOCon
      PatOrigin
PatORec    -> ConInfo
ConORec
      PatOrigin
PatOLit    -> ConInfo
ConOCon
      PatOrigin
PatOAbsurd -> ConInfo
ConOSystem

-- | Extract pattern variables in left-to-right order.
--   A 'DotP' is also treated as variable (see docu for 'Clause').
class PatternVars a where
  type PatternVarOut a
  patternVars :: a -> [Arg (Either (PatternVarOut a) Term)]

instance PatternVars (Arg (Pattern' a)) where
  type PatternVarOut (Arg (Pattern' a)) = a

  -- patternVars :: Arg (Pattern' a) -> [Arg (Either a Term)]
  patternVars :: Arg (Pattern' a)
-> [Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)]
patternVars (Arg ArgInfo
i (VarP PatternInfo
_ a
x)   ) = [ArgInfo
-> Either (PatternVarOut (Arg (Pattern' a))) Term
-> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i (Either (PatternVarOut (Arg (Pattern' a))) Term
 -> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term))
-> Either (PatternVarOut (Arg (Pattern' a))) Term
-> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)
forall a b. (a -> b) -> a -> b
$ a -> Either a Term
forall a b. a -> Either a b
Left a
x]
  patternVars (Arg ArgInfo
i (DotP PatternInfo
_ Term
t)   ) = [ArgInfo
-> Either (PatternVarOut (Arg (Pattern' a))) Term
-> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i (Either (PatternVarOut (Arg (Pattern' a))) Term
 -> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term))
-> Either (PatternVarOut (Arg (Pattern' a))) Term
-> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)
forall a b. (a -> b) -> a -> b
$ Term -> Either a Term
forall a b. b -> Either a b
Right Term
t]
  patternVars (Arg ArgInfo
_ (ConP ConHead
_ ConPatternInfo
_ [NamedArg (Pattern' a)]
ps)) = [NamedArg (Pattern' a)]
-> [Arg (Either (PatternVarOut [NamedArg (Pattern' a)]) Term)]
forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars [NamedArg (Pattern' a)]
ps
  patternVars (Arg ArgInfo
_ (DefP PatternInfo
_ QName
_ [NamedArg (Pattern' a)]
ps)) = [NamedArg (Pattern' a)]
-> [Arg (Either (PatternVarOut [NamedArg (Pattern' a)]) Term)]
forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars [NamedArg (Pattern' a)]
ps
  patternVars (Arg ArgInfo
_ (LitP PatternInfo
_ Literal
_)   ) = []
  patternVars (Arg ArgInfo
_ ProjP{}      ) = []
  patternVars (Arg ArgInfo
i (IApplyP PatternInfo
_ Term
_ Term
_ a
x)) = [ArgInfo
-> Either (PatternVarOut (Arg (Pattern' a))) Term
-> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i (Either (PatternVarOut (Arg (Pattern' a))) Term
 -> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term))
-> Either (PatternVarOut (Arg (Pattern' a))) Term
-> Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)
forall a b. (a -> b) -> a -> b
$ a -> Either a Term
forall a b. a -> Either a b
Left a
x]


instance PatternVars (NamedArg (Pattern' a)) where
  type PatternVarOut (NamedArg (Pattern' a)) = a

  patternVars :: NamedArg (Pattern' a)
-> [Arg (Either (PatternVarOut (NamedArg (Pattern' a))) Term)]
patternVars = Arg (Pattern' a) -> [Arg (Either a Term)]
forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars (Arg (Pattern' a) -> [Arg (Either a Term)])
-> (NamedArg (Pattern' a) -> Arg (Pattern' a))
-> NamedArg (Pattern' a)
-> [Arg (Either a Term)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Named_ (Pattern' a) -> Pattern' a)
-> NamedArg (Pattern' a) -> Arg (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Named_ (Pattern' a) -> Pattern' a
forall name a. Named name a -> a
namedThing

instance PatternVars a => PatternVars [a] where
  type PatternVarOut [a] = PatternVarOut a

  patternVars :: [a] -> [Arg (Either (PatternVarOut [a]) Term)]
patternVars = (a -> [Arg (Either (PatternVarOut a) Term)])
-> [a] -> [Arg (Either (PatternVarOut a) Term)]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap a -> [Arg (Either (PatternVarOut a) Term)]
forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars

-- | Retrieve the PatternInfo from a pattern
patternInfo :: Pattern' x -> Maybe PatternInfo
patternInfo :: forall x. Pattern' x -> Maybe PatternInfo
patternInfo (VarP PatternInfo
i x
_)        = PatternInfo -> Maybe PatternInfo
forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (DotP PatternInfo
i Term
_)        = PatternInfo -> Maybe PatternInfo
forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (LitP PatternInfo
i Literal
_)        = PatternInfo -> Maybe PatternInfo
forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (ConP ConHead
_ ConPatternInfo
ci [NamedArg (Pattern' x)]
_)     = PatternInfo -> Maybe PatternInfo
forall a. a -> Maybe a
Just (PatternInfo -> Maybe PatternInfo)
-> PatternInfo -> Maybe PatternInfo
forall a b. (a -> b) -> a -> b
$ ConPatternInfo -> PatternInfo
conPInfo ConPatternInfo
ci
patternInfo ProjP{}           = Maybe PatternInfo
forall a. Maybe a
Nothing
patternInfo (IApplyP PatternInfo
i Term
_ Term
_ x
_) = PatternInfo -> Maybe PatternInfo
forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (DefP PatternInfo
i QName
_ [NamedArg (Pattern' x)]
_)      = PatternInfo -> Maybe PatternInfo
forall a. a -> Maybe a
Just PatternInfo
i

-- | Retrieve the origin of a pattern
patternOrigin :: Pattern' x -> Maybe PatOrigin
patternOrigin :: forall x. Pattern' x -> Maybe PatOrigin
patternOrigin = (PatternInfo -> PatOrigin) -> Maybe PatternInfo -> Maybe PatOrigin
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap PatternInfo -> PatOrigin
patOrigin (Maybe PatternInfo -> Maybe PatOrigin)
-> (Pattern' x -> Maybe PatternInfo)
-> Pattern' x
-> Maybe PatOrigin
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Pattern' x -> Maybe PatternInfo
forall x. Pattern' x -> Maybe PatternInfo
patternInfo

-- | Does the pattern perform a match that could fail?
properlyMatching :: Pattern' a -> Bool
properlyMatching :: forall a. Pattern' a -> Bool
properlyMatching = Bool -> Bool -> Pattern' a -> Bool
forall a. Bool -> Bool -> Pattern' a -> Bool
properlyMatching' Bool
True Bool
True

properlyMatching'
  :: Bool       -- ^ Should absurd patterns count as proper match?
  -> Bool       -- ^ Should projection patterns count as proper match?
  -> Pattern' a -- ^ The pattern.
  -> Bool
properlyMatching' :: forall a. Bool -> Bool -> Pattern' a -> Bool
properlyMatching' Bool
absP Bool
projP = \case
  Pattern' a
p | Bool
absP Bool -> Bool -> Bool
&& Pattern' a -> Maybe PatOrigin
forall x. Pattern' x -> Maybe PatOrigin
patternOrigin Pattern' a
p Maybe PatOrigin -> Maybe PatOrigin -> Bool
forall a. Eq a => a -> a -> Bool
== PatOrigin -> Maybe PatOrigin
forall a. a -> Maybe a
Just PatOrigin
PatOAbsurd -> Bool
True
  ConP ConHead
_ ConPatternInfo
ci [NamedArg (Pattern' a)]
ps    -- record constructors do not count as proper matches themselves
    | ConPatternInfo -> Bool
conPRecord ConPatternInfo
ci -> (NamedArg (Pattern' a) -> Bool) -> [NamedArg (Pattern' a)] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
List.any (Pattern' a -> Bool
forall a. Pattern' a -> Bool
properlyMatching (Pattern' a -> Bool)
-> (NamedArg (Pattern' a) -> Pattern' a)
-> NamedArg (Pattern' a)
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NamedArg (Pattern' a) -> Pattern' a
forall a. NamedArg a -> a
namedArg) [NamedArg (Pattern' a)]
ps
    | Bool
otherwise     -> Bool
True
  LitP{}    -> Bool
True
  DefP{}    -> Bool
True
  ProjP{}   -> Bool
projP
  VarP{}    -> Bool
False
  DotP{}    -> Bool
False
  IApplyP{} -> Bool
False

instance IsProjP (Pattern' a) where
  isProjP :: Pattern' a -> Maybe (ProjOrigin, AmbiguousQName)
isProjP = \case
    ProjP ProjOrigin
o QName
d -> (ProjOrigin, AmbiguousQName) -> Maybe (ProjOrigin, AmbiguousQName)
forall a. a -> Maybe a
Just (ProjOrigin
o, QName -> AmbiguousQName
unambiguous QName
d)
    Pattern' a
_ -> Maybe (ProjOrigin, AmbiguousQName)
forall a. Maybe a
Nothing

-----------------------------------------------------------------------------
-- * Explicit substitutions
-----------------------------------------------------------------------------

-- | Substitutions.

data Substitution' a

  = IdS
    -- ^ Identity substitution.
    --   @Γ ⊢ IdS : Γ@

  | EmptyS Impossible
    -- ^ Empty substitution, lifts from the empty context. First argument is @__IMPOSSIBLE__@.
    --   Apply this to closed terms you want to use in a non-empty context.
    --   @Γ ⊢ EmptyS : ()@

  | a :# Substitution' a
    -- ^ Substitution extension, ``cons''.
    --   @
    --     Γ ⊢ u : Aρ   Γ ⊢ ρ : Δ
    --     ----------------------
    --     Γ ⊢ u :# ρ : Δ, A
    --   @

  | Strengthen Impossible (Substitution' a)
    -- ^ Strengthening substitution.  First argument is @__IMPOSSIBLE__@.
    --   Apply this to a term which does not contain variable 0
    --   to lower all de Bruijn indices by one.
    --   @
    --             Γ ⊢ ρ : Δ
    --     ---------------------------
    --     Γ ⊢ Strengthen ρ : Δ, A
    --   @

  | Wk !Int (Substitution' a)
    -- ^ Weakening substitution, lifts to an extended context.
    --   @
    --         Γ ⊢ ρ : Δ
    --     -------------------
    --     Γ, Ψ ⊢ Wk |Ψ| ρ : Δ
    --   @


  | Lift !Int (Substitution' a)
    -- ^ Lifting substitution.  Use this to go under a binder.
    --   @Lift 1 ρ == var 0 :# Wk 1 ρ@.
    --   @
    --            Γ ⊢ ρ : Δ
    --     -------------------------
    --     Γ, Ψρ ⊢ Lift |Ψ| ρ : Δ, Ψ
    --   @

