{-# OPTIONS_GHC -fno-warn-orphans #-}
module Agda.TypeChecking.Serialise.Instances.Common (SerialisedRange(..)) where
import Prelude hiding (mapM)
import Control.Monad.Reader hiding (mapM)
import Control.Monad.State.Strict (gets, modify)
import Data.Array.IArray
import Data.Word
import qualified Data.Foldable as Fold
import Data.Hashable
import qualified Data.HashTable.IO as H
import Data.Int (Int32)
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.IntSet as IntSet
import Data.IntSet (IntSet)
import Data.List.NonEmpty (NonEmpty(..), nonEmpty)
import qualified Data.List.NonEmpty as NonEmpty
import qualified Data.Set as Set
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
import Data.Text.Lazy (Text)
import Data.Traversable ( mapM )
import Data.Typeable
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HMap
import Data.Void
import Agda.Syntax.Common
import Agda.Syntax.Concrete.Name as C
import qualified Agda.Syntax.Concrete as C
import qualified Agda.Syntax.Abstract as A
import Agda.Syntax.Info
import Agda.Syntax.Position as P
import Agda.Syntax.Notation
import Agda.Syntax.Literal
import Agda.Interaction.FindFile
import Agda.TypeChecking.Serialise.Base
import Agda.Utils.BiMap (BiMap)
import qualified Agda.Utils.BiMap as BiMap
import Agda.Utils.FileName
import Agda.Utils.Maybe
import qualified Agda.Utils.Maybe.Strict as Strict
import Agda.Utils.Trie (Trie(..))
import Agda.Utils.Except
import Agda.Utils.Empty (Empty)
import qualified Agda.Utils.Empty as Empty
import Agda.Utils.WithDefault
import Agda.Utils.Impossible
instance {-# OVERLAPPING #-} EmbPrj String where
icod_ :: String -> S Int32
icod_ = String -> S Int32
icodeString
value :: Int32 -> R String
value Int32
i = (Array Int32 String -> Int32 -> String
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
! Int32
i) (Array Int32 String -> String)
-> ExceptT TypeError (StateT St IO) (Array Int32 String)
-> R String
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` (St -> Array Int32 String)
-> ExceptT TypeError (StateT St IO) (Array Int32 String)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets St -> Array Int32 String
stringE
instance EmbPrj Text where
icod_ :: Text -> S Int32
icod_ = (Dict -> HashTable Text Int32)
-> (Dict -> IORef FreshAndReuse) -> Text -> S Int32
forall k.
(Eq k, Hashable k) =>
(Dict -> HashTable k Int32)
-> (Dict -> IORef FreshAndReuse) -> k -> S Int32
icodeX Dict -> HashTable Text Int32
textD Dict -> IORef FreshAndReuse
textC
value :: Int32 -> R Text
value Int32
i = (Array Int32 Text -> Int32 -> Text
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
! Int32
i) (Array Int32 Text -> Text)
-> ExceptT TypeError (StateT St IO) (Array Int32 Text) -> R Text
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` (St -> Array Int32 Text)
-> ExceptT TypeError (StateT St IO) (Array Int32 Text)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets St -> Array Int32 Text
textE
instance EmbPrj Integer where
icod_ :: Integer -> S Int32
icod_ = Integer -> S Int32
icodeInteger
value :: Int32 -> R Integer
value Int32
i = (Array Int32 Integer -> Int32 -> Integer
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
! Int32
i) (Array Int32 Integer -> Integer)
-> ExceptT TypeError (StateT St IO) (Array Int32 Integer)
-> R Integer
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` (St -> Array Int32 Integer)
-> ExceptT TypeError (StateT St IO) (Array Int32 Integer)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets St -> Array Int32 Integer
integerE
instance EmbPrj Word64 where
icod_ :: Word64 -> S Int32
icod_ Word64
i = (Int32 -> Int32 -> Int32) -> Int32 -> Int32 -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (Int32 -> Int32 -> Int32
forall a. HasCallStack => a
undefined :: Int32 -> Int32 -> Int32) (Word64 -> Int32
int32 Word64
q) (Word64 -> Int32
int32 Word64
r)
where (Word64
q, Word64
r) = Word64 -> Word64 -> (Word64, Word64)
forall a. Integral a => a -> a -> (a, a)
quotRem Word64
i (Word64
2Word64 -> Integer -> Word64
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
32)
int32 :: Word64 -> Int32
int32 :: Word64 -> Int32
int32 = Word64 -> Int32
forall a b. (Integral a, Num b) => a -> b
fromIntegral
value :: Int32 -> R Word64
value = (Node -> R Word64) -> Int32 -> R Word64
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Word64
forall a. Integral a => [a] -> R Word64
valu where
valu :: [a] -> R Word64
valu [a
a, a
b] = Word64 -> R Word64
forall (m :: * -> *) a. Monad m => a -> m a
return (Word64 -> R Word64) -> Word64 -> R Word64
forall a b. (a -> b) -> a -> b
$ Word64
n Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
* Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
mod (a -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
a) Word64
n Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
mod (a -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
b) Word64
n
valu [a]
_ = R Word64
forall a. R a
malformed
n :: Word64
n = Word64
2Word64 -> Integer -> Word64
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
32
instance EmbPrj Int32 where
icod_ :: Int32 -> S Int32
icod_ Int32
i = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
i
value :: Int32 -> R Int32
value Int32
i = Int32 -> R Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
i
instance EmbPrj Int where
icod_ :: Int -> S Int32
icod_ Int
i = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Int32
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i)
value :: Int32 -> R Int
value Int32
i = Int -> R Int
forall (m :: * -> *) a. Monad m => a -> m a
return (Int32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int32
i)
instance EmbPrj Char where
icod_ :: Char -> S Int32
icod_ Char
c = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Int32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Int32) -> Int -> Int32
forall a b. (a -> b) -> a -> b
$ Char -> Int
forall a. Enum a => a -> Int
fromEnum Char
c)
value :: Int32 -> R Char
value Int32
i = Char -> R Char
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Char
forall a. Enum a => Int -> a
toEnum (Int -> Char) -> Int -> Char
forall a b. (a -> b) -> a -> b
$ Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ Int32 -> Integer
forall a. Integral a => a -> Integer
toInteger Int32
i)
instance EmbPrj Double where
icod_ :: Double -> S Int32
icod_ = Double -> S Int32
icodeDouble
value :: Int32 -> R Double
value Int32
i = (Array Int32 Double -> Int32 -> Double
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
! Int32
i) (Array Int32 Double -> Double)
-> ExceptT TypeError (StateT St IO) (Array Int32 Double)
-> R Double
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` (St -> Array Int32 Double)
-> ExceptT TypeError (StateT St IO) (Array Int32 Double)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets St -> Array Int32 Double
doubleE
instance EmbPrj Void where
icod_ :: Void -> S Int32
icod_ = Void -> S Int32
forall a. Void -> a
absurd
value :: Int32 -> R Void
value = (Node -> R Void) -> Int32 -> R Void
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Void
forall p a. p -> R a
valu where valu :: p -> R a
valu p
_ = R a
forall a. R a
malformed
instance EmbPrj () where
icod_ :: () -> S Int32
icod_ () = () -> Arrows (Domains ()) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ()
value :: Int32 -> R ()
value = (Node -> R ()) -> Int32 -> R ()
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R ()
forall a. [a] -> R ()
valu where
valu :: [a] -> R ()
valu [] = () -> Arrows (Constant Int32 (Domains ())) (R (CoDomain ()))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ()
valu [a]
_ = R ()
forall a. R a
malformed
instance (EmbPrj a, EmbPrj b) => EmbPrj (a, b) where
icod_ :: (a, b) -> S Int32
icod_ (a
a, b
b) = (a -> b -> (a, b)) -> a -> b -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (,) a
a b
b
value :: Int32 -> R (a, b)
value = (a -> b -> (a, b)) -> Int32 -> R (CoDomain (a -> b -> (a, b)))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN (,)
instance (EmbPrj a, EmbPrj b, EmbPrj c) => EmbPrj (a, b, c) where
icod_ :: (a, b, c) -> S Int32
icod_ (a
a, b
b, c
c) = (a -> b -> c -> (a, b, c)) -> a -> b -> c -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (,,) a
a b
b c
c
value :: Int32 -> R (a, b, c)
value = (a -> b -> c -> (a, b, c))
