{-# LANGUAGE TypeSynonymInstances, MultiParamTypeClasses #-}
module XMonad.Layout.HintedGrid (
Grid(..), arrange, defaultRatio
) where
import Prelude hiding ((.))
import XMonad
import XMonad.StackSet
import Control.Monad.State
import Data.List
import Data.Ord
infixr 9 .
(.) :: (Functor f) => (a -> b) -> f a -> f b
(.) = fmap
data Grid a = Grid Bool | GridRatio Double Bool deriving (Read, Show)
defaultRatio :: Double
defaultRatio = 16/9
instance LayoutClass Grid Window where
doLayout (Grid m) r w = doLayout (GridRatio defaultRatio m) r w
doLayout (GridRatio d m) r w = flip (,) Nothing . arrange d m r (integrate w)
replicateS :: Int -> (a -> (b, a)) -> a -> ([b], a)
replicateS n f = runState . replicateM n $ do (a,s) <- gets f; put s; return a
doColumn :: Dimension -> Dimension -> Dimension -> [(D -> D)] -> [D]
doColumn width height k adjs =
let
(ind, fs) = unzip . sortBy (comparing $ snd . ($ (width, height)) . snd) . zip [0 :: Int ..] $ adjs
(_, ds) = doC height k fs
in
map snd . sortBy (comparing fst) . zip ind $ ds
where
doC h _ [] = (h, [])
doC h n (f : fs) = (adj :) . doC (h - h') (n - 1) fs
where
adj@(_, h') = f (width, h `div` n)
doRect :: Dimension -> Dimension -> Dimension -> [[D -> D]] -> [Rectangle]
doRect height = doR
where
doR _ _ [] = []
doR width n (c : cs) =
let
v = fromIntegral $ length c
c' = doColumn (width `div` n) height v c
(ws, hs) = unzip c'
maxw = maximum ws
height' = sum hs
hbonus = height - height'
hsingle = hbonus `div` v
hoffset = hsingle `div` 2
width' = width - maxw
ys = map ((height -) . subtract hoffset) . scanl1 (+) . map (hsingle +) $ hs
xs = map ((width' +) . (`div` 2) . (maxw -)) $ ws
in
zipWith3 (\x y (w, h) -> Rectangle (fromIntegral x) (fromIntegral y) w h) xs ys c' ++ doR width' (n - 1) cs
arrange :: Double -> Bool -> Rectangle -> [Window] -> X [(Window, Rectangle)]
arrange aspectRatio mirror (Rectangle rx ry rw rh) wins = do
proto <- mapM mkAdjust wins
let
adjs = map (\f -> twist . f . twist) proto
rs = arrange' aspectRatio (twist (rw, rh)) adjs
rs' = map (\(Rectangle x y w h) -> uncurry (uncurry Rectangle (twist (x, y))) (twist (w, h))) rs
return . zip wins . map (\r -> r{ rect_x = rect_x r + rx, rect_y = rect_y r + ry }) $ rs'
where
twist
| mirror = \(a, b) -> (b, a)
| otherwise = id
arrange' :: Double -> D -> [D -> D] -> [Rectangle]
arrange' aspectRatio (rw, rh) adjs = reverse $ doRect rh rw (fromIntegral ncolumns) (ecols ++ cols)
where
nwindows = length adjs
ncolumns = max 1 . round . sqrt $ fromIntegral nwindows * fromIntegral rw / (fromIntegral rh * aspectRatio)
nrows = nwindows `div` ncolumns
nextras = nwindows - ncolumns * nrows
(ecols, adjs') = replicateS nextras (splitAt (nrows + 1)) $ reverse adjs
(cols, _) = replicateS (ncolumns - nextras) (splitAt nrows) adjs'