Agda-2.5.1.2: A dependently typed functional programming language and proof assistant

Safe HaskellNone
LanguageHaskell98

Agda.TypeChecking.Monad.Base

Contents

Synopsis

Type checking state

data TCState Source #

Constructors

TCSt 

Fields

Instances

Show TCState Source # 
LensPersistentVerbosity TCState Source # 
LensIncludePaths TCState Source # 
LensSafeMode TCState Source # 
LensCommandLineOptions TCState Source # 
LensVerbosity TCState Source # 
LensPragmaOptions TCState Source # 
MonadState TCState TerM # 

Methods

get :: TerM TCState #

put :: TCState -> TerM () #

state :: (TCState -> (a, TCState)) -> TerM a #

MonadIO m => MonadState TCState (TCMT m) Source # 

Methods

get :: TCMT m TCState #

put :: TCState -> TCMT m () #

state :: (TCState -> (a, TCState)) -> TCMT m a #

class Monad m => ReadTCState m where Source #

Minimal complete definition

getTCState

data PreScopeState Source #

Constructors

PreScopeState 

Fields

data PostScopeState Source #

Constructors

PostScopeState 

Fields

data PersistentTCState Source #

A part of the state which is not reverted when an error is thrown or the state is reset.

Constructors

PersistentTCSt 

Fields

Instances

LensPersistentVerbosity PersistentTCState Source # 
LensIncludePaths PersistentTCState Source # 
LensSafeMode PersistentTCState Source # 
LensCommandLineOptions PersistentTCState Source # 

type CachedTypeCheckLog = [(TypeCheckAction, PostScopeState)] Source #

A log of what the type checker does and states after the action is completed. The cached version is stored first executed action first.

type CurrentTypeCheckLog = [(TypeCheckAction, PostScopeState)] Source #

Like CachedTypeCheckLog, but storing the log for an ongoing type checking of a module. Stored in reverse order (last performed action first).

data TypeCheckAction Source #

A complete log for a module will look like this:

  • Pragmas
  • EnterSection, entering the main module.
  • 'Decl'/'EnterSection'/'LeaveSection', for declarations and nested modules
  • LeaveSection, leaving the main module.

initPersistentState :: PersistentTCState Source #

Empty persistent state.

initPreScopeState :: PreScopeState Source #

Empty state of type checker.

st-prefixed lenses

Fresh things

newtype ProblemId Source #

Constructors

ProblemId Nat 

Instances

Enum ProblemId Source # 
Eq ProblemId Source # 
Integral ProblemId Source # 
Num ProblemId Source # 
Ord ProblemId Source # 
Real ProblemId Source # 
Show ProblemId Source # 
Pretty ProblemId Source # 
HasFresh ProblemId Source # 
PrettyTCM ProblemId Source # 

class FreshName a where Source #

Create a fresh name from a.

Minimal complete definition

freshName_

Managing file names

type ModuleToSource = Map TopLevelModuleName AbsolutePath Source #

Maps top-level module names to the corresponding source file names.

type SourceToModule = Map AbsolutePath TopLevelModuleName Source #

Maps source file names to the corresponding top-level module names.

Interface

data ModuleInfo Source #

Constructors

ModuleInfo 

Fields

data Interface Source #

Constructors

Interface 

Fields

iFullHash :: Interface -> Hash Source #

Combines the source hash and the (full) hashes of the imported modules.

Closure

Constraints

data Constraint Source #

Constructors

ValueCmp Comparison Type Term Term 
ElimCmp [Polarity] Type Term [Elim] [Elim] 
TypeCmp Comparison Type Type 
TelCmp Type Type Comparison Telescope Telescope

the two types are for the error message only

SortCmp Comparison Sort Sort 
LevelCmp Comparison Level Level 
UnBlock MetaId 
Guarded Constraint ProblemId 
IsEmpty Range Type

The range is the one of the absurd pattern.

CheckSizeLtSat Term

Check that the Term is either not a SIZELT or a non-empty SIZELT.

FindInScope MetaId (Maybe MetaId) (Maybe [Candidate])

the first argument is the instance argument, the second one is the meta on which the constraint may be blocked on and the third one is the list of candidates (or Nothing if we haven’t determined the list of candidates yet)

flipCmp :: CompareDirection -> CompareDirection Source #

Flip the direction of comparison.

dirToCmp :: (Comparison -> a -> a -> c) -> CompareDirection -> a -> a -> c Source #

Turn a Comparison function into a CompareDirection function.