-> Int32 -> R (CoDomain (a -> b -> c -> (a, b, c)))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN (,,)
instance (EmbPrj a, EmbPrj b) => EmbPrj (Either a b) where
icod_ :: Either a b -> S Int32
icod_ (Left a
x) = Int32 -> (a -> Either a Any) -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 a -> Either a Any
forall a b. a -> Either a b
Left a
x
icod_ (Right b
x) = Int32 -> (b -> Either Any b) -> b -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 b -> Either Any b
forall a b. b -> Either a b
Right b
x
value :: Int32 -> R (Either a b)
value = (Node -> R (Either a b)) -> Int32 -> R (Either a b)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Either a b)
forall a b. (EmbPrj a, EmbPrj b) => Node -> R (Either a b)
valu where
valu :: Node -> R (Either a b)
valu [Int32
0, Int32
x] = (a -> Either a b) -> Int32 -> R (Either a b)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN a -> Either a b
forall a b. a -> Either a b
Left Int32
x
valu [Int32
1, Int32
x] = (b -> Either a b) -> Int32 -> R (Either a b)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN b -> Either a b
forall a b. b -> Either a b
Right Int32
x
valu Node
_ = R (Either a b)
forall a. R a
malformed
instance EmbPrj a => EmbPrj (Maybe a) where
icod_ :: Maybe a -> S Int32
icod_ Maybe a
Nothing = Maybe Any -> Arrows (Domains (Maybe Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Maybe Any
forall a. Maybe a
Nothing
icod_ (Just a
x) = (a -> Maybe a) -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' a -> Maybe a
forall a. a -> Maybe a
Just a
x
value :: Int32 -> R (Maybe a)
value = (Node -> R (Maybe a)) -> Int32 -> R (Maybe a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Maybe a)
forall a. EmbPrj a => Node -> R (Maybe a)
valu where
valu :: Node -> R (Maybe a)
valu [] = Maybe a
-> Arrows
(Constant Int32 (Domains (Maybe a))) (R (CoDomain (Maybe a)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Maybe a
forall a. Maybe a
Nothing
valu [Int32
x] = (a -> Maybe a) -> Int32 -> R (Maybe a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN a -> Maybe a
forall a. a -> Maybe a
Just Int32
x
valu Node
_ = R (Maybe a)
forall a. R a
malformed
instance EmbPrj a => EmbPrj (Strict.Maybe a) where
icod_ :: Maybe a -> S Int32
icod_ Maybe a
m = Maybe a -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (Maybe a -> Maybe a
forall a. Maybe a -> Maybe a
Strict.toLazy Maybe a
m)
value :: Int32 -> R (Maybe a)
value Int32
m = Maybe a -> Maybe a
forall a. Maybe a -> Maybe a
Strict.toStrict (Maybe a -> Maybe a)
-> ExceptT TypeError (StateT St IO) (Maybe a) -> R (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) (Maybe a)
forall a. EmbPrj a => Int32 -> R a
value Int32
m
instance EmbPrj Bool where
icod_ :: Bool -> S Int32
icod_ Bool
True = Bool -> Arrows (Domains Bool) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Bool
True
icod_ Bool
False = Int32 -> Bool -> Arrows (Domains Bool) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Bool
False
value :: Int32 -> R Bool
value = (Node -> R Bool) -> Int32 -> R Bool
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Bool
forall a. (Eq a, Num a) => [a] -> R Bool
valu where
valu :: [a] -> R Bool
valu [] = Bool -> Arrows (Constant Int32 (Domains Bool)) (R (CoDomain Bool))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Bool
True
valu [a
0] = Bool -> Arrows (Constant Int32 (Domains Bool)) (R (CoDomain Bool))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Bool
False
valu [a]
_ = R Bool
forall a. R a
malformed
instance EmbPrj FileType where
icod_ :: FileType -> S Int32
icod_ FileType
AgdaFileType = DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' DataOrRecord
IsData
icod_ FileType
MdFileType = Int32 -> DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 DataOrRecord
IsRecord
icod_ FileType
RstFileType = Int32 -> DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 DataOrRecord
IsRecord
icod_ FileType
TexFileType = Int32 -> DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 DataOrRecord
IsRecord
icod_ FileType
OrgFileType = Int32 -> DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 DataOrRecord
IsRecord
value :: Int32 -> R FileType
value = (Node -> R FileType) -> Int32 -> R FileType
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Node -> R FileType) -> Int32 -> R FileType)
-> (Node -> R FileType) -> Int32 -> R FileType
forall a b. (a -> b) -> a -> b
$ \case
[] -> FileType
-> Arrows
(Constant Int32 (Domains FileType)) (R (CoDomain FileType))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FileType
AgdaFileType
[Int32
0] -> FileType
-> Arrows
(Constant Int32 (Domains FileType)) (R (CoDomain FileType))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FileType
MdFileType
[Int32
1] -> FileType
-> Arrows
(Constant Int32 (Domains FileType)) (R (CoDomain FileType))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FileType
RstFileType
[Int32
2] -> FileType
-> Arrows
(Constant Int32 (Domains FileType)) (R (CoDomain FileType))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FileType
TexFileType
[Int32
3] -> FileType
-> Arrows
(Constant Int32 (Domains FileType)) (R (CoDomain FileType))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FileType
OrgFileType
Node
_ -> R FileType
forall a. R a
malformed
instance EmbPrj DataOrRecord where
icod_ :: DataOrRecord -> S Int32
icod_ DataOrRecord
IsData = DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' DataOrRecord
IsData
icod_ DataOrRecord
IsRecord = Int32 -> DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 DataOrRecord
IsRecord
value :: Int32 -> R DataOrRecord
value = (Node -> R DataOrRecord) -> Int32 -> R DataOrRecord
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Node -> R DataOrRecord) -> Int32 -> R DataOrRecord)
-> (Node -> R DataOrRecord) -> Int32 -> R DataOrRecord
forall a b. (a -> b) -> a -> b
$ \case
[] -> DataOrRecord
-> Arrows
(Constant Int32 (Domains DataOrRecord)) (R (CoDomain DataOrRecord))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN DataOrRecord
IsData
[Int32
0] -> DataOrRecord
-> Arrows
(Constant Int32 (Domains DataOrRecord)) (R (CoDomain DataOrRecord))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN DataOrRecord
IsRecord
Node
_ -> R DataOrRecord
forall a. R a
malformed
instance EmbPrj AbsolutePath where
icod_ :: AbsolutePath -> S Int32
icod_ AbsolutePath
file = do
HashTable RealWorld AbsolutePath Int32
d <- (Dict -> HashTable RealWorld AbsolutePath Int32)
-> ReaderT Dict IO (HashTable RealWorld AbsolutePath Int32)
forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a
asks Dict -> HashTable RealWorld AbsolutePath Int32
Dict -> HashTable AbsolutePath Int32
absPathD
IO Int32 -> S Int32
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO Int32 -> S Int32) -> IO Int32 -> S Int32
forall a b. (a -> b) -> a -> b
$ (IO Int32 -> IO (Maybe Int32) -> IO Int32)
-> IO (Maybe Int32) -> IO Int32 -> IO Int32
forall a b c. (a -> b -> c) -> b -> a -> c
flip IO Int32 -> IO (Maybe Int32) -> IO Int32
forall (m :: * -> *) a. Monad m => m a -> m (Maybe a) -> m a
fromMaybeM (HashTable AbsolutePath Int32 -> AbsolutePath -> IO (Maybe Int32)
forall (h :: * -> * -> * -> *) k v.
(HashTable h, Eq k, Hashable k) =>
IOHashTable h k v -> k -> IO (Maybe v)
H.lookup HashTable RealWorld AbsolutePath Int32
HashTable AbsolutePath Int32
d AbsolutePath
file) (IO Int32 -> IO Int32) -> IO Int32 -> IO Int32
forall a b. (a -> b) -> a -> b
$ do
String -> IO ()
putStrLn (String -> IO ()) -> String -> IO ()
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines ([String] -> String) -> [String] -> String
forall a b. (a -> b) -> a -> b
$
[ String
"Panic while serializing absolute path: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ AbsolutePath -> String
forall a. Show a => a -> String
show AbsolutePath
file
, String
"The path could not be found in the dictionary:"
]
String -> IO ()
putStrLn (String -> IO ())
-> ([(AbsolutePath, Int32)] -> String)
-> [(AbsolutePath, Int32)]
-> IO ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(AbsolutePath, Int32)] -> String
forall a. Show a => a -> String
show ([(AbsolutePath, Int32)] -> IO ())
-> IO [(AbsolutePath, Int32)] -> IO ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< HashTable AbsolutePath Int32 -> IO [(AbsolutePath, Int32)]
forall (h :: * -> * -> * -> *) k v.
