{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, DeriveDataTypeable, PatternGuards #-}
module XMonad.Layout.Mosaic (
Aspect(..)
,mosaic
,changeMaster
,changeFocused
,Mosaic
)
where
import Prelude hiding (sum)
import XMonad(Typeable,
LayoutClass(doLayout, handleMessage, pureMessage, description),
Message, X, fromMessage, withWindowSet, Resize(..),
splitHorizontallyBy, splitVerticallyBy, sendMessage, Rectangle)
import qualified XMonad.StackSet as W
import Control.Arrow(second, first)
import Control.Monad(mplus)
import Data.Foldable(Foldable,foldMap, sum)
import Data.Function(on)
import Data.List(sortBy)
import Data.Monoid(Monoid,mempty, mappend, (<>))
import Data.Semigroup
data Aspect
= Taller
| Wider
| Reset
| SlopeMod ([Rational] -> [Rational])
deriving (Typeable)
instance Message Aspect
mosaic :: Rational -> [Rational] -> Mosaic a
mosaic = Mosaic Nothing
data Mosaic a =
Mosaic (Maybe(Bool,Rational,Int)) Rational [Rational] deriving (Read,Show)
instance LayoutClass Mosaic a where
description = const "Mosaic"
pureMessage (Mosaic Nothing _ _) _ = Nothing
pureMessage (Mosaic (Just(_,ix,mix)) delta ss) ms = fromMessage ms >>= ixMod
where ixMod Taller | round ix >= mix = Nothing
| otherwise = Just $ Mosaic (Just(False,succ ix,mix)) delta ss
ixMod Wider | round ix <= (0::Integer) = Nothing
| otherwise = Just $ Mosaic (Just(False,pred ix,mix)) delta ss
ixMod Reset = Just $ Mosaic Nothing delta ss
ixMod (SlopeMod f) = Just $ Mosaic (Just(False,ix,mix)) delta (f ss)
handleMessage l@(Mosaic _ delta _) ms
| Just Expand <- fromMessage ms = changeFocused (*delta) >> return Nothing
| Just Shrink <- fromMessage ms = changeFocused (/delta) >> return Nothing
| otherwise = return $ pureMessage l ms
doLayout (Mosaic state delta ss) r st = let
ssExt = zipWith const (ss ++ repeat 1) $ W.integrate st
rects = splits r ssExt
nls = length rects
fi = fromIntegral
nextIx (ov,ix,mix)
| mix <= 0 || ov = fromIntegral $ nls `div` 2
| otherwise = max 0 $ (*fi (pred nls)) $ min 1 $ ix / fi mix
rect = rects !! maybe (nls `div` 2) round (nextIx `fmap` state)
state' = fmap (\x@(ov,_,_) -> (ov,nextIx x,pred nls)) state
`mplus` Just (True,fromIntegral nls / 2,pred nls)
ss' = maybe ss (const ss `either` const ssExt) $ zipRemain ss ssExt
in return (zip (W.integrate st) rect, Just $ Mosaic state' delta ss')
zipRemain :: [a] -> [b] -> Maybe (Either [a] [b])
zipRemain (_:xs) (_:ys) = zipRemain xs ys
zipRemain [] [] = Nothing
zipRemain [] y = Just (Right y)
zipRemain x [] = Just (Left x)
changeMaster :: (Rational -> Rational) -> X ()
changeMaster = sendMessage . SlopeMod . onHead
changeFocused :: (Rational -> Rational) -> X ()
changeFocused f = withWindowSet $ sendMessage . SlopeMod
. maybe id (mulIx . length . W.up)
. W.stack . W.workspace . W.current
where mulIx i = uncurry (++) . second (onHead f) . splitAt i
onHead :: (a -> a) -> [a] -> [a]
onHead f = uncurry (++) . first (fmap f) . splitAt 1
splits :: Rectangle -> [Rational] -> [[Rectangle]]
splits rect = map (reverse . map snd . sortBy (compare `on` fst))
. splitsL rect . makeTree snd . zip [1..]
. normalize . reverse . map abs
splitsL :: Rectangle -> Tree (Int,Rational) -> [[(Int,Rectangle)]]
splitsL _rect Empty = []
splitsL rect (Leaf (x,_)) = [[(x,rect)]]
splitsL rect (Branch l r) = do
let mkSplit f = f ((sumSnd l /) $ sumSnd l + sumSnd r) rect
sumSnd = sum . fmap snd
(rl,rr) <- map mkSplit [splitVerticallyBy,splitHorizontallyBy]
splitsL rl l `interleave` splitsL rr r
interleave :: [[a]] -> [[a]] -> [[a]]
interleave xs ys | lx > ly = zc xs (extend lx ys)
| otherwise = zc (extend ly xs) ys
where lx = length xs
ly = length ys
zc = zipWith (++)
extend :: Int -> [a] -> [a]
extend n pat = do
(p,e) <- zip pat $ replicate m True ++ repeat False
[p | e] ++ replicate d p
where (d,m) = n `divMod` length pat
normalize :: Fractional a => [a] -> [a]
normalize x = let s = sum x in map (/s) x
data Tree a = Branch (Tree a) (Tree a) | Leaf a | Empty
instance Foldable Tree where
foldMap _f Empty = mempty
foldMap f (Leaf x) = f x
foldMap f (Branch l r) = foldMap f l `mappend` foldMap f r
instance Functor Tree where
fmap f (Leaf x) = Leaf $ f x
fmap f (Branch l r) = Branch (fmap f l) (fmap f r)
fmap _ Empty = Empty
instance Monoid (Tree a) where
mempty = Empty
mappend Empty x = x
mappend x Empty = x
mappend x y = Branch x y
instance Semigroup (Tree a) where
(<>) = mappend
makeTree :: (Num a1, Ord a1) => (a -> a1) -> [a] -> Tree a
makeTree _ [] = Empty
makeTree _ [x] = Leaf x
makeTree f xs = Branch (makeTree f a) (makeTree f b)
where ((a,b),_) = foldr go (([],[]),(0,0)) xs
go n ((ls,rs),(l,r))
| l > r = ((ls,n:rs),(l,f n+r))
| otherwise = ((n:ls,rs),(f n+l,r))