Property: dirToCmp f (fromCmp cmp) = f cmp

Open things

data Open a Source #

A thing tagged with the context it came from.

Constructors

OpenThing 

Fields

Instances

Functor Open Source # 

Methods

fmap :: (a -> b) -> Open a -> Open b #

(<$) :: a -> Open b -> Open a #

Show a => Show (Open a) Source # 

Methods

showsPrec :: Int -> Open a -> ShowS #

show :: Open a -> String #

showList :: [Open a] -> ShowS #

KillRange a => KillRange (Open a) Source # 
NamesIn a => NamesIn (Open a) Source # 

Methods

namesIn :: Open a -> Set QName Source #

InstantiateFull a => InstantiateFull (Open a) Source # 

Judgements

data Judgement a Source #

Parametrized since it is used without MetaId when creating a new meta.

Constructors

HasType 

Fields

IsSort 

Fields

Instances

Meta variables

data MetaVariable Source #

Constructors

MetaVar 

Fields

data Frozen Source #

Frozen meta variable cannot be instantiated by unification. This serves to prevent the completion of a definition by its use outside of the current block. (See issues 118, 288, 399).

Constructors

Frozen

Do not instantiate.

Instantiable 

Instances

data MetaInstantiation Source #

Constructors

InstV [Arg String] Term

solved by term (abstracted over some free variables)

InstS Term

solved by Lam .. Sort s

Open

unsolved

OpenIFS

open, to be instantiated as "implicit from scope"

BlockedConst Term

solution blocked by unsolved constraints

PostponedTypeCheckingProblem (Closure TypeCheckingProblem) (TCM Bool) 

data TypeCheckingProblem Source #

Constructors

CheckExpr Expr Type 
CheckArgs ExpandHidden Range [NamedArg Expr] Type Type (Args -> Type -> TCM Term) 
CheckLambda (Arg ([WithHiding Name], Maybe Type)) Expr Type

(λ (xs : t₀) → e) : t This is not an instance of CheckExpr as the domain type has already been checked. For example, when checking (λ (x y : Fin _) → e) : (x : Fin n) → ? we want to postpone (λ (y : Fin n) → e) : ? where Fin n is a Type rather than an Expr.

UnquoteTactic Term Term Type

First argument is computation and the others are hole and goal type

newtype MetaPriority Source #

Meta variable priority: When we have an equation between meta-variables, which one should be instantiated?

Higher value means higher priority to be instantiated.

Constructors

MetaPriority Int 

data MetaInfo Source #

MetaInfo is cloned from one meta to the next during pruning.

Constructors

MetaInfo 

Fields

type MetaNameSuggestion = String Source #

Name suggestion for meta variable. Empty string means no suggestion.

data NamedMeta Source #

For printing, we couple a meta with its name suggestion.

Interaction meta variables

data InteractionPoint Source #

Interaction points are created by the scope checker who sets the range. The meta variable is created by the type checker and then hooked up to the interaction point.

Constructors

InteractionPoint 

Fields

type InteractionPoints = Map InteractionId InteractionPoint Source #

Data structure managing the interaction points.

Signature

data DisplayForm Source #

A DisplayForm is in essence a rewrite rule q ts --> dt for a defined symbol (could be a constructor as well) q. The right hand side is a DisplayTerm which is used to reify to a more readable Syntax.

The patterns ts are just terms, but var 0 is interpreted as a hole. Each occurrence of var 0 is a new hole (pattern var). For each *occurrence* of var0 the rhs dt has a free variable. These are instantiated when matching a display form against a term q vs succeeds.

Constructors

Display 

Fields

data DisplayTerm Source #

A structured presentation of a Term for reification into Syntax.

Constructors

DWithApp DisplayTerm [DisplayTerm] Args

(f vs | ws) us. The first DisplayTerm is the parent function f with its args vs. The list of DisplayTerms are the with expressions ws. The Args are additional arguments us (possible in case the with-application is of function type).

DCon ConHead [Arg DisplayTerm]

c vs.

DDef QName [Elim' DisplayTerm]

d vs.

DDot Term

.v.

DTerm Term

v.

defaultDisplayForm :: QName -> [Open DisplayForm] Source #

By default, we have no display form.

data NLPat Source #

Non-linear (non-constructor) first-order pattern.