(HashTable h, Eq k, Hashable k) =>
IOHashTable h k v -> IO [(k, v)]
H.toList HashTable RealWorld AbsolutePath Int32
HashTable AbsolutePath Int32
d
IO Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
value :: Int32 -> R AbsolutePath
value Int32
m = do
TopLevelModuleName
m :: TopLevelModuleName
<- Int32 -> R TopLevelModuleName
forall a. EmbPrj a => Int32 -> R a
value Int32
m
ModuleToSource
mf <- (St -> ModuleToSource)
-> ExceptT TypeError (StateT St IO) ModuleToSource
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets St -> ModuleToSource
modFile
[AbsolutePath]
incs <- (St -> [AbsolutePath])
-> ExceptT TypeError (StateT St IO) [AbsolutePath]
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets St -> [AbsolutePath]
includes
(Either FindError SourceFile
r, ModuleToSource
mf) <- IO (Either FindError SourceFile, ModuleToSource)
-> ExceptT
TypeError
(StateT St IO)
(Either FindError SourceFile, ModuleToSource)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Either FindError SourceFile, ModuleToSource)
-> ExceptT
TypeError
(StateT St IO)
(Either FindError SourceFile, ModuleToSource))
-> IO (Either FindError SourceFile, ModuleToSource)
-> ExceptT
TypeError
(StateT St IO)
(Either FindError SourceFile, ModuleToSource)
forall a b. (a -> b) -> a -> b
$ [AbsolutePath]
-> TopLevelModuleName
-> ModuleToSource
-> IO (Either FindError SourceFile, ModuleToSource)
findFile'' [AbsolutePath]
incs TopLevelModuleName
m ModuleToSource
mf
(St -> St) -> R ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((St -> St) -> R ()) -> (St -> St) -> R ()
forall a b. (a -> b) -> a -> b
$ \St
s -> St
s { modFile :: ModuleToSource
modFile = ModuleToSource
mf }
case Either FindError SourceFile
r of
Left FindError
err -> TypeError -> R AbsolutePath
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TypeError -> R AbsolutePath) -> TypeError -> R AbsolutePath
forall a b. (a -> b) -> a -> b
$ TopLevelModuleName -> FindError -> TypeError
findErrorToTypeError TopLevelModuleName
m FindError
err
Right SourceFile
f -> AbsolutePath -> R AbsolutePath
forall (m :: * -> *) a. Monad m => a -> m a
return (SourceFile -> AbsolutePath
srcFilePath SourceFile
f)
instance EmbPrj a => EmbPrj (Position' a) where
icod_ :: Position' a -> S Int32
icod_ (P.Pn a
file Int32
pos Int32
line Int32
col) = (a -> Int32 -> Int32 -> Int32 -> Position' a)
-> a -> Int32 -> Int32 -> Int32 -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' a -> Int32 -> Int32 -> Int32 -> Position' a
forall a. a -> Int32 -> Int32 -> Int32 -> Position' a
P.Pn a
file Int32
pos Int32
line Int32
col
value :: Int32 -> R (Position' a)
value = (a -> Int32 -> Int32 -> Int32 -> Position' a)
-> Int32
-> R (CoDomain (a -> Int32 -> Int32 -> Int32 -> Position' a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN a -> Int32 -> Int32 -> Int32 -> Position' a
forall a. a -> Int32 -> Int32 -> Int32 -> Position' a
P.Pn
instance Typeable b => EmbPrj (WithDefault b) where
icod_ :: WithDefault b -> S Int32
icod_ = \case
WithDefault b
Default -> WithDefault Any -> Arrows (Domains (WithDefault Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' WithDefault Any
forall (b :: Bool). WithDefault b
Default
Value Bool
b -> (Bool -> WithDefault Any) -> Bool -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Bool -> WithDefault Any
forall (b :: Bool). Bool -> WithDefault b
Value Bool
b
value :: Int32 -> R (WithDefault b)
value = (Node -> R (WithDefault b)) -> Int32 -> R (WithDefault b)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Node -> R (WithDefault b)) -> Int32 -> R (WithDefault b))
-> (Node -> R (WithDefault b)) -> Int32 -> R (WithDefault b)
forall a b. (a -> b) -> a -> b
$ \case
[] -> WithDefault b
-> Arrows
(Constant Int32 (Domains (WithDefault b)))
(R (CoDomain (WithDefault b)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN WithDefault b
forall (b :: Bool). WithDefault b
Default
[Int32
a] -> (Bool -> WithDefault b) -> Int32 -> R (WithDefault b)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Bool -> WithDefault b
forall (b :: Bool). Bool -> WithDefault b
Value Int32
a
Node
_ -> R (WithDefault b)
forall a. R a
malformed
instance EmbPrj TopLevelModuleName where
icod_ :: TopLevelModuleName -> S Int32
icod_ (TopLevelModuleName Range
a [String]
b) = (Range -> [String] -> TopLevelModuleName)
-> Range -> [String] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Range -> [String] -> TopLevelModuleName
TopLevelModuleName Range
a [String]
b
value :: Int32 -> R TopLevelModuleName
value = (Range -> [String] -> TopLevelModuleName)
-> Int32 -> R (CoDomain (Range -> [String] -> TopLevelModuleName))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Range -> [String] -> TopLevelModuleName
TopLevelModuleName
instance {-# OVERLAPPABLE #-} EmbPrj a => EmbPrj [a] where
icod_ :: [a] -> S Int32
icod_ [a]
xs = Node -> S Int32
icodeNode (Node -> S Int32) -> ReaderT Dict IO Node -> S Int32
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (a -> S Int32) -> [a] -> ReaderT Dict IO Node
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM a -> S Int32
forall a. EmbPrj a => a -> S Int32
icode [a]
xs
value :: Int32 -> R [a]
value = (Node -> R [a]) -> Int32 -> R [a]
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Int32 -> ExceptT TypeError (StateT St IO) a) -> Node -> R [a]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Int32 -> ExceptT TypeError (StateT St IO) a
forall a. EmbPrj a => Int32 -> R a
value)
instance EmbPrj a => EmbPrj (NonEmpty a) where
icod_ :: NonEmpty a -> S Int32
icod_ = [a] -> S Int32
forall a. EmbPrj a => a -> S Int32
icod_ ([a] -> S Int32) -> (NonEmpty a -> [a]) -> NonEmpty a -> S Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NonEmpty a -> [a]
forall a. NonEmpty a -> [a]
NonEmpty.toList
value :: Int32 -> R (NonEmpty a)
value = R (NonEmpty a)
-> (NonEmpty a -> R (NonEmpty a))
-> Maybe (NonEmpty a)
-> R (NonEmpty a)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe R (NonEmpty a)
forall a. R a
malformed NonEmpty a -> R (NonEmpty a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (NonEmpty a) -> R (NonEmpty a))
-> ([a] -> Maybe (NonEmpty a)) -> [a] -> R (NonEmpty a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Maybe (NonEmpty a)
forall a. [a] -> Maybe (NonEmpty a)
nonEmpty ([a] -> R (NonEmpty a))
-> (Int32 -> ExceptT TypeError (StateT St IO) [a])
-> Int32
-> R (NonEmpty a)
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Int32 -> ExceptT TypeError (StateT St IO) [a]
forall a. EmbPrj a => Int32 -> R a
value
instance (Ord a, Ord b, EmbPrj a, EmbPrj b) => EmbPrj (BiMap a b) where
icod_ :: BiMap a b -> S Int32
icod_ BiMap a b
m = [(a, b)] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (BiMap a b -> [(a, b)]
forall a b. BiMap a b -> [(a, b)]
BiMap.toList BiMap a b
m)
value :: Int32 -> R (BiMap a b)
value Int32
m = [(a, b)] -> BiMap a b
forall a b. (Ord a, Ord b) => [(a, b)] -> BiMap a b
BiMap.fromList ([(a, b)] -> BiMap a b)
-> ExceptT TypeError (StateT St IO) [(a, b)] -> R (BiMap a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int32 -> ExceptT TypeError (StateT St IO) [(a, b)]
forall a. EmbPrj a => Int32 -> R a
value Int32
m
instance (Ord a, EmbPrj a, EmbPrj b) => EmbPrj (Map a b) where
icod_ :: Map a b -> S Int32
icod_ Map a b
m = [(a, b)] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (Map a b -> [(a, b)]
forall k a. Map k a -> [(k, a)]
Map.toList Map a b
m)
value :: Int32 -> R (Map a b)
value Int32
m = [(a, b)] -> Map a b
forall k a. Ord k => [(k, a)] -> Map k a
Map.fromList ([(a, b)] -> Map a b)
-> ExceptT TypeError (StateT St IO) [(a, b)] -> R (Map a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) [(a, b)]
forall a. EmbPrj a => Int32 -> R a
value Int32
m
instance (Ord a, EmbPrj a) => EmbPrj (Set a) where
icod_ :: Set a -> S Int32
icod_ Set a
s = [a] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (Set a -> [a]
forall a. Set a -> [a]
Set.toList Set a
s)
value :: Int32 -> R (Set a)
value Int32
s = [a] -> Set a
forall a. Ord a => [a] -> Set a
Set.fromList ([a] -> Set a) -> ExceptT TypeError (StateT St IO) [a] -> R (Set a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) [a]
forall a. EmbPrj a => Int32 -> R a
value Int32
s
instance EmbPrj IntSet where
icod_ :: IntSet -> S Int32
icod_ IntSet
s = [Int] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (IntSet -> [Int]
IntSet.toList IntSet
s)
value :: Int32 -> R IntSet
value Int32
s = [Int] -> IntSet
IntSet.fromList ([Int] -> IntSet)