  deriving ( Int -> Substitution' a -> ShowS
[Substitution' a] -> ShowS
Substitution' a -> ArgName
(Int -> Substitution' a -> ShowS)
-> (Substitution' a -> ArgName)
-> ([Substitution' a] -> ShowS)
-> Show (Substitution' a)
forall a. Show a => Int -> Substitution' a -> ShowS
forall a. Show a => [Substitution' a] -> ShowS
forall a. Show a => Substitution' a -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Substitution' a] -> ShowS
$cshowList :: forall a. Show a => [Substitution' a] -> ShowS
show :: Substitution' a -> ArgName
$cshow :: forall a. Show a => Substitution' a -> ArgName
showsPrec :: Int -> Substitution' a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> Substitution' a -> ShowS
Show
           , (forall a b. (a -> b) -> Substitution' a -> Substitution' b)
-> (forall a b. a -> Substitution' b -> Substitution' a)
-> Functor Substitution'
forall a b. a -> Substitution' b -> Substitution' a
forall a b. (a -> b) -> Substitution' a -> Substitution' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Substitution' b -> Substitution' a
$c<$ :: forall a b. a -> Substitution' b -> Substitution' a
fmap :: forall a b. (a -> b) -> Substitution' a -> Substitution' b
$cfmap :: forall a b. (a -> b) -> Substitution' a -> Substitution' b
Functor
           , (forall m. Monoid m => Substitution' m -> m)
-> (forall m a. Monoid m => (a -> m) -> Substitution' a -> m)
-> (forall m a. Monoid m => (a -> m) -> Substitution' a -> m)
-> (forall a b. (a -> b -> b) -> b -> Substitution' a -> b)
-> (forall a b. (a -> b -> b) -> b -> Substitution' a -> b)
-> (forall b a. (b -> a -> b) -> b -> Substitution' a -> b)
-> (forall b a. (b -> a -> b) -> b -> Substitution' a -> b)
-> (forall a. (a -> a -> a) -> Substitution' a -> a)
-> (forall a. (a -> a -> a) -> Substitution' a -> a)
-> (forall a. Substitution' a -> [a])
-> (forall a. Substitution' a -> Bool)
-> (forall a. Substitution' a -> Int)
-> (forall a. Eq a => a -> Substitution' a -> Bool)
-> (forall a. Ord a => Substitution' a -> a)
-> (forall a. Ord a => Substitution' a -> a)
-> (forall a. Num a => Substitution' a -> a)
-> (forall a. Num a => Substitution' a -> a)
-> Foldable Substitution'
forall a. Eq a => a -> Substitution' a -> Bool
forall a. Num a => Substitution' a -> a
forall a. Ord a => Substitution' a -> a
forall m. Monoid m => Substitution' m -> m
forall a. Substitution' a -> Bool
forall a. Substitution' a -> Int
forall a. Substitution' a -> [a]
forall a. (a -> a -> a) -> Substitution' a -> a
forall m a. Monoid m => (a -> m) -> Substitution' a -> m
forall b a. (b -> a -> b) -> b -> Substitution' a -> b
forall a b. (a -> b -> b) -> b -> Substitution' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Substitution' a -> a
$cproduct :: forall a. Num a => Substitution' a -> a
sum :: forall a. Num a => Substitution' a -> a
$csum :: forall a. Num a => Substitution' a -> a
minimum :: forall a. Ord a => Substitution' a -> a
$cminimum :: forall a. Ord a => Substitution' a -> a
maximum :: forall a. Ord a => Substitution' a -> a
$cmaximum :: forall a. Ord a => Substitution' a -> a
elem :: forall a. Eq a => a -> Substitution' a -> Bool
$celem :: forall a. Eq a => a -> Substitution' a -> Bool
length :: forall a. Substitution' a -> Int
$clength :: forall a. Substitution' a -> Int
null :: forall a. Substitution' a -> Bool
$cnull :: forall a. Substitution' a -> Bool
toList :: forall a. Substitution' a -> [a]
$ctoList :: forall a. Substitution' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Substitution' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Substitution' a -> a
foldr1 :: forall a. (a -> a -> a) -> Substitution' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Substitution' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
fold :: forall m. Monoid m => Substitution' m -> m
$cfold :: forall m. Monoid m => Substitution' m -> m
Foldable
           , Functor Substitution'
Foldable Substitution'
Functor Substitution'
-> Foldable Substitution'
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Substitution' a -> f (Substitution' b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Substitution' (f a) -> f (Substitution' a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Substitution' a -> m (Substitution' b))
-> (forall (m :: * -> *) a.
    Monad m =>
    Substitution' (m a) -> m (Substitution' a))
-> Traversable Substitution'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
Substitution' (m a) -> m (Substitution' a)
forall (f :: * -> *) a.
Applicative f =>
Substitution' (f a) -> f (Substitution' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Substitution' a -> m (Substitution' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Substitution' a -> f (Substitution' b)
sequence :: forall (m :: * -> *) a.
Monad m =>
Substitution' (m a) -> m (Substitution' a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
Substitution' (m a) -> m (Substitution' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Substitution' a -> m (Substitution' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Substitution' a -> m (Substitution' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Substitution' (f a) -> f (Substitution' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
Substitution' (f a) -> f (Substitution' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Substitution' a -> f (Substitution' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Substitution' a -> f (Substitution' b)
Traversable
           , (forall x. Substitution' a -> Rep (Substitution' a) x)
-> (forall x. Rep (Substitution' a) x -> Substitution' a)
-> Generic (Substitution' a)
forall x. Rep (Substitution' a) x -> Substitution' a
forall x. Substitution' a -> Rep (Substitution' a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Substitution' a) x -> Substitution' a
forall a x. Substitution' a -> Rep (Substitution' a) x
$cto :: forall a x. Rep (Substitution' a) x -> Substitution' a
$cfrom :: forall a x. Substitution' a -> Rep (Substitution' a) x
Generic
           )

type Substitution = Substitution' Term
type PatternSubstitution = Substitution' DeBruijnPattern

infixr 4 :#

instance Null (Substitution' a) where
  empty :: Substitution' a
empty = Substitution' a
forall a. Substitution' a
IdS
  null :: Substitution' a -> Bool
null Substitution' a
IdS = Bool
True
  null Substitution' a
_   = Bool
False


---------------------------------------------------------------------------
-- * Views
---------------------------------------------------------------------------

-- | View type as equality type.

data EqualityView
  = EqualityType
    { EqualityView -> Sort
eqtSort  :: Sort     -- ^ Sort of this type.
    , EqualityView -> QName
eqtName  :: QName    -- ^ Builtin EQUALITY.
    , EqualityView -> [Arg Term]
eqtParams :: [Arg Term] -- ^ Hidden.  Empty or @Level@.
    , EqualityView -> Arg Term
eqtType  :: Arg Term -- ^ Hidden
    , EqualityView -> Arg Term
eqtLhs   :: Arg Term -- ^ NotHidden
    , EqualityView -> Arg Term
eqtRhs   :: Arg Term -- ^ NotHidden
    }
  | OtherType Type -- ^ reduced
  | IdiomType Type -- ^ reduced

isEqualityType :: EqualityView -> Bool
isEqualityType :: EqualityView -> Bool
isEqualityType EqualityType{} = Bool
True
isEqualityType OtherType{}    = Bool
False
isEqualityType IdiomType{}    = Bool
False

-- | View type as path type.

data PathView
  = PathType
    { PathView -> Sort
pathSort  :: Sort     -- ^ Sort of this type.
    , PathView -> QName
pathName  :: QName    -- ^ Builtin PATH.
    , PathView -> Arg Term
pathLevel :: Arg Term -- ^ Hidden
    , PathView -> Arg Term
pathType  :: Arg Term -- ^ Hidden
    , PathView -> Arg Term
pathLhs   :: Arg Term -- ^ NotHidden
    , PathView -> Arg Term
pathRhs   :: Arg Term -- ^ NotHidden
    }
  | OType Type -- ^ reduced

isPathType :: PathView -> Bool
isPathType :: PathView -> Bool
isPathType PathType{} = Bool
True
isPathType OType{}    = Bool
False

data IntervalView
      = IZero
      | IOne
      | IMin (Arg Term) (Arg Term)
      | IMax (Arg Term) (Arg Term)
      | INeg (Arg Term)
      | OTerm Term
      deriving Int -> IntervalView -> ShowS
[IntervalView] -> ShowS
IntervalView -> ArgName
(Int -> IntervalView -> ShowS)
-> (IntervalView -> ArgName)
-> ([IntervalView] -> ShowS)
-> Show IntervalView
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [IntervalView] -> ShowS
$cshowList :: [IntervalView] -> ShowS
show :: IntervalView -> ArgName
$cshow :: IntervalView -> ArgName
showsPrec :: Int -> IntervalView -> ShowS
$cshowsPrec :: Int -> IntervalView -> ShowS
Show

isIOne :: IntervalView -> Bool
isIOne :: IntervalView -> Bool
isIOne IntervalView
IOne = Bool
True
isIOne IntervalView
_ = Bool
False

---------------------------------------------------------------------------
-- * Absurd Lambda
---------------------------------------------------------------------------

-- | Absurd lambdas are internally represented as identity
--   with variable name "()".
absurdBody :: Abs Term
absurdBody :: Abs Term
absurdBody = ArgName -> Term -> Abs Term
forall a. ArgName -> a -> Abs a
Abs ArgName
absurdPatternName (Term -> Abs Term) -> Term -> Abs Term
forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Term
Var Int
0 []

isAbsurdBody :: Abs Term -> Bool
isAbsurdBody :: Abs Term -> Bool
isAbsurdBody (Abs ArgName
x (Var Int
0 [])) = ArgName -> Bool
isAbsurdPatternName ArgName
x
isAbsurdBody Abs Term
_                  = Bool
False

absurdPatternName :: PatVarName
absurdPatternName :: ArgName
absurdPatternName = ArgName
"()"

isAbsurdPatternName :: PatVarName -> Bool
isAbsurdPatternName :: ArgName -> Bool
isAbsurdPatternName ArgName
x = ArgName
x ArgName -> ArgName -> Bool
forall a. Eq a => a -> a -> Bool
== ArgName
absurdPatternName

---------------------------------------------------------------------------
-- * Smart constructors
---------------------------------------------------------------------------

-- | An unapplied variable.
var :: Nat -> Term
var :: Int -> Term
var Int
i | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0    = Int -> Elims -> Term
Var Int
i []
      | Bool
otherwise = Term
forall a. HasCallStack => a
__IMPOSSIBLE__

-- | Add 'DontCare' is it is not already a @DontCare@.
dontCare :: Term -> Term
dontCare :: Term -> Term
dontCare Term
v =
  case Term
v of
    DontCare{} -> Term
v
    Term
_          -> Term -> Term
DontCare Term
v

type DummyTermKind = String

-- | Construct a string representing the call-site that created the dummy thing.
dummyLocName :: CallStack -> String
dummyLocName :: CallStack -> ArgName
dummyLocName CallStack
cs = ArgName -> (CallSite -> ArgName) -> Maybe CallSite -> ArgName
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ArgName
forall a. HasCallStack => a
__IMPOSSIBLE__ CallSite -> ArgName
prettyCallSite (CallStack -> Maybe CallSite
headCallSite CallStack
cs)

-- | Aux: A dummy term to constitute a dummy term/level/sort/type.
dummyTermWith :: DummyTermKind -> CallStack -> Term
dummyTermWith :: ArgName -> CallStack -> Term
dummyTermWith ArgName
kind CallStack
cs = (ArgName -> Elims -> Term) -> Elims -> ArgName -> Term
forall a b c. (a -> b -> c) -> b -> a -> c
flip ArgName -> Elims -> Term
Dummy [] (ArgName -> Term) -> ArgName -> Term
forall a b. (a -> b) -> a -> b
$ [ArgName] -> ArgName
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [ArgName
kind, ArgName
": ", CallStack -> ArgName
dummyLocName CallStack
cs]