Constructors

PVar (Maybe CtxId) !Int

Matches anything (modulo non-linearity).

PWild

Matches anything (e.g. irrelevant terms).

PDef QName PElims

Matches f es

PLam ArgInfo (Abs NLPat)

Matches λ x → t

PPi (Dom (Type' NLPat)) (Abs (Type' NLPat))

Matches (x : A) → B

PBoundVar !Int PElims

Matches x es where x is a lambda-bound variable

PTerm Term

Matches the term modulo β (ideally βη).

data RewriteRule Source #

Rewrite rules can be added independently from function clauses.

Constructors

RewriteRule 

Fields

data Definition Source #

Constructors

Defn 

Fields

defaultDefn :: ArgInfo -> QName -> Type -> Defn -> Definition Source #

Create a definition with sensible defaults.

data CoreRepresentation Source #

Constructors

CrDefn CoreExpr

Core code for functions.

CrType CoreType

Core type for agda type.

CrConstr CoreConstr

Core constructor for agda constructor.

data Polarity Source #

Polarity for equality and subtype checking.

Constructors

Covariant

monotone

Contravariant

antitone

Invariant

no information (mixed variance)

Nonvariant

constant

data Projection Source #

Additional information for projection Functions.

Constructors

Projection 

Fields

  • projProper :: Maybe QName

    Nothing if only projection-like, Just q if record projection, where q is the original projection name (current name could be from module app).

  • projFromType :: QName

    Type projected from. Record type if projProper = Just{}.

  • projIndex :: Int

    Index of the record argument. Start counting with 1, because 0 means that it is already applied to the record value. This can happen in module instantiation, but then either the record value is var 0, or funProjection == Nothing.

  • projDropPars :: Term

    Term t to be be applied to record parameters and record value. The parameters will be dropped. In case of a proper projection, a postfix projection application will be created: t = pars r -> r .p (Invariant: the number of abstractions equals projIndex.) In case of a projection-like function, just the function symbol is returned as Def: t = pars -> f.

  • projArgInfo :: ArgInfo

    The info of the principal (record) argument.

data Defn Source #

Constructors

Axiom

Postulate.

Function 

Fields

Datatype 

Fields

Record 

Fields

Constructor 

Fields

Primitive

Primitive or builtin functions.

Fields

emptyFunction :: Defn Source #

A template for creating Function definitions, with sensible defaults.

isEmptyFunction :: Defn -> Bool Source #

Checking whether we are dealing with a function yet to be defined.

newtype Fields Source #

Constructors

Fields [(Name, Type)] 

Instances

data Simplification Source #

Did we encounter a simplifying reduction? In terms of CIC, that would be a iota-reduction. In terms of Agda, this is a constructor or literal pattern that matched. Just beta-reduction (substitution) or delta-reduction (unfolding of definitions) does not count as simplifying?

data Reduced no yes Source #

Instances

Functor (Reduced no) Source # 

Methods

fmap :: (a -> b) -> Reduced no a -> Reduced no b #

(<$) :: a -> Reduced no b -> Reduced no a #

data IsReduced Source #

Three cases: 1. not reduced, 2. reduced, but blocked, 3. reduced, not blocked.

Constructors

NotReduced 
Reduced (Blocked ()) 

data AllowedReduction Source #

Controlling reduce.

Constructors

ProjectionReductions

(Projection and) projection-like functions may be reduced.

InlineReductions

Functions marked INLINE may be reduced.

CopatternReductions

Copattern definitions may be reduced.

FunctionReductions

Functions which are not projections may be reduced.

LevelReductions

Reduce Level terms.

NonTerminatingReductions

Functions that have not passed termination checking.

allReductions :: AllowedReductions Source #

Not quite all reductions (skip non-terminating reductions)

defDelayed :: Definition -> Delayed Source #

Are the clauses of this definition delayed?

defNonterminating :: Definition -> Bool Source #

Has the definition failed the termination checker?

defAbstract :: Definition -> IsAbstract Source #

Beware when using this function on a def obtained with getConstInfo q! If the identifier q is abstract, getConstInfo will turn its def into an Axiom and you always get ConcreteDef, paradoxically. Use it in IgnoreAbstractMode, like this: a ignoreAbstractMode $ defAbstract <$ getConstInfo q

Injectivity

Mutual blocks

Statistics

Trace

Instance table

type InstanceTable = Map QName [QName] Source #

The instance table is a Map associating to every name of recorddata typepostulate its list of instances

type TempInstanceTable = (InstanceTable, [QName]) Source #

When typechecking something of the following form:

instance x : _ x = y

it's not yet known where to add x, so we add it to a list of unresolved instances and we'll deal with it later.