-> ExceptT TypeError (StateT St IO) [Int] -> R IntSet
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int32 -> ExceptT TypeError (StateT St IO) [Int]
forall a. EmbPrj a => Int32 -> R a
value Int32
s
instance (Ord a, EmbPrj a, EmbPrj b) => EmbPrj (Trie a b) where
icod_ :: Trie a b -> S Int32
icod_ (Trie Maybe b
a Map a (Trie a b)
b)= (Maybe b -> Map a (Trie a b) -> Trie a b)
-> Maybe b -> Map a (Trie a b) -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Maybe b -> Map a (Trie a b) -> Trie a b
forall k v. Maybe v -> Map k (Trie k v) -> Trie k v
Trie Maybe b
a Map a (Trie a b)
b
value :: Int32 -> R (Trie a b)
value = (Maybe b -> Map a (Trie a b) -> Trie a b)
-> Int32 -> R (CoDomain (Maybe b -> Map a (Trie a b) -> Trie a b))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Maybe b -> Map a (Trie a b) -> Trie a b
forall k v. Maybe v -> Map k (Trie k v) -> Trie k v
Trie
instance EmbPrj a => EmbPrj (Seq a) where
icod_ :: Seq a -> S Int32
icod_ Seq a
s = [a] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (Seq a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
Fold.toList Seq a
s)
value :: Int32 -> R (Seq a)
value Int32
s = [a] -> Seq a
forall a. [a] -> Seq a
Seq.fromList ([a] -> Seq a) -> ExceptT TypeError (StateT St IO) [a] -> R (Seq a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) [a]
forall a. EmbPrj a => Int32 -> R a
value Int32
s
instance EmbPrj a => EmbPrj (P.Interval' a) where
icod_ :: Interval' a -> S Int32
icod_ (P.Interval Position' a
p Position' a
q) = (Position' a -> Position' a -> Interval' a)
-> Position' a -> Position' a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Position' a -> Position' a -> Interval' a
forall a. Position' a -> Position' a -> Interval' a
P.Interval Position' a
p Position' a
q
value :: Int32 -> R (Interval' a)
value = (Position' a -> Position' a -> Interval' a)
-> Int32
-> R (CoDomain (Position' a -> Position' a -> Interval' a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Position' a -> Position' a -> Interval' a
forall a. Position' a -> Position' a -> Interval' a
P.Interval
instance EmbPrj Range where
icod_ :: Range -> S Int32
icod_ Range
_ = () -> Arrows (Domains ()) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ()
value :: Int32 -> R Range
value Int32
_ = Range -> R Range
forall (m :: * -> *) a. Monad m => a -> m a
return Range
forall a. Range' a
noRange
newtype SerialisedRange = SerialisedRange { SerialisedRange -> Range
underlyingRange :: Range }
instance EmbPrj SerialisedRange where
icod_ :: SerialisedRange -> S Int32
icod_ (SerialisedRange Range
r) =
(SrcFile -> [IntervalWithoutFile] -> SerialisedRange)
-> SrcFile -> [IntervalWithoutFile] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (SrcFile -> [IntervalWithoutFile] -> SerialisedRange
forall a. HasCallStack => a
undefined :: SrcFile -> [IntervalWithoutFile] -> SerialisedRange)
(Range -> SrcFile
P.rangeFile Range
r) (Range -> [IntervalWithoutFile]
forall a. Range' a -> [IntervalWithoutFile]
P.rangeIntervals Range
r)
value :: Int32 -> R SerialisedRange
value = (Node -> R SerialisedRange) -> Int32 -> R SerialisedRange
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R SerialisedRange
valu where
valu :: Node -> R SerialisedRange
valu [Int32
a, Int32
b] = Range -> SerialisedRange
SerialisedRange (Range -> SerialisedRange) -> R Range -> R SerialisedRange
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (SrcFile -> [IntervalWithoutFile] -> Range)
-> Int32 -> Int32 -> R Range
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN SrcFile -> [IntervalWithoutFile] -> Range
forall a. a -> [IntervalWithoutFile] -> Range' a
P.intervalsToRange Int32
a Int32
b
valu Node
_ = R SerialisedRange
forall a. R a
malformed
instance EmbPrj C.Name where
icod_ :: Name -> S Int32
icod_ (C.NoName Range
a NameId
b) = Int32 -> (Range -> NameId -> Name) -> Range -> NameId -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Range -> NameId -> Name
C.NoName Range
a NameId
b
icod_ (C.Name Range
r NameInScope
nis [NamePart]
xs) = Int32
-> (Range -> NameInScope -> [NamePart] -> Name)
-> Range
-> NameInScope
-> [NamePart]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Range -> NameInScope -> [NamePart] -> Name
C.Name Range
r NameInScope
nis [NamePart]
xs
value :: Int32 -> R Name
value = (Node -> R Name) -> Int32 -> R Name
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Name
valu where
valu :: Node -> R Name
valu [Int32
0, Int32
a, Int32
b] = (Range -> NameId -> Name) -> Int32 -> Int32 -> R Name
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> NameId -> Name
C.NoName Int32
a Int32
b
valu [Int32
1, Int32
r, Int32
nis, Int32
xs] = (Range -> NameInScope -> [NamePart] -> Name)
-> Int32 -> Int32 -> Int32 -> R Name
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> NameInScope -> [NamePart] -> Name
C.Name Int32
r Int32
nis Int32
xs
valu Node
_ = R Name
forall a. R a
malformed
instance EmbPrj NamePart where
icod_ :: NamePart -> S Int32
icod_ NamePart
Hole = NamePart -> Arrows (Domains NamePart) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' NamePart
Hole
icod_ (Id String
a) = (String -> NamePart) -> String -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' String -> NamePart
Id String
a
value :: Int32 -> R NamePart
value = (Node -> R NamePart) -> Int32 -> R NamePart
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R NamePart
valu where
valu :: Node -> R NamePart
valu [] = NamePart
-> Arrows
(Constant Int32 (Domains NamePart)) (R (CoDomain NamePart))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NamePart
Hole
valu [Int32
a] = (String -> NamePart) -> Int32 -> R NamePart
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN String -> NamePart
Id Int32
a
valu Node
_ = R NamePart
forall a. R a
malformed
instance EmbPrj NameInScope where
icod_ :: NameInScope -> S Int32
icod_ NameInScope
InScope = NameInScope -> Arrows (Domains NameInScope) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' NameInScope
InScope
icod_ NameInScope
NotInScope = Int32 -> NameInScope -> Arrows (Domains NameInScope) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 NameInScope
NotInScope
value :: Int32 -> R NameInScope
value = (Node -> R NameInScope) -> Int32 -> R NameInScope
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R NameInScope
forall a. (Eq a, Num a) => [a] -> R NameInScope
valu where
valu :: [a] -> R NameInScope
valu [] = NameInScope
-> Arrows
(Constant Int32 (Domains NameInScope)) (R (CoDomain NameInScope))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NameInScope
InScope
valu [a
0] = NameInScope
-> Arrows
(Constant Int32 (Domains NameInScope)) (R (CoDomain NameInScope))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NameInScope
NotInScope
valu [a]
_ = R NameInScope
forall a. R a
malformed
instance EmbPrj C.QName where
icod_ :: QName -> S Int32
icod_ (Qual Name
a QName
b) = (Name -> QName -> QName) -> Name -> QName -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Name -> QName -> QName
Qual Name
a QName
b
icod_ (C.QName Name
a ) = (Name -> QName) -> Name -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Name -> QName
C.QName Name
a
value :: Int32 -> R QName
value = (Node -> R QName) -> Int32 -> R QName
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R QName
valu where
valu :: Node -> R QName
valu [Int32
a, Int32
b] = (Name -> QName -> QName) -> Int32 -> Int32 -> R QName
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Name -> QName -> QName
Qual Int32
a Int32
b
valu [Int32
a] = (Name -> QName) -> Int32 -> R QName
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Name -> QName
C.QName Int32
a
valu Node
_ = R QName
forall a. R a
malformed
instance (EmbPrj a, EmbPrj b) => EmbPrj (ImportedName' a b) where
icod_ :: ImportedName' a b -> S Int32
icod_ (ImportedModule b
a) = Int32 -> (b -> ImportedName' Any b) -> b -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 b -> ImportedName' Any b
forall n m. m -> ImportedName' n m
ImportedModule b
a
icod_ (ImportedName a
a) = Int32 -> (a -> ImportedName' a Any) -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 a -> ImportedName' a Any
forall n m. n -> ImportedName' n m
ImportedName a
a
value :: Int32 -> R (ImportedName' a b)
value = (Node -> R (ImportedName' a b)) -> Int32 -> R (ImportedName' a b)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (ImportedName' a b)
forall m n. (EmbPrj m, EmbPrj n) => Node -> R (ImportedName' n m)