-- | A dummy level to constitute a level/sort created at location.
--   Note: use macro __DUMMY_LEVEL__ !
dummyLevel :: CallStack -> Level
dummyLevel :: CallStack -> Level
dummyLevel = Term -> Level
forall t. t -> Level' t
atomicLevel (Term -> Level) -> (CallStack -> Term) -> CallStack -> Level
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> CallStack -> Term
dummyTermWith ArgName
"dummyLevel"

-- | A dummy term created at location.
--   Note: use macro __DUMMY_TERM__ !
dummyTerm :: CallStack -> Term
dummyTerm :: CallStack -> Term
dummyTerm = ArgName -> CallStack -> Term
dummyTermWith ArgName
"dummyTerm"

__DUMMY_TERM__ :: HasCallStack => Term
__DUMMY_TERM__ :: HasCallStack => Term
__DUMMY_TERM__ = (CallStack -> Term) -> Term
forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Term
dummyTerm

__DUMMY_LEVEL__ :: HasCallStack => Level
__DUMMY_LEVEL__ :: HasCallStack => Level
__DUMMY_LEVEL__ = (CallStack -> Level) -> Level
forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Level
dummyLevel

-- | A dummy sort created at location.
--   Note: use macro __DUMMY_SORT__ !
dummySort :: CallStack -> Sort
dummySort :: CallStack -> Sort
dummySort = ArgName -> Sort
forall t. ArgName -> Sort' t
DummyS (ArgName -> Sort) -> (CallStack -> ArgName) -> CallStack -> Sort
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CallStack -> ArgName
dummyLocName

__DUMMY_SORT__ :: HasCallStack => Sort
__DUMMY_SORT__ :: HasCallStack => Sort
__DUMMY_SORT__ = (CallStack -> Sort) -> Sort
forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Sort
dummySort

-- | A dummy type created at location.
--   Note: use macro __DUMMY_TYPE__ !
dummyType :: CallStack -> Type
dummyType :: CallStack -> Type
dummyType CallStack
cs = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (CallStack -> Sort
dummySort CallStack
cs) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ ArgName -> CallStack -> Term
dummyTermWith ArgName
"dummyType" CallStack
cs

__DUMMY_TYPE__ :: HasCallStack => Type
__DUMMY_TYPE__ :: HasCallStack => Type
__DUMMY_TYPE__ = (CallStack -> Type) -> Type
forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Type
dummyType

-- | Context entries without a type have this dummy type.
--   Note: use macro __DUMMY_DOM__ !
dummyDom :: CallStack -> Dom Type
dummyDom :: CallStack -> Dom' Term Type
dummyDom = Type -> Dom' Term Type
forall a. a -> Dom a
defaultDom (Type -> Dom' Term Type)
-> (CallStack -> Type) -> CallStack -> Dom' Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CallStack -> Type
dummyType

__DUMMY_DOM__ :: HasCallStack => Dom Type
__DUMMY_DOM__ :: HasCallStack => Dom' Term Type
__DUMMY_DOM__ = (CallStack -> Dom' Term Type) -> Dom' Term Type
forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Dom' Term Type
dummyDom

-- | Constant level @n@
pattern ClosedLevel :: Integer -> Level
pattern $bClosedLevel :: Integer -> Level
$mClosedLevel :: forall {r}. Level -> (Integer -> r) -> ((# #) -> r) -> r
ClosedLevel n = Max n []

atomicLevel :: t -> Level' t
atomicLevel :: forall t. t -> Level' t
atomicLevel t
a = Integer -> [PlusLevel' t] -> Level' t
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
0 [ Integer -> t -> PlusLevel' t
forall t. Integer -> t -> PlusLevel' t
Plus Integer
0 t
a ]

varSort :: Int -> Sort
varSort :: Int -> Sort
varSort Int
n = Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Term -> Level
forall t. t -> Level' t
atomicLevel (Term -> Level) -> Term -> Level
forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
n

tmSort :: Term -> Sort
tmSort :: Term -> Sort
tmSort Term
t = Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Term -> Level
forall t. t -> Level' t
atomicLevel Term
t

tmSSort :: Term -> Sort
tmSSort :: Term -> Sort
tmSSort Term
t = Level -> Sort
forall t. Level' t -> Sort' t
SSet (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Term -> Level
forall t. t -> Level' t
atomicLevel Term
t

-- | Given a constant @m@ and level @l@, compute @m + l@
levelPlus :: Integer -> Level -> Level
levelPlus :: Integer -> Level -> Level
levelPlus Integer
m (Max Integer
n [PlusLevel]
as) = Integer -> [PlusLevel] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
n) ([PlusLevel] -> Level) -> [PlusLevel] -> Level
forall a b. (a -> b) -> a -> b
$ (PlusLevel -> PlusLevel) -> [PlusLevel] -> [PlusLevel]
forall a b. (a -> b) -> [a] -> [b]
map PlusLevel -> PlusLevel
pplus [PlusLevel]
as
  where pplus :: PlusLevel -> PlusLevel
pplus (Plus Integer
n Term
l) = Integer -> Term -> PlusLevel
forall t. Integer -> t -> PlusLevel' t
Plus (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
n) Term
l

levelSuc :: Level -> Level
levelSuc :: Level -> Level
levelSuc = Integer -> Level -> Level
levelPlus Integer
1

mkType :: Integer -> Sort
mkType :: Integer -> Sort
mkType Integer
n = Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
n

mkProp :: Integer -> Sort
mkProp :: Integer -> Sort
mkProp Integer
n = Level -> Sort
forall t. Level' t -> Sort' t
Prop (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
n

mkSSet :: Integer -> Sort
mkSSet :: Integer -> Sort
mkSSet Integer
n = Level -> Sort
forall t. Level' t -> Sort' t
SSet (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
n

isSort :: Term -> Maybe Sort
isSort :: Term -> Maybe Sort
isSort = \case
  Sort Sort
s -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just Sort
s
  Term
_      -> Maybe Sort
forall a. Maybe a
Nothing

impossibleTerm :: CallStack -> Term
impossibleTerm :: CallStack -> Term
impossibleTerm = (ArgName -> Elims -> Term) -> Elims -> ArgName -> Term
forall a b c. (a -> b -> c) -> b -> a -> c
flip ArgName -> Elims -> Term
Dummy [] (ArgName -> Term) -> (CallStack -> ArgName) -> CallStack -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Impossible -> ArgName
forall a. Show a => a -> ArgName
show (Impossible -> ArgName)
-> (CallStack -> Impossible) -> CallStack -> ArgName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CallStack -> Impossible
Impossible

---------------------------------------------------------------------------
-- * Telescopes.
---------------------------------------------------------------------------

-- | A traversal for the names in a telescope.
mapAbsNamesM :: Applicative m => (ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM :: forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM ArgName -> m ArgName
f Tele a
EmptyTel                  = Tele a -> m (Tele a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Tele a
forall a. Tele a
EmptyTel
mapAbsNamesM ArgName -> m ArgName
f (ExtendTel a
a (  Abs ArgName
x Tele a
b)) = a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel a
a (Abs (Tele a) -> Tele a) -> m (Abs (Tele a)) -> m (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (  ArgName -> Tele a -> Abs (Tele a)
forall a. ArgName -> a -> Abs a
Abs (ArgName -> Tele a -> Abs (Tele a))
-> m ArgName -> m (Tele a -> Abs (Tele a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ArgName -> m ArgName
f ArgName
x m (Tele a -> Abs (Tele a)) -> m (Tele a) -> m (Abs (Tele a))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (ArgName -> m ArgName) -> Tele a -> m (Tele a)
forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM ArgName -> m ArgName
f Tele a
b)
mapAbsNamesM ArgName -> m ArgName
f (ExtendTel a
a (NoAbs ArgName
x Tele a
b)) = a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel a
a (Abs (Tele a) -> Tele a) -> m (Abs (Tele a)) -> m (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ArgName -> Tele a -> Abs (Tele a)
forall a. ArgName -> a -> Abs a
NoAbs (ArgName -> Tele a -> Abs (Tele a))
-> m ArgName -> m (Tele a -> Abs (Tele a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ArgName -> m ArgName
f ArgName
x m (Tele a -> Abs (Tele a)) -> m (Tele a) -> m (Abs (Tele a))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (ArgName -> m ArgName) -> Tele a -> m (Tele a)
forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM ArgName -> m ArgName
f Tele a
b)
  -- Ulf, 2013-11-06: Last case is really impossible but I'd rather find out we
  --                  violated that invariant somewhere other than here.

mapAbsNames :: (ArgName -> ArgName) -> Tele a -> Tele a
mapAbsNames :: forall a. ShowS -> Tele a -> Tele a
mapAbsNames ShowS
f = Identity (Tele a) -> Tele a
forall a. Identity a -> a
runIdentity (Identity (Tele a) -> Tele a)
-> (Tele a -> Identity (Tele a)) -> Tele a -> Tele a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (ArgName -> Identity ArgName) -> Tele a -> Identity (Tele a)
forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM (ArgName -> Identity ArgName
forall a. a -> Identity a
Identity (ArgName -> Identity ArgName)
-> ShowS -> ArgName -> Identity ArgName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ShowS
f)

-- Ulf, 2013-11-06
-- The record parameter is named "" inside the record module so we can avoid
-- printing it (issue 208), but we don't want that to show up in the type of
-- the functions in the module (issue 892). This function is used on the record
-- module telescope before adding it to a type in
-- TypeChecking.Monad.Signature.addConstant (to handle functions defined in
-- record modules) and TypeChecking.Rules.Record.checkProjection (to handle
-- record projections).
replaceEmptyName :: ArgName -> Tele a -> Tele a
replaceEmptyName :: forall a. ArgName -> Tele a -> Tele a
replaceEmptyName ArgName
x = ShowS -> Tele a -> Tele a
forall a. ShowS -> Tele a -> Tele a
mapAbsNames (ShowS -> Tele a -> Tele a) -> ShowS -> Tele a -> Tele a
forall a b. (a -> b) -> a -> b
$ \ ArgName
y -> if ArgName -> Bool
forall a. Null a => a -> Bool
null ArgName
y then ArgName
x else ArgName
y

-- | Telescope as list.
type ListTel' a = [Dom (a, Type)]
type ListTel = ListTel' ArgName

telFromList' :: (a -> ArgName) -> ListTel' a -> Telescope
telFromList' :: forall a. (a -> ArgName) -> ListTel' a -> Telescope
telFromList' a -> ArgName
f = (Dom (a, Type) -> Telescope -> Telescope)
-> Telescope -> [Dom (a, Type)] -> Telescope
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
List.foldr Dom (a, Type) -> Telescope -> Telescope
extTel Telescope
forall a. Tele a
EmptyTel
  where
    extTel :: Dom (a, Type) -> Telescope -> Telescope
extTel dom :: Dom (a, Type)
dom@Dom{unDom :: forall t e. Dom' t e -> e
unDom = (a
x, Type
a)} = Dom' Term Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Dom (a, Type)
dom{unDom :: Type
unDom = Type
a}) (Abs Telescope -> Telescope)
-> (Telescope -> Abs Telescope) -> Telescope -> Telescope
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> Telescope -> Abs Telescope
forall a. ArgName -> a -> Abs a
Abs (a -> ArgName
f a
x)

-- | Convert a list telescope to a telescope.
telFromList :: ListTel -> Telescope
telFromList :: ListTel -> Telescope
telFromList = ShowS -> ListTel -> Telescope
forall a. (a -> ArgName) -> ListTel' a -> Telescope
telFromList' ShowS
forall a. a -> a
id