Builtin things

data BuiltinDescriptor Source #

Constructors

BuiltinData (TCM Type) [String] 
BuiltinDataCons (TCM Type) 
BuiltinPrim String (Term -> TCM ()) 
BuiltinPostulate Relevance (TCM Type) 
BuiltinUnknown (Maybe (TCM Type)) (Term -> Type -> TCM ())

Builtin of any kind. Type can be checked (Just t) or inferred (Nothing). The second argument is the hook for the verification function.

data Builtin pf Source #

Constructors

Builtin Term 
Prim pf 

Instances

Functor Builtin Source # 

Methods

fmap :: (a -> b) -> Builtin a -> Builtin b #

(<$) :: a -> Builtin b -> Builtin a #

Foldable Builtin Source # 

Methods

fold :: Monoid m => Builtin m -> m #

foldMap :: Monoid m => (a -> m) -> Builtin a -> m #

foldr :: (a -> b -> b) -> b -> Builtin a -> b #

foldr' :: (a -> b -> b) -> b -> Builtin a -> b #

foldl :: (b -> a -> b) -> b -> Builtin a -> b #

foldl' :: (b -> a -> b) -> b -> Builtin a -> b #

foldr1 :: (a -> a -> a) -> Builtin a -> a #

foldl1 :: (a -> a -> a) -> Builtin a -> a #

toList :: Builtin a -> [a] #

null :: Builtin a -> Bool #

length :: Builtin a -> Int #

elem :: Eq a => a -> Builtin a -> Bool #

maximum :: Ord a => Builtin a -> a #

minimum :: Ord a => Builtin a -> a #

sum :: Num a => Builtin a -> a #

product :: Num a => Builtin a -> a #

Traversable Builtin Source # 

Methods

traverse :: Applicative f => (a -> f b) -> Builtin a -> f (Builtin b) #

sequenceA :: Applicative f => Builtin (f a) -> f (Builtin a) #

mapM :: Monad m => (a -> m b) -> Builtin a -> m (Builtin b) #

sequence :: Monad m => Builtin (m a) -> m (Builtin a) #

Show pf => Show (Builtin pf) Source # 

Methods

showsPrec :: Int -> Builtin pf -> ShowS #

show :: Builtin pf -> String #

showList :: [Builtin pf] -> ShowS #

InstantiateFull a => InstantiateFull (Builtin a) Source # 

Highlighting levels

ifTopLevelAndHighlightingLevelIs :: MonadTCM tcm => HighlightingLevel -> tcm () -> tcm () Source #

ifTopLevelAndHighlightingLevelIs l m runs m when we're type-checking the top-level module and the highlighting level is at least l.

Type checking environment

data TCEnv Source #

Constructors

TCEnv 

Fields

Instances

MonadReader TCEnv ReduceM Source # 

Methods

ask :: ReduceM TCEnv #

local :: (TCEnv -> TCEnv) -> ReduceM a -> ReduceM a #

reader :: (TCEnv -> a) -> ReduceM a #

MonadReader TCEnv TerM # 

Methods

ask :: TerM TCEnv #

local :: (TCEnv -> TCEnv) -> TerM a -> TerM a #

reader :: (TCEnv -> a) -> TerM a #

MonadIO m => MonadReader TCEnv (TCMT m) Source # 

Methods

ask :: TCMT m TCEnv #

local :: (TCEnv -> TCEnv) -> TCMT m a -> TCMT m a #

reader :: (TCEnv -> a) -> TCMT m a #

Context

type Context = [ContextEntry] Source #

The Context is a stack of ContextEntrys.