valu where
valu :: Node -> R (ImportedName' n m)
valu [Int32
1, Int32
a] = (m -> ImportedName' n m) -> Int32 -> R (ImportedName' n m)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN m -> ImportedName' n m
forall n m. m -> ImportedName' n m
ImportedModule Int32
a
valu [Int32
2, Int32
a] = (n -> ImportedName' n m) -> Int32 -> R (ImportedName' n m)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN n -> ImportedName' n m
forall n m. n -> ImportedName' n m
ImportedName Int32
a
valu Node
_ = R (ImportedName' n m)
forall a. R a
malformed
instance EmbPrj Associativity where
icod_ :: Associativity -> S Int32
icod_ Associativity
LeftAssoc = Associativity -> Arrows (Domains Associativity) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Associativity
LeftAssoc
icod_ Associativity
RightAssoc = Int32 -> Associativity -> Arrows (Domains Associativity) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Associativity
RightAssoc
icod_ Associativity
NonAssoc = Int32 -> Associativity -> Arrows (Domains Associativity) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Associativity
NonAssoc
value :: Int32 -> R Associativity
value = (Node -> R Associativity) -> Int32 -> R Associativity
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Associativity
forall a. (Eq a, Num a) => [a] -> R Associativity
valu where
valu :: [a] -> R Associativity
valu [] = Associativity
-> Arrows
(Constant Int32 (Domains Associativity))
(R (CoDomain Associativity))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Associativity
LeftAssoc
valu [a
1] = Associativity
-> Arrows
(Constant Int32 (Domains Associativity))
(R (CoDomain Associativity))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Associativity
RightAssoc
valu [a
2] = Associativity
-> Arrows
(Constant Int32 (Domains Associativity))
(R (CoDomain Associativity))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Associativity
NonAssoc
valu [a]
_ = R Associativity
forall a. R a
malformed
instance EmbPrj FixityLevel where
icod_ :: FixityLevel -> S Int32
icod_ FixityLevel
Unrelated = FixityLevel -> Arrows (Domains FixityLevel) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' FixityLevel
Unrelated
icod_ (Related Double
a) = (Double -> FixityLevel) -> Double -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Double -> FixityLevel
Related Double
a
value :: Int32 -> R FixityLevel
value = (Node -> R FixityLevel) -> Int32 -> R FixityLevel
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R FixityLevel
valu where
valu :: Node -> R FixityLevel
valu [] = FixityLevel
-> Arrows
(Constant Int32 (Domains FixityLevel)) (R (CoDomain FixityLevel))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FixityLevel
Unrelated
valu [Int32
a] = (Double -> FixityLevel) -> Int32 -> R FixityLevel
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Double -> FixityLevel
Related Int32
a
valu Node
_ = R FixityLevel
forall a. R a
malformed
instance EmbPrj Fixity where
icod_ :: Fixity -> S Int32
icod_ (Fixity Range
a FixityLevel
b Associativity
c) = (Range -> FixityLevel -> Associativity -> Fixity)
-> Range -> FixityLevel -> Associativity -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Range -> FixityLevel -> Associativity -> Fixity
Fixity Range
a FixityLevel
b Associativity
c
value :: Int32 -> R Fixity
value = (Range -> FixityLevel -> Associativity -> Fixity)
-> Int32
-> R (CoDomain (Range -> FixityLevel -> Associativity -> Fixity))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Range -> FixityLevel -> Associativity -> Fixity
Fixity
instance EmbPrj Fixity' where
icod_ :: Fixity' -> S Int32
icod_ (Fixity' Fixity
a Notation
b Range
r) = (Fixity -> Notation -> Fixity') -> Fixity -> Notation -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (\ Fixity
a Notation
b -> Fixity -> Notation -> Range -> Fixity'
Fixity' Fixity
a Notation
b Range
r) Fixity
a Notation
b
value :: Int32 -> R Fixity'
value = (Fixity -> Notation -> Fixity')
-> Int32 -> R (CoDomain (Fixity -> Notation -> Fixity'))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN (\ Fixity
f Notation
n -> Fixity -> Notation -> Range -> Fixity'
Fixity' Fixity
f Notation
n Range
forall a. Range' a
noRange)
instance EmbPrj GenPart where
icod_ :: GenPart -> S Int32
icod_ (BindHole Range
a Ranged Int
b) = Int32
-> (Range -> Ranged Int -> GenPart)
-> Range
-> Ranged Int
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Range -> Ranged Int -> GenPart
BindHole Range
a Ranged Int
b
icod_ (NormalHole Range
a NamedArg (Ranged Int)
b) = Int32
-> (Range -> NamedArg (Ranged Int) -> GenPart)
-> Range
-> NamedArg (Ranged Int)
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Range -> NamedArg (Ranged Int) -> GenPart
NormalHole Range
a NamedArg (Ranged Int)
b
icod_ (WildHole Ranged Int
a) = Int32 -> (Ranged Int -> GenPart) -> Ranged Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Ranged Int -> GenPart
WildHole Ranged Int
a
icod_ (IdPart RString
a) = (RString -> GenPart) -> RString -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' RString -> GenPart
IdPart RString
a
value :: Int32 -> R GenPart
value = (Node -> R GenPart) -> Int32 -> R GenPart
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R GenPart
valu where
valu :: Node -> R GenPart
valu [Int32
0, Int32
a, Int32
b] = (Range -> Ranged Int -> GenPart) -> Int32 -> Int32 -> R GenPart
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> Ranged Int -> GenPart
BindHole Int32
a Int32
b
valu [Int32
1, Int32
a, Int32
b] = (Range -> NamedArg (Ranged Int) -> GenPart)
-> Int32 -> Int32 -> R GenPart
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> NamedArg (Ranged Int) -> GenPart
NormalHole Int32
a Int32
b
valu [Int32
2, Int32
a] = (Ranged Int -> GenPart) -> Int32 -> R GenPart
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Ranged Int -> GenPart
WildHole Int32
a
valu [Int32
a] = (RString -> GenPart) -> Int32 -> R GenPart
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN RString -> GenPart
IdPart Int32
a
valu Node
_ = R GenPart
forall a. R a
malformed
instance EmbPrj MetaId where
icod_ :: MetaId -> S Int32
icod_ (MetaId Int
n) = Int -> S Int32
forall a. EmbPrj a => a -> S Int32
icod_ Int
n
value :: Int32 -> R MetaId
value Int32
i = Int -> MetaId
MetaId (Int -> MetaId) -> R Int -> R MetaId
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int32 -> R Int
forall a. EmbPrj a => Int32 -> R a
value Int32
i
instance EmbPrj A.QName where
icod_ :: QName -> S Int32
icod_ n :: QName
n@(A.QName ModuleName
a Name
b) = (Dict -> HashTable QNameId Int32)
-> (Dict -> IORef FreshAndReuse) -> QNameId -> S Int32 -> S Int32
forall a.
(Ord a, Hashable a) =>
(Dict -> HashTable a Int32)
-> (Dict -> IORef FreshAndReuse) -> a -> S Int32 -> S Int32
icodeMemo Dict -> HashTable QNameId Int32
qnameD Dict -> IORef FreshAndReuse
qnameC (QName -> QNameId
qnameId QName
n) (S Int32 -> S Int32) -> S Int32 -> S Int32
forall a b. (a -> b) -> a -> b
$ (ModuleName -> Name -> QName) -> ModuleName -> Name -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ModuleName -> Name -> QName
A.QName ModuleName
a Name
b
value :: Int32 -> R QName
value = (ModuleName -> Name -> QName)
-> Int32 -> R (CoDomain (ModuleName -> Name -> QName))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN ModuleName -> Name -> QName
A.QName
instance EmbPrj A.AmbiguousQName where
icod_ :: AmbiguousQName -> S Int32
icod_ (A.AmbQ NonEmpty QName
a) = NonEmpty QName -> S Int32
forall a. EmbPrj a => a -> S Int32
icode NonEmpty QName
a
value :: Int32 -> R AmbiguousQName
value Int32
n = NonEmpty QName -> AmbiguousQName
A.AmbQ (NonEmpty QName -> AmbiguousQName)
-> ExceptT TypeError (StateT St IO) (NonEmpty QName)
-> R AmbiguousQName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) (NonEmpty QName)
forall a. EmbPrj a => Int32 -> R a
value Int32
n
instance EmbPrj A.ModuleName where
icod_ :: ModuleName -> S Int32
icod_ (A.MName [Name]
a) = [Name] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode [Name]
a
value :: Int32 -> R ModuleName
value Int32
n = [Name] -> ModuleName
A.MName ([Name] -> ModuleName)
-> ExceptT TypeError (StateT St IO) [Name] -> R ModuleName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) [Name]
forall a. EmbPrj a => Int32 -> R a
value Int32
n
instance EmbPrj A.Name where
icod_ :: Name -> S Int32
icod_ (A.Name NameId
a Name
b Range
c Fixity'
d Bool
e) = (Dict -> HashTable NameId Int32)
-> (Dict -> IORef FreshAndReuse) -> NameId -> S Int32 -> S Int32
forall a.