-- | Convert a telescope to its list form.
telToList :: Tele (Dom t) -> [Dom (ArgName,t)]
telToList :: forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom t)
EmptyTel                    = []
telToList (ExtendTel Dom t
arg (Abs ArgName
x Tele (Dom t)
tel)) = (t -> (ArgName, t)) -> Dom t -> Dom (ArgName, t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (ArgName
x,) Dom t
arg Dom (ArgName, t) -> [Dom (ArgName, t)] -> [Dom (ArgName, t)]
forall a. a -> [a] -> [a]
: Tele (Dom t) -> [Dom (ArgName, t)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom t)
tel
telToList (ExtendTel Dom t
_    NoAbs{}   ) = [Dom (ArgName, t)]
forall a. HasCallStack => a
__IMPOSSIBLE__

-- | Lens to edit a 'Telescope' as a list.
listTel :: Lens' ListTel Telescope
listTel :: Lens' ListTel Telescope
listTel ListTel -> f ListTel
f = (ListTel -> Telescope) -> f ListTel -> f Telescope
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ListTel -> Telescope
telFromList (f ListTel -> f Telescope)
-> (Telescope -> f ListTel) -> Telescope -> f Telescope
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ListTel -> f ListTel
f (ListTel -> f ListTel)
-> (Telescope -> ListTel) -> Telescope -> f ListTel
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Telescope -> ListTel
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList

-- | Drop the types from a telescope.
class TelToArgs a where
  telToArgs :: a -> [Arg ArgName]

instance TelToArgs ListTel where
  telToArgs :: ListTel -> [Arg ArgName]
telToArgs = (Dom (ArgName, Type) -> Arg ArgName) -> ListTel -> [Arg ArgName]
forall a b. (a -> b) -> [a] -> [b]
map ((Dom (ArgName, Type) -> Arg ArgName) -> ListTel -> [Arg ArgName])
-> (Dom (ArgName, Type) -> Arg ArgName) -> ListTel -> [Arg ArgName]
forall a b. (a -> b) -> a -> b
$ \ Dom (ArgName, Type)
dom -> ArgInfo -> ArgName -> Arg ArgName
forall e. ArgInfo -> e -> Arg e
Arg (Dom (ArgName, Type) -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo Dom (ArgName, Type)
dom) ((ArgName, Type) -> ArgName
forall a b. (a, b) -> a
fst ((ArgName, Type) -> ArgName) -> (ArgName, Type) -> ArgName
forall a b. (a -> b) -> a -> b
$ Dom (ArgName, Type) -> (ArgName, Type)
forall t e. Dom' t e -> e
unDom Dom (ArgName, Type)
dom)

instance TelToArgs Telescope where
  telToArgs :: Telescope -> [Arg ArgName]
telToArgs = ListTel -> [Arg ArgName]
forall a. TelToArgs a => a -> [Arg ArgName]
telToArgs (ListTel -> [Arg ArgName])
-> (Telescope -> ListTel) -> Telescope -> [Arg ArgName]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Telescope -> ListTel
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList

-- | Constructing a singleton telescope.
class SgTel a where
  sgTel :: a -> Telescope

instance SgTel (ArgName, Dom Type) where
  sgTel :: (ArgName, Dom' Term Type) -> Telescope
sgTel (ArgName
x, !Dom' Term Type
dom) = Dom' Term Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom' Term Type
dom (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ ArgName -> Telescope -> Abs Telescope
forall a. ArgName -> a -> Abs a
Abs ArgName
x Telescope
forall a. Tele a
EmptyTel

instance SgTel (Dom (ArgName, Type)) where
  sgTel :: Dom (ArgName, Type) -> Telescope
sgTel Dom (ArgName, Type)
dom = Dom' Term Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel ((ArgName, Type) -> Type
forall a b. (a, b) -> b
snd ((ArgName, Type) -> Type) -> Dom (ArgName, Type) -> Dom' Term Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom (ArgName, Type)
dom) (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ ArgName -> Telescope -> Abs Telescope
forall a. ArgName -> a -> Abs a
Abs ((ArgName, Type) -> ArgName
forall a b. (a, b) -> a
fst ((ArgName, Type) -> ArgName) -> (ArgName, Type) -> ArgName
forall a b. (a -> b) -> a -> b
$ Dom (ArgName, Type) -> (ArgName, Type)
forall t e. Dom' t e -> e
unDom Dom (ArgName, Type)
dom) Telescope
forall a. Tele a
EmptyTel

instance SgTel (Dom Type) where
  sgTel :: Dom' Term Type -> Telescope
sgTel Dom' Term Type
dom = (ArgName, Dom' Term Type) -> Telescope
forall a. SgTel a => a -> Telescope
sgTel (ShowS
stringToArgName ArgName
"_", Dom' Term Type
dom)

---------------------------------------------------------------------------
-- * Simple operations on terms and types.
---------------------------------------------------------------------------

-- | Removing a topmost 'DontCare' constructor.
stripDontCare :: Term -> Term
stripDontCare :: Term -> Term
stripDontCare = \case
  DontCare Term
v -> Term
v
  Term
v          -> Term
v

-- | Doesn't do any reduction.
arity :: Type -> Nat
arity :: Type -> Int
arity Type
t = case Type -> Term
forall t a. Type'' t a -> a
unEl Type
t of
  Pi  Dom' Term Type
_ Abs Type
b -> Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Type -> Int
arity (Abs Type -> Type
forall a. Abs a -> a
unAbs Abs Type
b)
  Term
_       -> Int
0

-- | Suggest a name if available (i.e. name is not "_")
class Suggest a where
  suggestName :: a -> Maybe String

instance Suggest String where
  suggestName :: ArgName -> Maybe ArgName
suggestName ArgName
"_" = Maybe ArgName
forall a. Maybe a
Nothing
  suggestName  ArgName
x  = ArgName -> Maybe ArgName
forall a. a -> Maybe a
Just ArgName
x

instance Suggest (Abs b) where
  suggestName :: Abs b -> Maybe ArgName
suggestName = ArgName -> Maybe ArgName
forall a. Suggest a => a -> Maybe ArgName
suggestName (ArgName -> Maybe ArgName)
-> (Abs b -> ArgName) -> Abs b -> Maybe ArgName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Abs b -> ArgName
forall a. Abs a -> ArgName
absName

instance Suggest Name where
  suggestName :: Name -> Maybe ArgName
suggestName = ArgName -> Maybe ArgName
forall a. Suggest a => a -> Maybe ArgName
suggestName (ArgName -> Maybe ArgName)
-> (Name -> ArgName) -> Name -> Maybe ArgName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> ArgName
nameToArgName

instance Suggest Term where
  suggestName :: Term -> Maybe ArgName
suggestName (Lam ArgInfo
_ Abs Term
v) = Abs Term -> Maybe ArgName
forall a. Suggest a => a -> Maybe ArgName
suggestName Abs Term
v
  suggestName Term
_         = Maybe ArgName
forall a. Maybe a
Nothing

-- Wrapping @forall a. (Suggest a) => a@ into a datatype because
-- GHC doesn't support impredicative polymorphism
data Suggestion = forall a. Suggest a => Suggestion a

suggests :: [Suggestion] -> String
suggests :: [Suggestion] -> ArgName
suggests []     = ArgName
"x"
suggests (Suggestion a
x : [Suggestion]
xs) = ArgName -> Maybe ArgName -> ArgName
forall a. a -> Maybe a -> a
fromMaybe ([Suggestion] -> ArgName
suggests [Suggestion]
xs) (Maybe ArgName -> ArgName) -> Maybe ArgName -> ArgName
forall a b. (a -> b) -> a -> b
$ a -> Maybe ArgName
forall a. Suggest a => a -> Maybe ArgName
suggestName a
x

---------------------------------------------------------------------------
-- * Eliminations.
---------------------------------------------------------------------------

-- | Convert top-level postfix projections into prefix projections.
unSpine :: Term -> Term
unSpine :: Term -> Term
unSpine = (ProjOrigin -> Bool) -> Term -> Term
unSpine' ((ProjOrigin -> Bool) -> Term -> Term)
-> (ProjOrigin -> Bool) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Bool -> ProjOrigin -> Bool
forall a b. a -> b -> a
const Bool
True

-- | Convert 'Proj' projection eliminations
--   according to their 'ProjOrigin' into
--   'Def' projection applications.
unSpine' :: (ProjOrigin -> Bool) -> Term -> Term
unSpine' :: (ProjOrigin -> Bool) -> Term -> Term
unSpine' ProjOrigin -> Bool
p Term
v =
  case Term -> Maybe (Elims -> Term, Elims)
hasElims Term
v of
    Just (Elims -> Term
h, Elims
es) -> (Elims -> Term) -> Elims -> Elims -> Term
loop Elims -> Term
h [] Elims
es
    Maybe (Elims -> Term, Elims)
Nothing      -> Term
v
  where
    loop :: (Elims -> Term) -> Elims -> Elims -> Term
    loop :: (Elims -> Term) -> Elims -> Elims -> Term
loop Elims -> Term
h Elims
res Elims
es =
      case Elims
es of
        []                   -> Term
v
        Proj ProjOrigin
o QName
f : Elims
es' | ProjOrigin -> Bool
p ProjOrigin
o -> (Elims -> Term) -> Elims -> Elims -> Term
loop (QName -> Elims -> Term
Def QName
f) [Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
v)] Elims
es'
        Elim' Term
e        : Elims
es'       -> (Elims -> Term) -> Elims -> Elims -> Term
loop Elims -> Term
h (Elim' Term
e Elim' Term -> Elims -> Elims
forall a. a -> [a] -> [a]
: Elims
res) Elims
es'
      where v :: Term
v = Elims -> Term
h (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ Elims -> Elims
forall a. [a] -> [a]
reverse Elims
res

-- | A view distinguishing the neutrals @Var@, @Def@, and @MetaV@ which
--   can be projected.
hasElims :: Term -> Maybe (Elims -> Term, Elims)
hasElims :: Term -> Maybe (Elims -> Term, Elims)
hasElims Term
v =
  case Term
v of
    Var   Int
i Elims
es -> (Elims -> Term, Elims) -> Maybe (Elims -> Term, Elims)
forall a. a -> Maybe a
Just (Int -> Elims -> Term
Var   Int
i, Elims
es)
    Def   QName
f Elims
es -> (Elims -> Term, Elims) -> Maybe (Elims -> Term, Elims)
forall a. a -> Maybe a
Just (QName -> Elims -> Term
Def   QName
f, Elims
es)
    MetaV MetaId
x Elims
es -> (Elims -> Term, Elims) -> Maybe (Elims -> Term, Elims)
forall a. a -> Maybe a
Just (MetaId -> Elims -> Term
MetaV MetaId
x, Elims
es)
    Con{}      -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    Lit{}      -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    -- Andreas, 2016-04-13, Issue 1932: We convert λ x → x .f  into f
    Lam ArgInfo
h (Abs ArgName
_ Term
v) | ArgInfo -> Bool
forall a. LensHiding a => a -> Bool
visible ArgInfo
h -> case Term
v of
      Var Int
0 [Proj ProjOrigin
_o QName
f] -> (Elims -> Term, Elims) -> Maybe (Elims -> Term, Elims)
forall a. a -> Maybe a
Just (QName -> Elims -> Term
Def QName
f, [])
      Term
_ -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    Lam{}      -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    Pi{}       -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    Sort{}     -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    Level{}    -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    DontCare{} -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing
    Dummy{}    -> Maybe (Elims -> Term, Elims)
forall a. Maybe a
Nothing