data ContextEntry Source #

Constructors

Ctx 

Fields

newtype CtxId Source #

Constructors

CtxId Nat 

Instances

Enum CtxId Source # 
Eq CtxId Source # 

Methods

(==) :: CtxId -> CtxId -> Bool #

(/=) :: CtxId -> CtxId -> Bool #

Integral CtxId Source # 
Num CtxId Source # 
Ord CtxId Source # 

Methods

compare :: CtxId -> CtxId -> Ordering #

(<) :: CtxId -> CtxId -> Bool #

(<=) :: CtxId -> CtxId -> Bool #

(>) :: CtxId -> CtxId -> Bool #

(>=) :: CtxId -> CtxId -> Bool #

max :: CtxId -> CtxId -> CtxId #

min :: CtxId -> CtxId -> CtxId #

Real CtxId Source # 

Methods

toRational :: CtxId -> Rational #

Show CtxId Source # 

Methods

showsPrec :: Int -> CtxId -> ShowS #

show :: CtxId -> String #

showList :: [CtxId] -> ShowS #

KillRange CtxId Source # 
HasFresh CtxId Source # 
PrettyTCM CtxId Source # 

Methods

prettyTCM :: CtxId -> TCM Doc Source #

Let bindings

Abstract mode

data AbstractMode Source #

Constructors

AbstractMode

Abstract things in the current module can be accessed.

ConcreteMode

No abstract things can be accessed.

IgnoreAbstractMode

All abstract things can be accessed.

Insertion of implicit arguments

data ExpandHidden Source #

Constructors

ExpandLast

Add implicit arguments in the end until type is no longer hidden Pi.

DontExpandLast

Do not append implicit arguments.

data Candidate Source #

A candidate solution for an instance meta is a term with its type. It may be the case that the candidate is not fully applied yet or of the wrong type, hence the need for the type.

Type checking errors

data Occ Source #

Instances

Show Occ Source # 

Methods

showsPrec :: Int -> Occ -> ShowS #

show :: Occ -> String #

showList :: [Occ] -> ShowS #

data CallInfo Source #

Information about a call.

Constructors

CallInfo 

Fields

data TerminationError Source #

Information about a mutual block which did not pass the termination checker.

Constructors

TerminationError 

Fields

data SplitError Source #

Error when splitting a pattern variable into possible constructor patterns.

Constructors

NotADatatype (Closure Type)

Neither data type nor record.

IrrelevantDatatype (Closure Type)

Data type, but in irrelevant position.

CoinductiveDatatype (Closure Type)

Split on codata not allowed. UNUSED, but keep! -- | NoRecordConstructor Type -- ^ record type, but no constructor

CantSplit 

Fields

GenericSplitError String 

data TypeError Source #

Constructors

InternalError String 
NotImplemented String 
NotSupported String 
CompilationError String 
TerminationCheckFailed [TerminationError] 
PropMustBeSingleton 
DataMustEndInSort Term 
ShouldEndInApplicationOfTheDatatype Type

The target of a constructor isn't an application of its datatype. The Type records what it does target.

ShouldBeAppliedToTheDatatypeParameters Term Term

The target of a constructor isn't its datatype applied to something that isn't the parameters. First term is the correct target and the second term is the actual target.

ShouldBeApplicationOf Type QName

Expected a type to be an application of a particular datatype.

ConstructorPatternInWrongDatatype QName QName

constructor, datatype

IndicesNotConstructorApplications [Arg Term]

Indices.

IndexVariablesNotDistinct [Nat] [Arg Term]

Variables, indices.

IndicesFreeInParameters [Nat] [Arg Term] [Arg Term]

Indices (variables), index expressions (with constructors applied to reconstructed parameters), parameters.

CantResolveOverloadedConstructorsTargetingSameDatatype QName [QName]

Datatype, constructors.

DoesNotConstructAnElementOf QName Type

constructor, type

DifferentArities

Varying number of arguments for a function.

WrongHidingInLHS

The left hand side of a function definition has a hidden argument where a non-hidden was expected.

WrongHidingInLambda Type

Expected a non-hidden function and found a hidden lambda.

WrongHidingInApplication Type

A function is applied to a hidden argument where a non-hidden was expected.

WrongNamedArgument (NamedArg Expr)

A function is applied to a hidden named argument it does not have.

WrongIrrelevanceInLambda Type

Expected a relevant function and found an irrelevant lambda.

WrongInstanceDeclaration

A term is declared as an instance but it’s not allowed

HidingMismatch Hiding Hiding

The given hiding does not correspond to the expected hiding.

RelevanceMismatch Relevance Relevance

The given relevance does not correspond to the expected relevane.

NotInductive Term

The term does not correspond to an inductive data type.