(Ord a, Hashable a) =>
(Dict -> HashTable a Int32)
-> (Dict -> IORef FreshAndReuse) -> a -> S Int32 -> S Int32
icodeMemo Dict -> HashTable NameId Int32
nameD Dict -> IORef FreshAndReuse
nameC NameId
a (S Int32 -> S Int32) -> S Int32 -> S Int32
forall a b. (a -> b) -> a -> b
$
(NameId -> Name -> SerialisedRange -> Fixity' -> Bool -> Name)
-> NameId -> Name -> SerialisedRange -> Fixity' -> Bool -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (\ NameId
a Name
b -> NameId -> Name -> Range -> Fixity' -> Bool -> Name
A.Name NameId
a Name
b (Range -> Fixity' -> Bool -> Name)
-> (SerialisedRange -> Range)
-> SerialisedRange
-> Fixity'
-> Bool
-> Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SerialisedRange -> Range
underlyingRange) NameId
a Name
b (Range -> SerialisedRange
SerialisedRange Range
c) Fixity'
d Bool
e
value :: Int32 -> R Name
value = (NameId -> Name -> SerialisedRange -> Fixity' -> Bool -> Name)
-> Int32
-> R (CoDomain
(NameId -> Name -> SerialisedRange -> Fixity' -> Bool -> Name))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN (\NameId
a Name
b SerialisedRange
c -> NameId -> Name -> Range -> Fixity' -> Bool -> Name
A.Name NameId
a Name
b (SerialisedRange -> Range
underlyingRange SerialisedRange
c))
instance EmbPrj a => EmbPrj (C.FieldAssignment' a) where
icod_ :: FieldAssignment' a -> S Int32
icod_ (C.FieldAssignment Name
a a
b) = (Name -> a -> FieldAssignment' a) -> Name -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Name -> a -> FieldAssignment' a
forall a. Name -> a -> FieldAssignment' a
C.FieldAssignment Name
a a
b
value :: Int32 -> R (FieldAssignment' a)
value = (Name -> a -> FieldAssignment' a)
-> Int32 -> R (CoDomain (Name -> a -> FieldAssignment' a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Name -> a -> FieldAssignment' a
forall a. Name -> a -> FieldAssignment' a
C.FieldAssignment
instance (EmbPrj s, EmbPrj t) => EmbPrj (Named s t) where
icod_ :: Named s t -> S Int32
icod_ (Named Maybe s
a t
b) = (Maybe s -> t -> Named s t) -> Maybe s -> t -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Maybe s -> t -> Named s t
forall name a. Maybe name -> a -> Named name a
Named Maybe s
a t
b
value :: Int32 -> R (Named s t)
value = (Maybe s -> t -> Named s t)
-> Int32 -> R (CoDomain (Maybe s -> t -> Named s t))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Maybe s -> t -> Named s t
forall name a. Maybe name -> a -> Named name a
Named
instance EmbPrj a => EmbPrj (Ranged a) where
icod_ :: Ranged a -> S Int32
icod_ (Ranged Range
r a
x) = (Range -> a -> Ranged a) -> Range -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Range -> a -> Ranged a
forall a. Range -> a -> Ranged a
Ranged Range
r a
x
value :: Int32 -> R (Ranged a)
value = (Range -> a -> Ranged a)
-> Int32 -> R (CoDomain (Range -> a -> Ranged a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Range -> a -> Ranged a
forall a. Range -> a -> Ranged a
Ranged
instance EmbPrj ArgInfo where
icod_ :: ArgInfo -> S Int32
icod_ (ArgInfo Hiding
h Modality
r Origin
o FreeVariables
fv) = (Hiding -> Modality -> Origin -> FreeVariables -> ArgInfo)
-> Hiding -> Modality -> Origin -> FreeVariables -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Hiding -> Modality -> Origin -> FreeVariables -> ArgInfo
ArgInfo Hiding
h Modality
r Origin
o FreeVariables
fv
value :: Int32 -> R ArgInfo
value = (Hiding -> Modality -> Origin -> FreeVariables -> ArgInfo)
-> Int32
-> R (CoDomain
(Hiding -> Modality -> Origin -> FreeVariables -> ArgInfo))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Hiding -> Modality -> Origin -> FreeVariables -> ArgInfo
ArgInfo
instance EmbPrj NameId where
icod_ :: NameId -> S Int32
icod_ (NameId Word64
a Word64
b) = (Word64 -> Word64 -> NameId) -> Word64 -> Word64 -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Word64 -> Word64 -> NameId
NameId Word64
a Word64
b
value :: Int32 -> R NameId
value = (Word64 -> Word64 -> NameId)
-> Int32 -> R (CoDomain (Word64 -> Word64 -> NameId))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Word64 -> Word64 -> NameId
NameId
instance (Eq k, Hashable k, EmbPrj k, EmbPrj v) => EmbPrj (HashMap k v) where
icod_ :: HashMap k v -> S Int32
icod_ HashMap k v
m = [(k, v)] -> S Int32
forall a. EmbPrj a => a -> S Int32
icode (HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
HMap.toList HashMap k v
m)
value :: Int32 -> R (HashMap k v)
value Int32
m = [(k, v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
HMap.fromList ([(k, v)] -> HashMap k v)
-> ExceptT TypeError (StateT St IO) [(k, v)] -> R (HashMap k v)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) [(k, v)]
forall a. EmbPrj a => Int32 -> R a
value Int32
m
instance EmbPrj a => EmbPrj (WithHiding a) where
icod_ :: WithHiding a -> S Int32
icod_ (WithHiding Hiding
a a
b) = (Hiding -> a -> WithHiding a) -> Hiding -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Hiding -> a -> WithHiding a
forall a. Hiding -> a -> WithHiding a
WithHiding Hiding
a a
b
value :: Int32 -> R (WithHiding a)
value = (Hiding -> a -> WithHiding a)
-> Int32 -> R (CoDomain (Hiding -> a -> WithHiding a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Hiding -> a -> WithHiding a
forall a. Hiding -> a -> WithHiding a
WithHiding
instance EmbPrj a => EmbPrj (Arg a) where
icod_ :: Arg a -> S Int32
icod_ (Arg ArgInfo
i a
e) = (ArgInfo -> a -> Arg a) -> ArgInfo -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ArgInfo -> a -> Arg a
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i a
e
value :: Int32 -> R (Arg a)
value = (ArgInfo -> a -> Arg a)
-> Int32 -> R (CoDomain (ArgInfo -> a -> Arg a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN ArgInfo -> a -> Arg a
forall e. ArgInfo -> e -> Arg e
Arg
instance EmbPrj HasEta where
icod_ :: HasEta -> S Int32
icod_ HasEta
YesEta = HasEta -> Arrows (Domains HasEta) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' HasEta
YesEta
icod_ HasEta
NoEta = Int32 -> HasEta -> Arrows (Domains HasEta) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 HasEta
NoEta
value :: Int32 -> R HasEta
value = (Node -> R HasEta) -> Int32 -> R HasEta
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R HasEta
forall a. (Eq a, Num a) => [a] -> R HasEta
valu where
valu :: [a] -> R HasEta
valu [] = HasEta
-> Arrows (Constant Int32 (Domains HasEta)) (R (CoDomain HasEta))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN HasEta
YesEta
valu [a
1] = HasEta
-> Arrows (Constant Int32 (Domains HasEta)) (R (CoDomain HasEta))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN HasEta
NoEta
valu [a]
_ = R HasEta
forall a. R a
malformed
instance EmbPrj Induction where
icod_ :: Induction -> S Int32
icod_ Induction
Inductive = Induction -> Arrows (Domains Induction) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Induction
Inductive
icod_ Induction
CoInductive = Int32 -> Induction -> Arrows (Domains Induction) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Induction
CoInductive
value :: Int32 -> R Induction
value = (Node -> R Induction) -> Int32 -> R Induction
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Induction
forall a. (Eq a, Num a) => [a] -> R Induction
valu where
valu :: [a] -> R Induction
valu [] = Induction
-> Arrows
(Constant Int32 (Domains Induction)) (R (CoDomain Induction))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Induction
Inductive
valu [a
1] = Induction
-> Arrows
(Constant Int32 (Domains Induction)) (R (CoDomain Induction))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Induction
CoInductive
valu [a]
_ = R Induction
forall a. R a
malformed
instance EmbPrj Hiding where
icod_ :: Hiding -> S Int32
icod_ Hiding
Hidden = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ Hiding
NotHidden = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ (Instance Overlappable
NoOverlap) = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
icod_ (Instance Overlappable
YesOverlap) = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
3
value :: Int32 -> R Hiding
value Int32
0 = Hiding -> R Hiding
forall (m :: * -> *) a. Monad m => a -> m a
return Hiding
Hidden
value Int32
1 = Hiding -> R Hiding
forall (m :: * -> *) a. Monad m => a -> m a
return Hiding
NotHidden
value Int32
2 = Hiding -> R Hiding
forall (m :: * -> *) a. Monad m => a -> m a
return (Overlappable -> Hiding
Instance Overlappable
NoOverlap)
value Int32
3 = Hiding -> R Hiding
forall (m :: * -> *) a. Monad m => a -> m a
return (Overlappable -> Hiding
Instance Overlappable
YesOverlap)
value Int32
_ = R Hiding
forall a. R a
malformed
instance EmbPrj Q0Origin where
icod_ :: Q0Origin -> S Int32
icod_ = \case
Q0Origin
Q0Inferred -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
Q0 Range
_ -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
Q0Erased Range
_ -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R Q0Origin
value = \case
Int32
0 -> Q0Origin -> R Q0Origin
forall (m :: * -> *) a. Monad m => a -> m a
return (Q0Origin -> R Q0Origin) -> Q0Origin -> R Q0Origin
forall a b. (a -> b) -> a -> b
$ Q0Origin
Q0Inferred
Int32
1 -> Q0Origin -> R Q0Origin
forall (m :: * -> *) a. Monad m => a -> m a
return (Q0Origin -> R Q0Origin) -> Q0Origin -> R Q0Origin
forall a b. (a -> b) -> a -> b
$ Range -> Q0Origin
Q0 Range
forall a. Range' a
noRange
Int32
2 -> Q0Origin -> R Q0Origin