---------------------------------------------------------------------------
-- * Null instances.
---------------------------------------------------------------------------

instance Null (Tele a) where
  empty :: Tele a
empty = Tele a
forall a. Tele a
EmptyTel
  null :: Tele a -> Bool
null Tele a
EmptyTel    = Bool
True
  null ExtendTel{} = Bool
False

-- | A 'null' clause is one with no patterns and no rhs.
--   Should not exist in practice.
instance Null Clause where
  empty :: Clause
empty = Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
Clause Range
forall a. Null a => a
empty Range
forall a. Null a => a
empty Telescope
forall a. Null a => a
empty NAPs
forall a. Null a => a
empty Maybe Term
forall a. Null a => a
empty Maybe (Arg Type)
forall a. Null a => a
empty Bool
False Maybe Bool
forall a. Maybe a
Nothing Maybe Bool
forall a. Maybe a
Nothing Maybe Bool
forall a. Maybe a
Nothing ExpandedEllipsis
forall a. Null a => a
empty
  null :: Clause -> Bool
null (Clause Range
_ Range
_ Telescope
tel NAPs
pats Maybe Term
body Maybe (Arg Type)
_ Bool
_ Maybe Bool
_ Maybe Bool
_ Maybe Bool
_ ExpandedEllipsis
_)
    =  Telescope -> Bool
forall a. Null a => a -> Bool
null Telescope
tel
    Bool -> Bool -> Bool
&& NAPs -> Bool
forall a. Null a => a -> Bool
null NAPs
pats
    Bool -> Bool -> Bool
&& Maybe Term -> Bool
forall a. Null a => a -> Bool
null Maybe Term
body


---------------------------------------------------------------------------
-- * Show instances.
---------------------------------------------------------------------------

instance Show a => Show (Abs a) where
  showsPrec :: Int -> Abs a -> ShowS
showsPrec Int
p (Abs ArgName
x a
a) = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
    ArgName -> ShowS
showString ArgName
"Abs " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ShowS
forall a. Show a => a -> ShowS
shows ArgName
x ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ShowS
showString ArgName
" " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
10 a
a
  showsPrec Int
p (NoAbs ArgName
x a
a) = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
    ArgName -> ShowS
showString ArgName
"NoAbs " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ShowS
forall a. Show a => a -> ShowS
shows ArgName
x ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ShowS
showString ArgName
" " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
10 a
a

-- instance Show t => Show (Blocked t) where
--   showsPrec p (Blocked m x) = showParen (p > 0) $
--     showString "Blocked " . shows m . showString " " . showsPrec 10 x
--   showsPrec p (NotBlocked x) = showsPrec p x

---------------------------------------------------------------------------
-- * Sized instances and TermSize.
---------------------------------------------------------------------------

-- | The size of a telescope is its length (as a list).
instance Sized (Tele a) where
  size :: Tele a -> Int
size  Tele a
EmptyTel         = Int
0
  size (ExtendTel a
_ Abs (Tele a)
tel) = Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Abs (Tele a) -> Int
forall a. Sized a => a -> Int
size Abs (Tele a)
tel

instance Sized a => Sized (Abs a) where
  size :: Abs a -> Int
size = a -> Int
forall a. Sized a => a -> Int
size (a -> Int) -> (Abs a -> a) -> Abs a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Abs a -> a
forall a. Abs a -> a
unAbs

-- | The size of a term is roughly the number of nodes in its
--   syntax tree.  This number need not be precise for logical
--   correctness of Agda, it is only used for reporting
--   (and maybe decisions regarding performance).
--
--   Not counting towards the term size are:
--
--     * sort and color annotations,
--     * projections.
--
class TermSize a where
  termSize :: a -> Int
  termSize = Sum Int -> Int
forall a. Sum a -> a
getSum (Sum Int -> Int) -> (a -> Sum Int) -> a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize

  tsize :: a -> Sum Int

instance {-# OVERLAPPABLE #-} (Foldable t, TermSize a) => TermSize (t a) where
  tsize :: t a -> Sum Int
tsize = (a -> Sum Int) -> t a -> Sum Int
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize

instance TermSize Term where
  tsize :: Term -> Sum Int
tsize = \case
    Var Int
_ Elims
vs    -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Elims -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Elims
vs
    Def QName
_ Elims
vs    -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Elims -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Elims
vs
    Con ConHead
_ ConInfo
_ Elims
vs    -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Elims -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Elims
vs
    MetaV MetaId
_ Elims
vs  -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Elims -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Elims
vs
    Level Level
l     -> Level -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Level
l
    Lam ArgInfo
_ Abs Term
f     -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Abs Term -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Abs Term
f
    Lit Literal
_       -> Sum Int
1
    Pi Dom' Term Type
a Abs Type
b      -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Dom' Term Type -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Dom' Term Type
a Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Abs Type -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Abs Type
b
    Sort Sort
s      -> Sort -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Sort
s
    DontCare Term
mv -> Term -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Term
mv
    Dummy{}     -> Sum Int
1

instance TermSize Sort where
  tsize :: Sort -> Sum Int
tsize = \case
    Type Level
l    -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Level -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Level
l
    Prop Level
l    -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Level -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Level
l
    Inf IsFibrant
_ Integer
_   -> Sum Int
1
    SSet Level
l    -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Level -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Level
l
    Sort
SizeUniv  -> Sum Int
1
    Sort
LockUniv  -> Sum Int
1
    PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Dom' Term Term -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Dom' Term Term
a Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Sort -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Sort
s1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Abs Sort -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Abs Sort
s2
    FunSort Sort
s1 Sort
s2 -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Sort -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Sort
s1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Sort -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Sort
s2
    UnivSort Sort
s -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Sort -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Sort
s
    MetaS MetaId
_ Elims
es -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Elims -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Elims
es
    DefS QName
_ Elims
es  -> Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Elims -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Elims
es
    DummyS{}   -> Sum Int
1

instance TermSize Level where
  tsize :: Level -> Sum Int
tsize (Max Integer
_ [PlusLevel]
as) = Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ [PlusLevel] -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize [PlusLevel]
as

instance TermSize PlusLevel where
  tsize :: PlusLevel -> Sum Int
tsize (Plus Integer
_ Term
a)      = Term -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Term
a

instance TermSize a => TermSize (Substitution' a) where
  tsize :: Substitution' a -> Sum Int
tsize Substitution' a
IdS                = Sum Int
1
  tsize (EmptyS Impossible
_)         = Sum Int
1
  tsize (Wk Int
_ Substitution' a
rho)         = Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Substitution' a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
  tsize (a
t :# Substitution' a
rho)         = Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize a
t Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Substitution' a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
  tsize (Strengthen Impossible
_ Substitution' a
rho) = Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Substitution' a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
  tsize (Lift Int
_ Substitution' a
rho)       = Sum Int
1 Sum Int -> Sum Int -> Sum Int
forall a. Num a => a -> a -> a
+ Substitution' a -> Sum Int
forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho

---------------------------------------------------------------------------
-- * KillRange instances.
---------------------------------------------------------------------------

instance KillRange DataOrRecord where
  killRange :: DataOrRecord -> DataOrRecord
killRange = DataOrRecord -> DataOrRecord
forall a. a -> a
id

instance KillRange ConHead where
  killRange :: ConHead -> ConHead
killRange (ConHead QName
c DataOrRecord
d Induction
i [Arg QName]
fs) = (QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead)
-> QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead
forall a b c d e.
(KillRange a, KillRange b, KillRange c, KillRange d) =>
(a -> b -> c -> d -> e) -> a -> b -> c -> d -> e
killRange4 QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead
ConHead QName
c DataOrRecord
d Induction
i [Arg QName]
fs

instance KillRange Term where
  killRange :: Term -> Term
killRange = \case
    Var Int
i Elims
vs    -> (Elims -> Term) -> Elims -> Term
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Int -> Elims -> Term
Var Int
i) Elims
vs
    Def QName
c Elims
vs    -> (QName -> Elims -> Term) -> QName -> Elims -> Term
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 QName -> Elims -> Term
Def QName
c Elims
vs
    Con ConHead
c ConInfo
ci Elims
vs -> (ConHead -> ConInfo -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Term
forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci Elims
vs
    MetaV MetaId
m Elims
vs  -> (Elims -> Term) -> Elims -> Term
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (MetaId -> Elims -> Term
MetaV MetaId
m) Elims
vs
    Lam ArgInfo
i Abs Term
f     -> (ArgInfo -> Abs Term -> Term) -> ArgInfo -> Abs Term -> Term
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 ArgInfo -> Abs Term -> Term
Lam ArgInfo
i Abs Term
f
    Lit Literal
l       -> (Literal -> Term) -> Literal -> Term
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Literal -> Term
Lit Literal
l
    Level Level
l     -> (Level -> Term) -> Level -> Term
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Level -> Term
Level Level
l
    Pi Dom' Term Type
a Abs Type
b      -> (Dom' Term Type -> Abs Type -> Term)
-> Dom' Term Type -> Abs Type -> Term
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 Dom' Term Type -> Abs Type -> Term
Pi Dom' Term Type
a Abs Type
b
    Sort Sort
s      -> (Sort -> Term) -> Sort -> Term
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Sort -> Term
Sort Sort
s
    DontCare Term
mv -> (Term -> Term) -> Term -> Term
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Term -> Term
DontCare Term
mv
    v :: Term
v@Dummy{}   -> Term
v

instance KillRange Level where
  killRange :: Level -> Level
killRange (Max Integer
n [PlusLevel]
as) = ([PlusLevel] -> Level) -> [PlusLevel] -> Level
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Integer -> [PlusLevel] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
n) [PlusLevel]
as

instance KillRange PlusLevel where
  killRange :: PlusLevel -> PlusLevel
killRange (Plus Integer
n Term
l) = (Term -> PlusLevel) -> Term -> PlusLevel
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Integer -> Term -> PlusLevel
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n) Term
l

instance (KillRange a) => KillRange (Type' a) where
  killRange :: KillRangeT (Type' a)
killRange (El Sort
s a
v) = (Sort -> a -> Type' a) -> Sort -> a -> Type' a
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 Sort -> a -> Type' a
forall t a. Sort' t -> a -> Type'' t a
El Sort
s a
v

instance KillRange Sort where
  killRange :: Sort -> Sort
killRange = \case
    Inf IsFibrant
f Integer
n    -> IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
n
    Sort
SizeUniv   -> Sort
forall t. Sort' t
SizeUniv
    Sort
LockUniv   -> Sort
forall t. Sort' t
LockUniv
    Type Level
a     -> (Level -> Sort) -> Level -> Sort
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Level -> Sort
forall t. Level' t -> Sort' t
Type Level
a
    Prop Level
a     -> (Level -> Sort) -> Level -> Sort
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Level -> Sort
forall t. Level' t -> Sort' t
Prop Level
a
    SSet Level
a     -> (Level -> Sort) -> Level -> Sort
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Level -> Sort
forall t. Level' t -> Sort' t
SSet Level
a
    PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> (Dom' Term Term -> Sort -> Abs Sort -> Sort)
-> Dom' Term Term -> Sort -> Abs Sort -> Sort
forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 Dom' Term Term -> Sort -> Abs Sort -> Sort
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2
    FunSort Sort
s1 Sort
s2 -> (Sort -> Sort -> Sort) -> Sort -> Sort -> Sort
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 Sort
s2
    UnivSort Sort
s -> (Sort -> Sort) -> Sort -> Sort
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s
    MetaS MetaId
x Elims
es -> (Elims -> Sort) -> Elims -> Sort
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x) Elims
es
    DefS QName
d Elims
es  -> (QName -> Elims -> Sort) -> QName -> Elims -> Sort
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 QName -> Elims -> Sort
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d Elims
es
    s :: Sort
s@DummyS{} -> Sort
s