UninstantiatedDotPattern Expr 
IlltypedPattern Pattern Type 
IllformedProjectionPattern Pattern 
CannotEliminateWithPattern (NamedArg Pattern) Type 
TooManyArgumentsInLHS Type 
WrongNumberOfConstructorArguments QName Nat Nat 
ShouldBeEmpty Type [Pattern] 
ShouldBeASort Type

The given type should have been a sort.

ShouldBePi Type

The given type should have been a pi.

ShouldBeRecordType Type 
ShouldBeRecordPattern Pattern 
NotAProjectionPattern (NamedArg Pattern) 
NotAProperTerm 
SetOmegaNotValidType 
InvalidTypeSort Sort

This sort is not a type expression.

InvalidType Term

This term is not a type expression.

FunctionTypeInSizeUniv Term

This term, a function type constructor, lives in SizeUniv, which is not allowed.

SplitOnIrrelevant Pattern (Dom Type) 
DefinitionIsIrrelevant QName 
VariableIsIrrelevant Name 
UnequalTerms Comparison Term Term Type 
UnequalTypes Comparison Type Type 
UnequalRelevance Comparison Term Term

The two function types have different relevance.

UnequalHiding Term Term

The two function types have different hiding.

UnequalSorts Sort Sort 
UnequalBecauseOfUniverseConflict Comparison Term Term 
HeterogeneousEquality Term Type Term Type

We ended up with an equality constraint where the terms have different types. This is not supported.

NotLeqSort Sort Sort 
MetaCannotDependOn MetaId [Nat] Nat

The arguments are the meta variable, the parameters it can depend on and the paratemeter that it wants to depend on.

MetaOccursInItself MetaId 
GenericError String 
GenericDocError Doc 
BuiltinMustBeConstructor String Expr 
NoSuchBuiltinName String 
DuplicateBuiltinBinding String Term Term 
NoBindingForBuiltin String 
NoSuchPrimitiveFunction String 
ShadowedModule Name [ModuleName] 
BuiltinInParameterisedModule String 
IllegalLetInTelescope TypedBinding 
NoRHSRequiresAbsurdPattern [NamedArg Pattern] 
AbsurdPatternRequiresNoRHS [NamedArg Pattern] 
TooFewFields QName [Name] 
TooManyFields QName [Name] 
DuplicateFields [Name] 
DuplicateConstructors [Name] 
WithOnFreeVariable Expr 
UnexpectedWithPatterns [Pattern] 
WithClausePatternMismatch Pattern Pattern 
FieldOutsideRecord 
ModuleArityMismatch ModuleName Telescope [NamedArg Expr] 
IncompletePatternMatching Term [Elim] 
CoverageFailure QName [[Arg DeBruijnPattern]] 
UnreachableClauses QName [[Arg DeBruijnPattern]] 
CoverageCantSplitOn QName Telescope Args Args 
CoverageCantSplitIrrelevantType Type 
CoverageCantSplitType Type 
CoverageNoExactSplit QName Clause 
WithoutKError Type Term Term 
UnifyConflict ConHead ConHead 
UnifyCycle Int Term 
UnifyIndicesNotVars Type Term Term Args 
UnificationRecursiveEq Type Int Term 
UnificationStuck Telescope [Term] [Term] 
SplitError SplitError 
NotStrictlyPositive QName [Occ] 
LocalVsImportedModuleClash ModuleName 
UnsolvedMetas [Range] 
UnsolvedConstraints Constraints 
SolvedButOpenHoles

Some interaction points (holes) have not be filled by user. There are not UnsolvedMetas since unification solved them. This is an error, since interaction points are never filled without user interaction.

CyclicModuleDependency [TopLevelModuleName] 
FileNotFound TopLevelModuleName [AbsolutePath] 
OverlappingProjects AbsolutePath TopLevelModuleName TopLevelModuleName 
AmbiguousTopLevelModuleName TopLevelModuleName [AbsolutePath] 
ModuleNameDoesntMatchFileName TopLevelModuleName [AbsolutePath] 
ClashingFileNamesFor ModuleName [AbsolutePath] 
ModuleDefinedInOtherFile TopLevelModuleName AbsolutePath AbsolutePath

Module name, file from which it was loaded, file which the include path says contains the module. Scope errors

BothWithAndRHS 
NotInScope [QName] 
NoSuchModule QName 
AmbiguousName QName [QName] 
AmbiguousModule QName [ModuleName] 
UninstantiatedModule QName 
ClashingDefinition QName QName 
ClashingModule ModuleName ModuleName 
ClashingImport Name QName 
ClashingModuleImport Name ModuleName 
PatternShadowsConstructor Name QName 
ModuleDoesntExport QName [ImportedName] 
DuplicateImports QName [ImportedName] 
InvalidPattern Pattern 
RepeatedVariablesInPattern [Name] 
NotAModuleExpr Expr

The expr was used in the right hand side of an implicit module definition, but it wasn't of the form m Delta.