forall (m :: * -> *) a. Monad m => a -> m a
return (Q0Origin -> R Q0Origin) -> Q0Origin -> R Q0Origin
forall a b. (a -> b) -> a -> b
$ Range -> Q0Origin
Q0Erased Range
forall a. Range' a
noRange
Int32
_ -> R Q0Origin
forall a. R a
malformed
instance EmbPrj Q1Origin where
icod_ :: Q1Origin -> S Int32
icod_ = \case
Q1Origin
Q1Inferred -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
Q1 Range
_ -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
Q1Linear Range
_ -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R Q1Origin
value = \case
Int32
0 -> Q1Origin -> R Q1Origin
forall (m :: * -> *) a. Monad m => a -> m a
return (Q1Origin -> R Q1Origin) -> Q1Origin -> R Q1Origin
forall a b. (a -> b) -> a -> b
$ Q1Origin
Q1Inferred
Int32
1 -> Q1Origin -> R Q1Origin
forall (m :: * -> *) a. Monad m => a -> m a
return (Q1Origin -> R Q1Origin) -> Q1Origin -> R Q1Origin
forall a b. (a -> b) -> a -> b
$ Range -> Q1Origin
Q1 Range
forall a. Range' a
noRange
Int32
2 -> Q1Origin -> R Q1Origin
forall (m :: * -> *) a. Monad m => a -> m a
return (Q1Origin -> R Q1Origin) -> Q1Origin -> R Q1Origin
forall a b. (a -> b) -> a -> b
$ Range -> Q1Origin
Q1Linear Range
forall a. Range' a
noRange
Int32
_ -> R Q1Origin
forall a. R a
malformed
instance EmbPrj QωOrigin where
icod_ :: QωOrigin -> S Int32
icod_ = \case
QωOrigin
QωInferred -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
Qω Range
_ -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
QωPlenty Range
_ -> Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R QωOrigin
value = \case
Int32
0 -> QωOrigin -> R QωOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return (QωOrigin -> R QωOrigin) -> QωOrigin -> R QωOrigin
forall a b. (a -> b) -> a -> b
$ QωOrigin
QωInferred
Int32
1 -> QωOrigin -> R QωOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return (QωOrigin -> R QωOrigin) -> QωOrigin -> R QωOrigin
forall a b. (a -> b) -> a -> b
$ Range -> QωOrigin
Qω Range
forall a. Range' a
noRange
Int32
2 -> QωOrigin -> R QωOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return (QωOrigin -> R QωOrigin) -> QωOrigin -> R QωOrigin
forall a b. (a -> b) -> a -> b
$ Range -> QωOrigin
QωPlenty Range
forall a. Range' a
noRange
Int32
_ -> R QωOrigin
forall a. R a
malformed
instance EmbPrj Quantity where
icod_ :: Quantity -> S Int32
icod_ = \case
Quantity0 Q0Origin
a -> Int32 -> (Q0Origin -> Quantity) -> Q0Origin -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Q0Origin -> Quantity
Quantity0 Q0Origin
a
Quantity1 Q1Origin
a -> Int32 -> (Q1Origin -> Quantity) -> Q1Origin -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Q1Origin -> Quantity
Quantity1 Q1Origin
a
Quantityω QωOrigin
a -> (QωOrigin -> Quantity) -> QωOrigin -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' QωOrigin -> Quantity
Quantityω QωOrigin
a
value :: Int32 -> R Quantity
value = (Node -> R Quantity) -> Int32 -> R Quantity
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Node -> R Quantity) -> Int32 -> R Quantity)
-> (Node -> R Quantity) -> Int32 -> R Quantity
forall a b. (a -> b) -> a -> b
$ \case
[Int32
0, Int32
a] -> (Q0Origin -> Quantity) -> Int32 -> R Quantity
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Q0Origin -> Quantity
Quantity0 Int32
a
[Int32
1, Int32
a] -> (Q1Origin -> Quantity) -> Int32 -> R Quantity
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Q1Origin -> Quantity
Quantity1 Int32
a
[Int32
a] -> (QωOrigin -> Quantity) -> Int32 -> R Quantity
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QωOrigin -> Quantity
Quantityω Int32
a
Node
_ -> R Quantity
forall a. R a
malformed
instance EmbPrj Cohesion where
icod_ :: Cohesion -> S Int32
icod_ Cohesion
Flat = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ Cohesion
Continuous = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ Cohesion
Squash = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R Cohesion
value Int32
0 = Cohesion -> R Cohesion
forall (m :: * -> *) a. Monad m => a -> m a
return Cohesion
Flat
value Int32
1 = Cohesion -> R Cohesion
forall (m :: * -> *) a. Monad m => a -> m a
return Cohesion
Continuous
value Int32
2 = Cohesion -> R Cohesion
forall (m :: * -> *) a. Monad m => a -> m a
return Cohesion
Squash
value Int32
_ = R Cohesion
forall a. R a
malformed
instance EmbPrj Modality where
icod_ :: Modality -> S Int32
icod_ (Modality Relevance
a Quantity
b Cohesion
c) = (Relevance -> Quantity -> Cohesion -> Modality)
-> Relevance -> Quantity -> Cohesion -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Relevance -> Quantity -> Cohesion -> Modality
Modality Relevance
a Quantity
b Cohesion
c
value :: Int32 -> R Modality
value = (Node -> R Modality) -> Int32 -> R Modality
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Node -> R Modality) -> Int32 -> R Modality)
-> (Node -> R Modality) -> Int32 -> R Modality
forall a b. (a -> b) -> a -> b
$ \case
[Int32
a, Int32
b, Int32
c] -> (Relevance -> Quantity -> Cohesion -> Modality)
-> Int32 -> Int32 -> Int32 -> R Modality
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Relevance -> Quantity -> Cohesion -> Modality
Modality Int32
a Int32
b Int32
c
Node
_ -> R Modality
forall a. R a
malformed
instance EmbPrj Relevance where
icod_ :: Relevance -> S Int32
icod_ Relevance
Relevant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ Relevance
Irrelevant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ Relevance
NonStrict = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R Relevance
value Int32
0 = Relevance -> R Relevance
forall (m :: * -> *) a. Monad m => a -> m a
return Relevance
Relevant
value Int32
1 = Relevance -> R Relevance
forall (m :: * -> *) a. Monad m => a -> m a
return Relevance
Irrelevant
value Int32
2 = Relevance -> R Relevance
forall (m :: * -> *) a. Monad m => a -> m a
return Relevance
NonStrict
value Int32
_ = R Relevance
forall a. R a
malformed
instance EmbPrj Origin where
icod_ :: Origin -> S Int32
icod_ Origin
UserWritten = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ Origin
Inserted = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ Origin
Reflected = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
icod_ Origin
CaseSplit = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
3
icod_ Origin
Substitution = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
4
value :: Int32 -> R Origin
value Int32
0 = Origin -> R Origin
forall (m :: * -> *) a. Monad m => a -> m a
return Origin
UserWritten
value Int32
1 = Origin -> R Origin
forall (m :: * -> *) a. Monad m => a -> m a
return Origin
Inserted
value Int32
2 = Origin -> R Origin
forall (m :: * -> *) a. Monad m => a -> m a
return Origin
Reflected
value Int32
3 = Origin -> R Origin
forall (m :: * -> *) a. Monad m => a -> m a
return Origin
CaseSplit
value Int32
4 = Origin -> R Origin
forall (m :: * -> *) a. Monad m => a -> m a
return Origin
Substitution
value Int32
_ = R Origin
forall a. R a
malformed
instance EmbPrj a => EmbPrj (WithOrigin a) where
icod_ :: WithOrigin a -> S Int32
icod_ (WithOrigin Origin
a a
b) = (Origin -> a -> WithOrigin a) -> Origin -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Origin -> a -> WithOrigin a
forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
a a
b
value :: Int32 -> R (WithOrigin a)
value = (Origin -> a -> WithOrigin a)
-> Int32 -> R (CoDomain (Origin -> a -> WithOrigin a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Origin -> a -> WithOrigin a
forall a. Origin -> a -> WithOrigin a
WithOrigin
instance EmbPrj FreeVariables where
icod_ :: FreeVariables -> S Int32
icod_ FreeVariables
UnknownFVs = FreeVariables -> Arrows (Domains FreeVariables) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' FreeVariables
UnknownFVs
icod_ (KnownFVs IntSet
a) = (IntSet -> FreeVariables) -> IntSet -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' IntSet -> FreeVariables
KnownFVs IntSet
a
value :: Int32 -> R FreeVariables
value = (Node -> R FreeVariables) -> Int32 -> R FreeVariables
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R FreeVariables
valu where
valu :: Node -> R FreeVariables
valu [] = FreeVariables
-> Arrows
(Constant Int32 (Domains FreeVariables))
(R (CoDomain FreeVariables))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FreeVariables
UnknownFVs
valu [Int32
a] = (IntSet -> FreeVariables) -> Int32 -> R FreeVariables
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN IntSet -> FreeVariables
KnownFVs Int32
a
valu Node
_ = R FreeVariables
forall a. R a
malformed
instance EmbPrj ConOrigin where
icod_ :: ConOrigin -> S Int32
icod_ ConOrigin
ConOSystem = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ ConOrigin
ConOCon = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ ConOrigin
ConORec = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
icod_ ConOrigin
ConOSplit = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
3
value :: Int32 -> R ConOrigin
value Int32
0 = ConOrigin -> R ConOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ConOrigin
ConOSystem
value Int32
1 = ConOrigin -> R ConOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ConOrigin
ConOCon
value Int32
2 = ConOrigin -> R ConOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ConOrigin
ConORec
value Int32
3 = ConOrigin -> R ConOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ConOrigin
ConOSplit