instance KillRange Substitution where
  killRange :: KillRangeT Substitution
killRange Substitution
IdS                  = Substitution
forall a. Substitution' a
IdS
  killRange (EmptyS Impossible
err)         = Impossible -> Substitution
forall a. Impossible -> Substitution' a
EmptyS Impossible
err
  killRange (Wk Int
n Substitution
rho)           = KillRangeT Substitution -> KillRangeT Substitution
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Int -> KillRangeT Substitution
forall a. Int -> Substitution' a -> Substitution' a
Wk Int
n) Substitution
rho
  killRange (Term
t :# Substitution
rho)           = (Term -> KillRangeT Substitution)
-> Term -> KillRangeT Substitution
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 Term -> KillRangeT Substitution
forall a. a -> Substitution' a -> Substitution' a
(:#) Term
t Substitution
rho
  killRange (Strengthen Impossible
err Substitution
rho) = KillRangeT Substitution -> KillRangeT Substitution
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Impossible -> KillRangeT Substitution
forall a. Impossible -> Substitution' a -> Substitution' a
Strengthen Impossible
err) Substitution
rho
  killRange (Lift Int
n Substitution
rho)         = KillRangeT Substitution -> KillRangeT Substitution
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Int -> KillRangeT Substitution
forall a. Int -> Substitution' a -> Substitution' a
Lift Int
n) Substitution
rho

instance KillRange PatOrigin where
  killRange :: PatOrigin -> PatOrigin
killRange = PatOrigin -> PatOrigin
forall a. a -> a
id

instance KillRange PatternInfo where
  killRange :: PatternInfo -> PatternInfo
killRange (PatternInfo PatOrigin
o [Name]
xs) = (PatOrigin -> [Name] -> PatternInfo)
-> PatOrigin -> [Name] -> PatternInfo
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
o [Name]
xs

instance KillRange ConPatternInfo where
  killRange :: ConPatternInfo -> ConPatternInfo
killRange (ConPatternInfo PatternInfo
i Bool
mr Bool
b Maybe (Arg Type)
mt Bool
lz) = (Maybe (Arg Type) -> Bool -> ConPatternInfo)
-> Maybe (Arg Type) -> Bool -> ConPatternInfo
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
i Bool
mr Bool
b) Maybe (Arg Type)
mt Bool
lz

instance KillRange DBPatVar where
  killRange :: DBPatVar -> DBPatVar
killRange (DBPatVar ArgName
x Int
i) = (ArgName -> Int -> DBPatVar) -> ArgName -> Int -> DBPatVar
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 ArgName -> Int -> DBPatVar
DBPatVar ArgName
x Int
i

instance KillRange a => KillRange (Pattern' a) where
  killRange :: KillRangeT (Pattern' a)
killRange Pattern' a
p =
    case Pattern' a
p of
      VarP PatternInfo
o a
x         -> (PatternInfo -> a -> Pattern' a) -> PatternInfo -> a -> Pattern' a
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 PatternInfo -> a -> Pattern' a
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
o a
x
      DotP PatternInfo
o Term
v         -> (PatternInfo -> Term -> Pattern' a)
-> PatternInfo -> Term -> Pattern' a
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 PatternInfo -> Term -> Pattern' a
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
o Term
v
      ConP ConHead
con ConPatternInfo
info [NamedArg (Pattern' a)]
ps -> (ConHead
 -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a)
-> ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' a)]
-> Pattern' a
forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 ConHead -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
con ConPatternInfo
info [NamedArg (Pattern' a)]
ps
      LitP PatternInfo
o Literal
l         -> (PatternInfo -> Literal -> Pattern' a)
-> PatternInfo -> Literal -> Pattern' a
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 PatternInfo -> Literal -> Pattern' a
forall x. PatternInfo -> Literal -> Pattern' x
LitP PatternInfo
o Literal
l
      ProjP ProjOrigin
o QName
q        -> (QName -> Pattern' a) -> QName -> Pattern' a
forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (ProjOrigin -> QName -> Pattern' a
forall x. ProjOrigin -> QName -> Pattern' x
ProjP ProjOrigin
o) QName
q
      IApplyP PatternInfo
o Term
u Term
t a
x  -> (Term -> Term -> a -> Pattern' a)
-> Term -> Term -> a -> Pattern' a
forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 (PatternInfo -> Term -> Term -> a -> Pattern' a
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
o) Term
u Term
t a
x
      DefP PatternInfo
o QName
q [NamedArg (Pattern' a)]
ps      -> (QName -> [NamedArg (Pattern' a)] -> Pattern' a)
-> QName -> [NamedArg (Pattern' a)] -> Pattern' a
forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 (PatternInfo -> QName -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
o) QName
q [NamedArg (Pattern' a)]
ps

instance KillRange Clause where
  killRange :: Clause -> Clause
killRange (Clause Range
rl Range
rf Telescope
tel NAPs
ps Maybe Term
body Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell) =
    (Range
 -> Range
 -> Telescope
 -> NAPs
 -> Maybe Term
 -> Maybe (Arg Type)
 -> Bool
 -> Maybe Bool
 -> Maybe Bool
 -> Maybe Bool
 -> ExpandedEllipsis
 -> Clause)
-> Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
forall a b c d e f g h i j k.
(KillRange a, KillRange b, KillRange c, KillRange d, KillRange e,
 KillRange f, KillRange g, KillRange h, KillRange i, KillRange j) =>
(a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k)
-> a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k
killRange10 Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
Clause Range
rl Range
rf Telescope
tel NAPs
ps Maybe Term
body Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell

instance KillRange a => KillRange (Tele a) where
  killRange :: KillRangeT (Tele a)
killRange = (a -> a) -> KillRangeT (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. KillRange a => KillRangeT a
killRange

instance KillRange a => KillRange (Blocked a) where
  killRange :: KillRangeT (Blocked a)
killRange = (a -> a) -> KillRangeT (Blocked a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. KillRange a => KillRangeT a
killRange

instance KillRange a => KillRange (Abs a) where
  killRange :: KillRangeT (Abs a)
killRange = (a -> a) -> KillRangeT (Abs a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. KillRange a => KillRangeT a
killRange

-----------------------------------------------------------------------------
-- * Simple pretty printing
-----------------------------------------------------------------------------

instance Pretty a => Pretty (Substitution' a) where
  prettyPrec :: Int -> Substitution' a -> Doc
prettyPrec = Int -> Substitution' a -> Doc
forall {t} {a}.
(Ord t, Num t, Pretty a) =>
t -> Substitution' a -> Doc
pr
    where
    pr :: t -> Substitution' a -> Doc
pr t
p Substitution' a
rho = case Substitution' a
rho of
      Substitution' a
IdS              -> Doc
"idS"
      EmptyS Impossible
err       -> Doc
"emptyS"
      a
t :# Substitution' a
rho         -> Bool -> Doc -> Doc
mparens (t
p t -> t -> Bool
forall a. Ord a => a -> a -> Bool
> t
2) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ t -> Substitution' a -> Doc
pr t
2 Substitution' a
rho Doc -> Doc -> Doc
forall a. Semigroup a => a -> a -> a
<> Doc
",", Int -> a -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
3 a
t ]
      Strengthen Impossible
_ Substitution' a
rho -> Bool -> Doc -> Doc
mparens (t
p t -> t -> Bool
forall a. Ord a => a -> a -> Bool
> t
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Doc
"strS" Doc -> Doc -> Doc
<+> t -> Substitution' a -> Doc
pr t
10 Substitution' a
rho
      Wk Int
n Substitution' a
rho         -> Bool -> Doc -> Doc
mparens (t
p t -> t -> Bool
forall a. Ord a => a -> a -> Bool
> t
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ ArgName -> Doc
text (ArgName
"wkS " ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> ArgName
forall a. Show a => a -> ArgName
show Int
n) Doc -> Doc -> Doc
<+> t -> Substitution' a -> Doc
pr t
10 Substitution' a
rho
      Lift Int
n Substitution' a
rho       -> Bool -> Doc -> Doc
mparens (t
p t -> t -> Bool
forall a. Ord a => a -> a -> Bool
> t
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ ArgName -> Doc
text (ArgName
"liftS " ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> ArgName
forall a. Show a => a -> ArgName
show Int
n) Doc -> Doc -> Doc
<+> t -> Substitution' a -> Doc
pr t
10 Substitution' a
rho

instance Pretty Term where
  prettyPrec :: Int -> Term -> Doc
prettyPrec Int
p Term
v =
    case Term
v of
      Var Int
x Elims
els -> ArgName -> Doc
text (ArgName
"@" ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> ArgName
forall a. Show a => a -> ArgName
show Int
x) Doc -> Elims -> Doc
`pApp` Elims
els
      Lam ArgInfo
ai Abs Term
b   ->
        Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
        [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ Doc
"λ" Doc -> Doc -> Doc
<+> ArgInfo -> (Doc -> Doc) -> Doc -> Doc
forall a. LensHiding a => a -> (Doc -> Doc) -> Doc -> Doc
prettyHiding ArgInfo
ai Doc -> Doc
forall a. a -> a
id (ArgName -> Doc
text (ArgName -> Doc) -> (Abs Term -> ArgName) -> Abs Term -> Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Abs Term -> ArgName
forall a. Abs a -> ArgName
absName (Abs Term -> Doc) -> Abs Term -> Doc
forall a b. (a -> b) -> a -> b
$ Abs Term
b) Doc -> Doc -> Doc
<+> Doc
"->"
            , Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Term -> Doc
forall a. Pretty a => a -> Doc
pretty (Abs Term -> Term
forall a. Abs a -> a
unAbs Abs Term
b) ]
      Lit Literal
l                -> Literal -> Doc
forall a. Pretty a => a -> Doc
pretty Literal
l
      Def QName
q Elims
els            -> QName -> Doc
forall a. Pretty a => a -> Doc
pretty QName
q Doc -> Elims -> Doc
`pApp` Elims
els
      Con ConHead
c ConInfo
ci Elims
vs          -> QName -> Doc
forall a. Pretty a => a -> Doc
pretty (ConHead -> QName
conName ConHead
c) Doc -> Elims -> Doc
`pApp` Elims
vs
      Pi Dom' Term Type
a (NoAbs ArgName
_ Type
b)     -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
        [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ Int -> Type -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
1 (Dom' Term Type -> Type
forall t e. Dom' t e -> e
unDom Dom' Term Type
a) Doc -> Doc -> Doc
<+> Doc
"->"
            , Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Type -> Doc
forall a. Pretty a => a -> Doc
pretty Type
b ]
      Pi Dom' Term Type
a Abs Type
b               -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
        [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ ArgInfo -> Doc -> Doc
forall a. LensHiding a => a -> Doc -> Doc
pDom (Dom' Term Type -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo Dom' Term Type
a) (ArgName -> Doc
text (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> Type -> Doc
forall a. Pretty a => a -> Doc
pretty (Dom' Term Type -> Type
forall t e. Dom' t e -> e
unDom Dom' Term Type
a)) Doc -> Doc -> Doc
<+> Doc
"->"
            , Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Type -> Doc
forall a. Pretty a => a -> Doc
pretty (Abs Type -> Type
forall a. Abs a -> a
unAbs Abs Type
b) ]
      Sort Sort
s      -> Int -> Sort -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Sort
s
      Level Level
l     -> Int -> Level -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Level
l
      MetaV MetaId
x Elims
els -> MetaId -> Doc
forall a. Pretty a => a -> Doc
pretty MetaId
x Doc -> Elims -> Doc
`pApp` Elims
els
      DontCare Term
v  -> Int -> Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Term
v
      Dummy ArgName
s Elims
es  -> Doc -> Doc
parens (ArgName -> Doc
text ArgName
s) Doc -> Elims -> Doc
`pApp` Elims
es
    where
      pApp :: Doc -> Elims -> Doc
pApp Doc
d Elims
els = Bool -> Doc -> Doc
mparens (Bool -> Bool
not (Elims -> Bool
forall a. Null a => a -> Bool
null Elims
els) Bool -> Bool -> Bool
&& Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
                   [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [Doc
d, Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep ((Elim' Term -> Doc) -> Elims -> [Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Elim' Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) Elims
els)]