NotAnExpression Expr 
NotAValidLetBinding NiceDeclaration 
NothingAppliedToHiddenArg Expr 
NothingAppliedToInstanceArg Expr 
BadArgumentsToPatternSynonym QName 
TooFewArgumentsToPatternSynonym QName 
UnusedVariableInPatternSynonym 
NoParseForApplication [Expr] 
AmbiguousParseForApplication [Expr] [Expr] 
NoParseForLHS LHSOrPatSyn Pattern 
AmbiguousParseForLHS LHSOrPatSyn Pattern [Pattern] 
OperatorInformation [NotationSection] TypeError 
OperatorChangeMessage TypeError 
IFSNoCandidateInScope Type 
UnquoteFailed UnquoteError 
SafeFlagPostulate Name 
SafeFlagPragma [String] 
SafeFlagNonTerminating 
SafeFlagTerminating 
SafeFlagPrimTrustMe 
SafeFlagNoPositivityCheck 
NeedOptionCopatterns 
NeedOptionRewriting 

data LHSOrPatSyn Source #

Distinguish error message when parsing lhs or pattern synonym, resp.

Constructors

IsLHS 
IsPatSyn 

The reduce monad

data ReduceEnv Source #

Environment of the reduce monad.

Constructors

ReduceEnv 

Fields

newtype ReduceM a Source #

Constructors

ReduceM 

Fields

runReduceF :: (a -> ReduceM b) -> TCM (a -> b) Source #

Type checking monad transformer

newtype TCMT m a Source #

Constructors

TCM 

Fields

Instances

MonadTrans TCMT Source # 

Methods

lift :: Monad m => m a -> TCMT m a #

MonadError TCErr IM Source # 

Methods

throwError :: TCErr -> IM a #

catchError :: IM a -> (TCErr -> IM a) -> IM a #

MonadBench Phase TCM Source #

We store benchmark statistics in an IORef. This enables benchmarking pure computation, see Agda.Benchmarking.

MonadError TCErr (TCMT IO) Source # 

Methods

throwError :: TCErr -> TCMT IO a #

catchError :: TCMT IO a -> (TCErr -> TCMT IO a) -> TCMT IO a #

MonadIO m => MonadReader TCEnv (TCMT m) Source # 

Methods

ask :: TCMT m TCEnv #

local :: (TCEnv -> TCEnv) -> TCMT m a -> TCMT m a #

reader :: (TCEnv -> a) -> TCMT m a #

MonadIO m => MonadState TCState (TCMT m) Source # 

Methods

get :: TCMT m TCState #

put :: TCState -> TCMT m () #

state :: (TCState -> (a, TCState)) -> TCMT m a #

MonadIO m => Monad (TCMT m) Source # 

Methods

(>>=) :: TCMT m a -> (a -> TCMT m b) -> TCMT m b #

(>>) :: TCMT m a -> TCMT m b -> TCMT m b #

return :: a -> TCMT m a #

fail :: String -> TCMT m a #

MonadIO m => Functor (TCMT m) Source # 

Methods

fmap :: (a -> b) -> TCMT m a -> TCMT m b #

(<$) :: a -> TCMT m b -> TCMT m a #

MonadIO m => Applicative (TCMT m) Source # 

Methods

pure :: a -> TCMT m a #

(<*>) :: TCMT m (a -> b) -> TCMT m a -> TCMT m b #

(*>) :: TCMT m a -> TCMT m b -> TCMT m b #

(<*) :: TCMT m a -> TCMT m b -> TCMT m a #

Monoid (TCM Any) Source #

Short-cutting disjunction forms a monoid.