value Int32
_ = R ConOrigin
forall a. R a
malformed
instance EmbPrj ProjOrigin where
icod_ :: ProjOrigin -> S Int32
icod_ ProjOrigin
ProjPrefix = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ ProjOrigin
ProjPostfix = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ ProjOrigin
ProjSystem = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R ProjOrigin
value Int32
0 = ProjOrigin -> R ProjOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ProjOrigin
ProjPrefix
value Int32
1 = ProjOrigin -> R ProjOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ProjOrigin
ProjPostfix
value Int32
2 = ProjOrigin -> R ProjOrigin
forall (m :: * -> *) a. Monad m => a -> m a
return ProjOrigin
ProjSystem
value Int32
_ = R ProjOrigin
forall a. R a
malformed
instance EmbPrj Agda.Syntax.Literal.Literal where
icod_ :: Literal -> S Int32
icod_ (LitNat Range
a Integer
b) = (Range -> Integer -> Literal) -> Range -> Integer -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Range -> Integer -> Literal
LitNat Range
a Integer
b
icod_ (LitFloat Range
a Double
b) = Int32 -> (Range -> Double -> Literal) -> Range -> Double -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Range -> Double -> Literal
LitFloat Range
a Double
b
icod_ (LitString Range
a String
b) = Int32 -> (Range -> String -> Literal) -> Range -> String -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Range -> String -> Literal
LitString Range
a String
b
icod_ (LitChar Range
a Char
b) = Int32 -> (Range -> Char -> Literal) -> Range -> Char -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 Range -> Char -> Literal
LitChar Range
a Char
b
icod_ (LitQName Range
a QName
b) = Int32 -> (Range -> QName -> Literal) -> Range -> QName -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 Range -> QName -> Literal
LitQName Range
a QName
b
icod_ (LitMeta Range
a AbsolutePath
b MetaId
c) = Int32
-> (Range -> AbsolutePath -> MetaId -> Literal)
-> Range
-> AbsolutePath
-> MetaId
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
6 Range -> AbsolutePath -> MetaId -> Literal
LitMeta Range
a AbsolutePath
b MetaId
c
icod_ (LitWord64 Range
a Word64
b) = Int32 -> (Range -> Word64 -> Literal) -> Range -> Word64 -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
7 Range -> Word64 -> Literal
LitWord64 Range
a Word64
b
value :: Int32 -> R Literal
value = (Node -> R Literal) -> Int32 -> R Literal
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Literal
valu where
valu :: Node -> R Literal
valu [Int32
a, Int32
b] = (Range -> Integer -> Literal) -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> Integer -> Literal
LitNat Int32
a Int32
b
valu [Int32
1, Int32
a, Int32
b] = (Range -> Double -> Literal) -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> Double -> Literal
LitFloat Int32
a Int32
b
valu [Int32
2, Int32
a, Int32
b] = (Range -> String -> Literal) -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> String -> Literal
LitString Int32
a Int32
b
valu [Int32
3, Int32
a, Int32
b] = (Range -> Char -> Literal) -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> Char -> Literal
LitChar Int32
a Int32
b
valu [Int32
5, Int32
a, Int32
b] = (Range -> QName -> Literal) -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> QName -> Literal
LitQName Int32
a Int32
b
valu [Int32
6, Int32
a, Int32
b, Int32
c] = (Range -> AbsolutePath -> MetaId -> Literal)
-> Int32 -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> AbsolutePath -> MetaId -> Literal
LitMeta Int32
a Int32
b Int32
c
valu [Int32
7, Int32
a, Int32
b] = (Range -> Word64 -> Literal) -> Int32 -> Int32 -> R Literal
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> Word64 -> Literal
LitWord64 Int32
a Int32
b
valu Node
_ = R Literal
forall a. R a
malformed
instance EmbPrj IsAbstract where
icod_ :: IsAbstract -> S Int32
icod_ IsAbstract
AbstractDef = Int32 -> IsAbstract -> Arrows (Domains IsAbstract) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 IsAbstract
AbstractDef
icod_ IsAbstract
ConcreteDef = IsAbstract -> Arrows (Domains IsAbstract) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' IsAbstract
ConcreteDef
value :: Int32 -> R IsAbstract
value = (Node -> R IsAbstract) -> Int32 -> R IsAbstract
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R IsAbstract
forall a. (Eq a, Num a) => [a] -> R IsAbstract
valu where
valu :: [a] -> R IsAbstract
valu [a
0] = IsAbstract
-> Arrows
(Constant Int32 (Domains IsAbstract)) (R (CoDomain IsAbstract))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN IsAbstract
AbstractDef
valu [] = IsAbstract
-> Arrows
(Constant Int32 (Domains IsAbstract)) (R (CoDomain IsAbstract))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN IsAbstract
ConcreteDef
valu [a]
_ = R IsAbstract
forall a. R a
malformed
instance EmbPrj Delayed where
icod_ :: Delayed -> S Int32
icod_ Delayed
Delayed = Int32 -> Delayed -> Arrows (Domains Delayed) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Delayed
Delayed
icod_ Delayed
NotDelayed = Delayed -> Arrows (Domains Delayed) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Delayed
NotDelayed
value :: Int32 -> R Delayed
value = (Node -> R Delayed) -> Int32 -> R Delayed
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Delayed
forall a. (Eq a, Num a) => [a] -> R Delayed
valu where
valu :: [a] -> R Delayed
valu [a
0] = Delayed
-> Arrows (Constant Int32 (Domains Delayed)) (R (CoDomain Delayed))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Delayed
Delayed
valu [] = Delayed
-> Arrows (Constant Int32 (Domains Delayed)) (R (CoDomain Delayed))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Delayed
NotDelayed
valu [a]
_ = R Delayed
forall a. R a
malformed
instance EmbPrj Impossible where
icod_ :: Impossible -> S Int32
icod_ (Impossible String
a Integer
b) = Int32
-> (String -> Integer -> Impossible)
-> String
-> Integer
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 String -> Integer -> Impossible
Impossible String
a Integer
b
icod_ (Unreachable String
a Integer
b) = Int32
-> (String -> Integer -> Impossible)
-> String
-> Integer
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 String -> Integer -> Impossible
Unreachable String
a Integer
b
icod_ (ImpMissingDefinitions [String]
a String
b) = Int32
-> ([String] -> String -> Impossible)
-> [String]
-> String
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 [String] -> String -> Impossible
ImpMissingDefinitions [String]
a String
b
value :: Int32 -> R Impossible
value = (Node -> R Impossible) -> Int32 -> R Impossible
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Impossible
valu where
valu :: Node -> R Impossible
valu [Int32
0, Int32
a, Int32
b] = (String -> Integer -> Impossible) -> Int32 -> Int32 -> R Impossible
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN String -> Integer -> Impossible
Impossible Int32
a Int32
b
valu [Int32
1, Int32
a, Int32
b] = (String -> Integer -> Impossible) -> Int32 -> Int32 -> R Impossible
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN String -> Integer -> Impossible
Unreachable Int32
a Int32
b
valu [Int32
2, Int32
a, Int32
b] = ([String] -> String -> Impossible)
-> Int32 -> Int32 -> R Impossible
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN [String] -> String -> Impossible
ImpMissingDefinitions Int32
a Int32
b
valu Node
_ = R Impossible
forall a. R a
malformed
instance EmbPrj Empty where
icod_ :: Empty -> S Int32
icod_ Empty
a = Impossible -> S Int32
forall a. EmbPrj a => a -> S Int32
icod_ (Impossible -> S Int32) -> ReaderT Dict IO Impossible -> S Int32
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< IO Impossible -> ReaderT Dict IO Impossible
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Empty -> IO Impossible
Empty.toImpossible Empty
a)
value :: Int32 -> R Empty
value = (Impossible -> Empty) -> R Impossible -> R Empty
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Impossible -> Empty
forall a. Impossible -> a
throwImpossible (R Impossible -> R Empty)
-> (Int32 -> R Impossible) -> Int32 -> R Empty
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int32 -> R Impossible
forall a. EmbPrj a => Int32 -> R a
value
instance EmbPrj ExpandedEllipsis where
icod_ :: ExpandedEllipsis -> S Int32
icod_ ExpandedEllipsis
NoEllipsis = ExpandedEllipsis -> Arrows (Domains ExpandedEllipsis) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ExpandedEllipsis
NoEllipsis
icod_ (ExpandedEllipsis Range
a Int
b) = Int32
-> (Range -> Int -> ExpandedEllipsis) -> Range -> Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Range -> Int -> ExpandedEllipsis
ExpandedEllipsis Range
a Int
b
value :: Int32 -> R ExpandedEllipsis
value = (Node -> R ExpandedEllipsis) -> Int32 -> R ExpandedEllipsis
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R ExpandedEllipsis
valu where
valu :: Node -> R ExpandedEllipsis
valu [] = ExpandedEllipsis
-> Arrows
(Constant Int32 (Domains ExpandedEllipsis))
(R (CoDomain ExpandedEllipsis))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ExpandedEllipsis
NoEllipsis
valu [Int32
1,Int32
a,Int32
b] = (Range -> Int -> ExpandedEllipsis)
-> Int32 -> Int32 -> R ExpandedEllipsis
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Range -> Int -> ExpandedEllipsis
ExpandedEllipsis Int32
a Int32
b
valu Node
_ = R ExpandedEllipsis
forall a. R a
malformed