instance Pretty t => Pretty (Abs t) where
  pretty :: Abs t -> Doc
pretty (Abs   ArgName
x t
t) = Doc
"Abs"   Doc -> Doc -> Doc
<+> (ArgName -> Doc
text ArgName
x Doc -> Doc -> Doc
forall a. Semigroup a => a -> a -> a
<> Doc
".") Doc -> Doc -> Doc
<+> t -> Doc
forall a. Pretty a => a -> Doc
pretty t
t
  pretty (NoAbs ArgName
x t
t) = Doc
"NoAbs" Doc -> Doc -> Doc
<+> (ArgName -> Doc
text ArgName
x Doc -> Doc -> Doc
forall a. Semigroup a => a -> a -> a
<> Doc
".") Doc -> Doc -> Doc
<+> t -> Doc
forall a. Pretty a => a -> Doc
pretty t
t

instance (Pretty t, Pretty e) => Pretty (Dom' t e) where
  pretty :: Dom' t e -> Doc
pretty Dom' t e
dom = Doc
pTac Doc -> Doc -> Doc
<+> Dom' t e -> Doc -> Doc
forall a. LensHiding a => a -> Doc -> Doc
pDom Dom' t e
dom (e -> Doc
forall a. Pretty a => a -> Doc
pretty (e -> Doc) -> e -> Doc
forall a b. (a -> b) -> a -> b
$ Dom' t e -> e
forall t e. Dom' t e -> e
unDom Dom' t e
dom)
    where
      pTac :: Doc
pTac | Just t
t <- Dom' t e -> Maybe t
forall t e. Dom' t e -> Maybe t
domTactic Dom' t e
dom = Doc
"@" Doc -> Doc -> Doc
forall a. Semigroup a => a -> a -> a
<> Doc -> Doc
parens (Doc
"tactic" Doc -> Doc -> Doc
<+> t -> Doc
forall a. Pretty a => a -> Doc
pretty t
t)
           | Bool
otherwise               = Doc
forall a. Null a => a
empty

pDom :: LensHiding a => a -> Doc -> Doc
pDom :: forall a. LensHiding a => a -> Doc -> Doc
pDom a
i =
  case a -> Hiding
forall a. LensHiding a => a -> Hiding
getHiding a
i of
    Hiding
NotHidden  -> Doc -> Doc
parens
    Hiding
Hidden     -> Doc -> Doc
braces
    Instance{} -> Doc -> Doc
braces (Doc -> Doc) -> (Doc -> Doc) -> Doc -> Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> Doc
braces

instance Pretty Clause where
  pretty :: Clause -> Doc
pretty Clause{clauseTel :: Clause -> Telescope
clauseTel = Telescope
tel, namedClausePats :: Clause -> NAPs
namedClausePats = NAPs
ps, clauseBody :: Clause -> Maybe Term
clauseBody = Maybe Term
b, clauseType :: Clause -> Maybe (Arg Type)
clauseType = Maybe (Arg Type)
t} =
    [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ Telescope -> Doc
forall a. Pretty a => a -> Doc
pretty Telescope
tel Doc -> Doc -> Doc
<+> Doc
"|-"
        , Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep ((Arg (Named_ DeBruijnPattern) -> Doc) -> NAPs -> [Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Arg (Named_ DeBruijnPattern) -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) NAPs
ps) Doc -> Doc -> Doc
<+> Doc
"="
                       , Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Maybe Term -> Maybe (Arg Type) -> Doc
forall {a} {a}. (Pretty a, Pretty a) => Maybe a -> Maybe a -> Doc
pBody Maybe Term
b Maybe (Arg Type)
t ] ]
    where
      pBody :: Maybe a -> Maybe a -> Doc
pBody Maybe a
Nothing Maybe a
_ = Doc
"(absurd)"
      pBody (Just a
b) Maybe a
Nothing  = a -> Doc
forall a. Pretty a => a -> Doc
pretty a
b
      pBody (Just a
b) (Just a
t) = [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ a -> Doc
forall a. Pretty a => a -> Doc
pretty a
b Doc -> Doc -> Doc
<+> Doc
":", Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ a -> Doc
forall a. Pretty a => a -> Doc
pretty a
t ]

instance Pretty a => Pretty (Tele (Dom a)) where
  pretty :: Tele (Dom a) -> Doc
pretty Tele (Dom a)
tel = [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep [ Dom a -> Doc -> Doc
forall a. LensHiding a => a -> Doc -> Doc
pDom Dom a
a (ArgName -> Doc
text ArgName
x Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> a -> Doc
forall a. Pretty a => a -> Doc
pretty (Dom a -> a
forall t e. Dom' t e -> e
unDom Dom a
a)) | (ArgName
x, Dom a
a) <- Tele (Dom a) -> [(ArgName, Dom a)]
forall {b}. Tele b -> [(ArgName, b)]
telToList Tele (Dom a)
tel ]
    where
      telToList :: Tele b -> [(ArgName, b)]
telToList Tele b
EmptyTel = []
      telToList (ExtendTel b
a Abs (Tele b)
tel) = (Abs (Tele b) -> ArgName
forall a. Abs a -> ArgName
absName Abs (Tele b)
tel, b
a) (ArgName, b) -> [(ArgName, b)] -> [(ArgName, b)]
forall a. a -> [a] -> [a]
: Tele b -> [(ArgName, b)]
telToList (Abs (Tele b) -> Tele b
forall a. Abs a -> a
unAbs Abs (Tele b)
tel)

prettyPrecLevelSucs :: Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs :: Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
p Integer
0 Int -> Doc
d = Int -> Doc
d Int
p
prettyPrecLevelSucs Int
p Integer
n Int -> Doc
d = Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Doc
"lsuc" Doc -> Doc -> Doc
<+> Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
10 (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1) Int -> Doc
d

instance Pretty Level where
  prettyPrec :: Int -> Level -> Doc
prettyPrec Int
p (Max Integer
n [PlusLevel]
as) =
    case [PlusLevel]
as of
      []  -> Doc
prettyN
      [PlusLevel
a] | Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 -> Int -> PlusLevel -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p PlusLevel
a
      [PlusLevel]
_   -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ (Doc -> Doc -> Doc) -> [Doc] -> Doc
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
List.foldr1 (\Doc
a Doc
b -> Doc
"lub" Doc -> Doc -> Doc
<+> Doc
a Doc -> Doc -> Doc
<+> Doc
b) ([Doc] -> Doc) -> [Doc] -> Doc
forall a b. (a -> b) -> a -> b
$
        [ Doc
prettyN | Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
0 ] [Doc] -> [Doc] -> [Doc]
forall a. [a] -> [a] -> [a]
++ (PlusLevel -> Doc) -> [PlusLevel] -> [Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> PlusLevel -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) [PlusLevel]
as
    where
      prettyN :: Doc
prettyN = Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
p Integer
n (Doc -> Int -> Doc
forall a b. a -> b -> a
const Doc
"lzero")

instance Pretty PlusLevel where
  prettyPrec :: Int -> PlusLevel -> Doc
prettyPrec Int
p (Plus Integer
n Term
a) = Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
p Integer
n ((Int -> Doc) -> Doc) -> (Int -> Doc) -> Doc
forall a b. (a -> b) -> a -> b
$ \Int
p -> Int -> Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Term
a

instance Pretty Sort where
  prettyPrec :: Int -> Sort -> Doc
prettyPrec Int
p Sort
s =
    case Sort
s of
      Type (ClosedLevel Integer
0) -> Doc
"Set"
      Type (ClosedLevel Integer
n) -> ArgName -> Doc
text (ArgName -> Doc) -> ArgName -> Doc
forall a b. (a -> b) -> a -> b
$ ArgName
"Set" ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> ArgName
forall a. Show a => a -> ArgName
show Integer
n
      Type Level
l -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Doc
"Set" Doc -> Doc -> Doc
<+> Int -> Level -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Level
l
      Prop (ClosedLevel Integer
0) -> Doc
"Prop"
      Prop (ClosedLevel Integer
n) -> ArgName -> Doc
text (ArgName -> Doc) -> ArgName -> Doc
forall a b. (a -> b) -> a -> b
$ ArgName
"Prop" ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> ArgName
forall a. Show a => a -> ArgName
show Integer
n
      Prop Level
l -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Doc
"Prop" Doc -> Doc -> Doc
<+> Int -> Level -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Level
l
      Inf IsFibrant
f Integer
0 -> ArgName -> Doc
text (ArgName -> Doc) -> ArgName -> Doc
forall a b. (a -> b) -> a -> b
$ IsFibrant -> ShowS
addS IsFibrant
f ArgName
"Setω"
      Inf IsFibrant
f Integer
n -> ArgName -> Doc
text (ArgName -> Doc) -> ArgName -> Doc
forall a b. (a -> b) -> a -> b
$ IsFibrant -> ShowS
addS IsFibrant
f ArgName
"Setω" ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> ArgName
forall a. Show a => a -> ArgName
show Integer
n
      SSet Level
l -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Doc
"SSet" Doc -> Doc -> Doc
<+> Int -> Level -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Level
l
      Sort
SizeUniv -> Doc
"SizeUniv"
      Sort
LockUniv -> Doc
"LockUniv"
      PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
        Doc
"piSort" Doc -> Doc -> Doc
<+> ArgInfo -> Doc -> Doc
forall a. LensHiding a => a -> Doc -> Doc
pDom (Dom' Term Term -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo Dom' Term Term
a) (ArgName -> Doc
text (Abs Sort -> ArgName
forall a. Abs a -> ArgName
absName Abs Sort
s2) Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> Term -> Doc
forall a. Pretty a => a -> Doc
pretty (Dom' Term Term -> Term
forall t e. Dom' t e -> e
unDom Dom' Term Term
a))
                      Doc -> Doc -> Doc
<+> Doc -> Doc
parens ([Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ ArgName -> Doc
text (ArgName
"λ " ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Abs Sort -> ArgName
forall a. Abs a -> ArgName
absName Abs Sort
s2 ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ ArgName
" ->")
                                      , Int -> Doc -> Doc
nest Int
2 (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Sort -> Doc
forall a. Pretty a => a -> Doc
pretty (Abs Sort -> Sort
forall a. Abs a -> a
unAbs Abs Sort
s2) ])
      FunSort Sort
a Sort
b -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
        Doc
"funSort" Doc -> Doc -> Doc
<+> Int -> Sort -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Sort
a Doc -> Doc -> Doc
<+> Int -> Sort -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Sort
b
      UnivSort Sort
s -> Bool -> Doc -> Doc
mparens (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
9) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ Doc
"univSort" Doc -> Doc -> Doc
<+> Int -> Sort -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Sort
s
      MetaS MetaId
x Elims
es -> Int -> Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p (Term -> Doc) -> Term -> Doc
forall a b. (a -> b) -> a -> b
$ MetaId -> Elims -> Term
MetaV MetaId
x Elims
es
      DefS QName
d Elims
es  -> Int -> Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p (Term -> Doc) -> Term -> Doc
forall a b. (a -> b) -> a -> b
$ QName -> Elims -> Term
Def QName
d Elims
es
      DummyS ArgName
s   -> Doc -> Doc
parens (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$ ArgName -> Doc
text ArgName
s
   where
     addS :: IsFibrant -> ShowS
addS IsFibrant
IsFibrant ArgName
t = ArgName
t
     addS IsFibrant
IsStrict  ArgName
t = ArgName
"S" ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ ArgName
t