Methods

mempty :: TCM Any #

mappend :: TCM Any -> TCM Any -> TCM Any #

mconcat :: [TCM Any] -> TCM Any #

MonadIO m => MonadIO (TCMT m) Source # 

Methods

liftIO :: IO a -> TCMT m a #

Null (TCM Doc) Source # 
MonadIO m => MonadTCM (TCMT m) Source # 

Methods

liftTCM :: TCM a -> TCMT m a Source #

MonadIO m => ReadTCState (TCMT m) Source # 
MonadIO m => HasOptions (TCMT m) Source # 
MonadIO m => HasBuiltins (TCMT m) Source # 
HasConstInfo (TCMT IO) Source # 

type TCM = TCMT IO Source #

class (Applicative tcm, MonadIO tcm, MonadReader TCEnv tcm, MonadState TCState tcm) => MonadTCM tcm where Source #

Minimal complete definition

liftTCM

Methods

liftTCM :: TCM a -> tcm a Source #

Instances

MonadTCM TerM Source # 

Methods

liftTCM :: TCM a -> TerM a Source #

MonadTCM tcm => MonadTCM (MaybeT tcm) Source # 

Methods

liftTCM :: TCM a -> MaybeT tcm a Source #

MonadTCM tcm => MonadTCM (ListT tcm) Source # 

Methods

liftTCM :: TCM a -> ListT tcm a Source #

MonadIO m => MonadTCM (TCMT m) Source # 

Methods

liftTCM :: TCM a -> TCMT m a Source #

MonadTCM m => MonadTCM (CompileT m) Source # 

Methods

liftTCM :: TCM a -> CompileT m a Source #

MonadTCM tcm => MonadTCM (ExceptT err tcm) Source # 

Methods

liftTCM :: TCM a -> ExceptT err tcm a Source #

(Monoid w, MonadTCM tcm) => MonadTCM (WriterT w tcm) Source # 

Methods

liftTCM :: TCM a -> WriterT w tcm a Source #

(Error err, MonadTCM tcm) => MonadTCM (ExceptionT err tcm) Source # 

Methods

liftTCM :: TCM a -> ExceptionT err tcm a Source #

type IM = TCMT (InputT IO) Source #

Interaction monad.

runIM :: IM a -> TCM a Source #

catchError_ :: TCM a -> (TCErr -> TCM a) -> TCM a Source #

Preserve the state of the failing computation.

finally_ :: TCM a -> TCM b -> TCM a Source #

Execute a finalizer even when an exception is thrown. Does not catch any errors. In case both the regular computation and the finalizer throw an exception, the one of the finalizer is propagated.

mapTCMT :: (forall a. m a -> n a) -> TCMT m a -> TCMT n a Source #

pureTCM :: MonadIO m => (TCState -> TCEnv -> a) -> TCMT m a Source #

returnTCMT :: MonadIO m => a -> TCMT m a Source #

bindTCMT :: MonadIO m => TCMT m a -> (a -> TCMT m b) -> TCMT m b Source #

thenTCMT :: MonadIO m => TCMT m a -> TCMT m b -> TCMT m b Source #

fmapTCMT :: MonadIO m => (a -> b) -> TCMT m a -> TCMT m b Source #

apTCMT :: MonadIO m => TCMT m (a -> b) -> TCMT m a -> TCMT m b Source #

internalError :: MonadTCM tcm => String -> tcm a Source #

genericError :: MonadTCM tcm => String -> tcm a Source #

typeError :: MonadTCM tcm => TypeError -> tcm a Source #

runTCM :: MonadIO m => TCEnv -> TCState -> TCMT m a -> m (a, TCState) Source #

Running the type checking monad (most general form).

runTCMTop :: TCM a -> IO (Either TCErr a) Source #

Running the type checking monad on toplevel (with initial state).

runTCMTop' :: MonadIO m => TCMT m a -> m a Source #

runSafeTCM :: TCM a -> TCState -> IO (a, TCState) Source #

runSafeTCM runs a safe TCM action (a TCM action which cannot fail) in the initial environment.

forkTCM :: TCM a -> TCM () Source #

Runs the given computation in a separate thread, with a copy of the current state and environment.

Note that Agda sometimes uses actual, mutable state. If the computation given to forkTCM tries to modify this state, then bad things can happen, because accesses are not mutually exclusive. The forkTCM function has been added mainly to allow the thread to read (a snapshot of) the current state in a convenient way.

Note also that exceptions which are raised in the thread are not propagated to the parent, so the thread should not do anything important.

extendedLambdaName :: String Source #

Base name for extended lambda patterns

absurdLambdaName :: String Source #

Name of absurdLambda definitions.

isAbsurdLambdaName :: QName -> Bool Source #

Check whether we have an definition from an absurd lambda.

KillRange instances