instance Pretty Type where
  prettyPrec :: Int -> Type -> Doc
prettyPrec Int
p (El Sort
_ Term
a) = Int -> Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Term
a

instance Pretty DBPatVar where
  prettyPrec :: Int -> DBPatVar -> Doc
prettyPrec Int
_ DBPatVar
x = ArgName -> Doc
text (ArgName -> Doc) -> ArgName -> Doc
forall a b. (a -> b) -> a -> b
$ ShowS
patVarNameToString (DBPatVar -> ArgName
dbPatVarName DBPatVar
x) ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ ArgName
"@" ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> ArgName
forall a. Show a => a -> ArgName
show (DBPatVar -> Int
dbPatVarIndex DBPatVar
x)

instance Pretty a => Pretty (Pattern' a) where
  prettyPrec :: Int -> Pattern' a -> Doc
prettyPrec Int
n (VarP PatternInfo
_o a
x)   = Int -> a -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
n a
x
  prettyPrec Int
_ (DotP PatternInfo
_o Term
t)   = Doc
"." Doc -> Doc -> Doc
forall a. Semigroup a => a -> a -> a
<> Int -> Term -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Term
t
  prettyPrec Int
n (ConP ConHead
c ConPatternInfo
i [NamedArg (Pattern' a)]
nps)= Bool -> Doc -> Doc
mparens (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
&& Bool -> Bool
not ([NamedArg (Pattern' a)] -> Bool
forall a. Null a => a -> Bool
null [NamedArg (Pattern' a)]
nps)) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
    (Doc
lazy Doc -> Doc -> Doc
forall a. Semigroup a => a -> a -> a
<> QName -> Doc
forall a. Pretty a => a -> Doc
pretty (ConHead -> QName
conName ConHead
c)) Doc -> Doc -> Doc
<+> [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep ((Arg (Pattern' a) -> Doc) -> [Arg (Pattern' a)] -> [Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Arg (Pattern' a) -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) [Arg (Pattern' a)]
ps)
    where ps :: [Arg (Pattern' a)]
ps = (NamedArg (Pattern' a) -> Arg (Pattern' a))
-> [NamedArg (Pattern' a)] -> [Arg (Pattern' a)]
forall a b. (a -> b) -> [a] -> [b]
map ((Named (WithOrigin (Ranged ArgName)) (Pattern' a) -> Pattern' a)
-> NamedArg (Pattern' a) -> Arg (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Named (WithOrigin (Ranged ArgName)) (Pattern' a) -> Pattern' a
forall name a. Named name a -> a
namedThing) [NamedArg (Pattern' a)]
nps
          lazy :: Doc
lazy | ConPatternInfo -> Bool
conPLazy ConPatternInfo
i = Doc
"~"
               | Bool
otherwise  = Doc
forall a. Null a => a
empty
  prettyPrec Int
n (DefP PatternInfo
o QName
q [NamedArg (Pattern' a)]
nps)= Bool -> Doc -> Doc
mparens (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
&& Bool -> Bool
not ([NamedArg (Pattern' a)] -> Bool
forall a. Null a => a -> Bool
null [NamedArg (Pattern' a)]
nps)) (Doc -> Doc) -> Doc -> Doc
forall a b. (a -> b) -> a -> b
$
    QName -> Doc
forall a. Pretty a => a -> Doc
pretty QName
q Doc -> Doc -> Doc
<+> [Doc] -> Doc
forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep ((Arg (Pattern' a) -> Doc) -> [Arg (Pattern' a)] -> [Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Arg (Pattern' a) -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) [Arg (Pattern' a)]
ps)
    where ps :: [Arg (Pattern' a)]
ps = (NamedArg (Pattern' a) -> Arg (Pattern' a))
-> [NamedArg (Pattern' a)] -> [Arg (Pattern' a)]
forall a b. (a -> b) -> [a] -> [b]
map ((Named (WithOrigin (Ranged ArgName)) (Pattern' a) -> Pattern' a)
-> NamedArg (Pattern' a) -> Arg (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Named (WithOrigin (Ranged ArgName)) (Pattern' a) -> Pattern' a
forall name a. Named name a -> a
namedThing) [NamedArg (Pattern' a)]
nps
  -- -- Version with printing record type:
  -- prettyPrec _ (ConP c i ps) = (if b then braces else parens) $ prTy $
  --   text (show $ conName c) <+> fsep (map (pretty . namedArg) ps)
  --   where
  --     b = maybe False (== ConOSystem) $ conPRecord i
  --     prTy d = caseMaybe (conPType i) d $ \ t -> d  <+> ":" <+> pretty t
  prettyPrec Int
_ (LitP PatternInfo
_ Literal
l)    = Literal -> Doc
forall a. Pretty a => a -> Doc
pretty Literal
l
  prettyPrec Int
_ (ProjP ProjOrigin
_o QName
q)  = ArgName -> Doc
text (ArgName
"." ArgName -> ShowS
forall a. [a] -> [a] -> [a]
++ QName -> ArgName
forall a. Pretty a => a -> ArgName
prettyShow QName
q)
  prettyPrec Int
n (IApplyP PatternInfo
_o Term
_ Term
_ a
x) = Int -> a -> Doc
forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
n a
x
--  prettyPrec n (IApplyP _o u0 u1 x) = text "@[" <> prettyPrec 0 u0 <> text ", " <> prettyPrec 0 u1 <> text "]" <> prettyPrec n x

-----------------------------------------------------------------------------
-- * NFData instances
-----------------------------------------------------------------------------

-- Note: only strict in the shape of the terms.

instance NFData Term where
  rnf :: Term -> ()
rnf = \case
    Var Int
_ Elims
es   -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
es
    Lam ArgInfo
_ Abs Term
b    -> Term -> ()
forall a. NFData a => a -> ()
rnf (Abs Term -> Term
forall a. Abs a -> a
unAbs Abs Term
b)
    Lit Literal
l      -> Literal -> ()
forall a. NFData a => a -> ()
rnf Literal
l
    Def QName
_ Elims
es   -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
es
    Con ConHead
_ ConInfo
_ Elims
vs -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
vs
    Pi Dom' Term Type
a Abs Type
b     -> (Type, Type) -> ()
forall a. NFData a => a -> ()
rnf (Dom' Term Type -> Type
forall t e. Dom' t e -> e
unDom Dom' Term Type
a, Abs Type -> Type
forall a. Abs a -> a
unAbs Abs Type
b)
    Sort Sort
s     -> Sort -> ()
forall a. NFData a => a -> ()
rnf Sort
s
    Level Level
l    -> Level -> ()
forall a. NFData a => a -> ()
rnf Level
l
    MetaV MetaId
_ Elims
es -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
es
    DontCare Term
v -> Term -> ()
forall a. NFData a => a -> ()
rnf Term
v
    Dummy ArgName
_ Elims
es -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
es

instance NFData Type where
  rnf :: Type -> ()
rnf (El Sort
s Term
v) = (Sort, Term) -> ()
forall a. NFData a => a -> ()
rnf (Sort
s, Term
v)

instance NFData Sort where
  rnf :: Sort -> ()
rnf = \case
    Type Level
l   -> Level -> ()
forall a. NFData a => a -> ()
rnf Level
l
    Prop Level
l   -> Level -> ()
forall a. NFData a => a -> ()
rnf Level
l
    Inf IsFibrant
_ Integer
_  -> ()
    SSet Level
l   -> Level -> ()
forall a. NFData a => a -> ()
rnf Level
l
    Sort
SizeUniv -> ()
    Sort
LockUniv -> ()
    PiSort Dom' Term Term
a Sort
b Abs Sort
c -> (Dom' Term Term, Sort, Sort) -> ()
forall a. NFData a => a -> ()
rnf (Dom' Term Term
a, Sort
b, Abs Sort -> Sort
forall a. Abs a -> a
unAbs Abs Sort
c)
    FunSort Sort
a Sort
b -> (Sort, Sort) -> ()
forall a. NFData a => a -> ()
rnf (Sort
a, Sort
b)
    UnivSort Sort
a -> Sort -> ()
forall a. NFData a => a -> ()
rnf Sort
a
    MetaS MetaId
_ Elims
es -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
es
    DefS QName
_ Elims
es  -> Elims -> ()
forall a. NFData a => a -> ()
rnf Elims
es
    DummyS ArgName
_   -> ()

instance NFData Level where
  rnf :: Level -> ()
rnf (Max Integer
n [PlusLevel]
as) = (Integer, [PlusLevel]) -> ()
forall a. NFData a => a -> ()
rnf (Integer
n, [PlusLevel]
as)

instance NFData PlusLevel where
  rnf :: PlusLevel -> ()
rnf (Plus Integer
n Term
l) = (Integer, Term) -> ()
forall a. NFData a => a -> ()
rnf (Integer
n, Term
l)

instance NFData e => NFData (Dom e) where
  rnf :: Dom e -> ()
rnf (Dom ArgInfo
a Bool
b Maybe (WithOrigin (Ranged ArgName))
c Maybe Term
d e
e) = ArgInfo -> ()
forall a. NFData a => a -> ()
rnf ArgInfo
a () -> () -> ()
`seq` Bool -> ()
forall a. NFData a => a -> ()
rnf Bool
b () -> () -> ()
`seq` Maybe (WithOrigin (Ranged ArgName)) -> ()
forall a. NFData a => a -> ()
rnf Maybe (WithOrigin (Ranged ArgName))
c () -> () -> ()
`seq` Maybe Term -> ()
forall a. NFData a => a -> ()
rnf Maybe Term
d () -> () -> ()
`seq` e -> ()
forall a. NFData a => a -> ()
rnf e
e

instance NFData DataOrRecord
instance NFData ConHead
instance NFData a => NFData (Abs a)
instance NFData a => NFData (Tele a)
instance NFData IsFibrant
instance NFData Clause
instance NFData PatternInfo
instance NFData PatOrigin
instance NFData x => NFData (Pattern' x)
instance NFData DBPatVar
instance NFData ConPatternInfo
instance NFData a => NFData (Substitution' a)