vector-0.12.3.0: Efficient Arrays
Copyright(c) Roman Leshchinskiy 2008-2010
LicenseBSD-style
MaintainerRoman Leshchinskiy <rl@cse.unsw.edu.au>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Vector.Mutable

Description

Mutable boxed vectors.

Synopsis

Mutable boxed vectors

data MVector s a Source #

Mutable boxed vectors keyed on the monad they live in (IO or ST s).

Constructors

MVector 

Fields

Instances

Instances details
MVector MVector a Source # 
Instance details

Defined in Data.Vector.Mutable

Accessors

Length information

length :: MVector s a -> Int Source #

Length of the mutable vector.

null :: MVector s a -> Bool Source #

Check whether the vector is empty

Extracting subvectors

slice Source #

Arguments

:: Int

i starting index

-> Int

n length

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. The vector must contain at least i+n elements.

init :: MVector s a -> MVector s a Source #

tail :: MVector s a -> MVector s a Source #

take :: Int -> MVector s a -> MVector s a Source #

drop :: Int -> MVector s a -> MVector s a Source #

splitAt :: Int -> MVector s a -> (MVector s a, MVector s a) Source #

unsafeSlice Source #

Arguments

:: Int

starting index

-> Int

length of the slice

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. No bounds checks are performed.

Overlapping

overlaps :: MVector s a -> MVector s a -> Bool Source #

Check whether two vectors overlap.

Construction

Initialisation

new :: PrimMonad m => Int -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length.

unsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length. The vector elements are set to bottom so accessing them will cause an exception.

Since: 0.5

replicate :: PrimMonad m => Int -> a -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.

replicateM :: PrimMonad m => Int -> m a -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.

generate :: PrimMonad m => Int -> (Int -> a) -> m (MVector (PrimState m) a) Source #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the function to each index.

Since: 0.12.3.0

generateM :: PrimMonad m => Int -> (Int -> m a) -> m (MVector (PrimState m) a) Source #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the monadic function to each index. Iteration starts at index 0.

Since: 0.12.3.0

clone :: PrimMonad m => MVector (PrimState m) a -> m (MVector (PrimState m) a) Source #

Create a copy of a mutable vector.

Growing

grow :: PrimMonad m => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source #

Grow a boxed vector by the given number of elements. The number must be non-negative. Same semantics as in grow for generic vector. It differs from grow functions for unpacked vectors, however, in that only pointers to values are copied over, therefore values themselves will be shared between two vectors. This is an important distinction to know about during memory usage analysis and in case when values themselves are of a mutable type, eg. IORef or another mutable vector.

Examples

Expand
>>> import qualified Data.Vector as V
>>> import qualified Data.Vector.Mutable as MV
>>> mv <- V.thaw $ V.fromList ([10, 20, 30] :: [Integer])
>>> mv' <- MV.grow mv 2

The two extra elements at the end of the newly allocated vector will be uninitialized and will result in an error if evaluated, so me must overwrite them with new values first:

>>> MV.write mv' 3 999
>>> MV.write mv' 4 777
>>> V.unsafeFreeze mv'
[10,20,30,999,777]

It is important to note that the source mutable vector is not affected when the newly allocated one is mutated.

>>> MV.write mv' 2 888
>>> V.unsafeFreeze mv'
[10,20,888,999,777]
>>> V.unsafeFreeze mv
[10,20,30]

Since: 0.5

unsafeGrow :: PrimMonad m => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source #

Grow a vector by the given number of elements. The number must be non-negative but this is not checked. Same semantics as in unsafeGrow for generic vector.

Since: 0.5

Restricting memory usage

clear :: PrimMonad m => MVector (PrimState m) a -> m () Source #

Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.

Accessing individual elements

read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a Source #

Yield the element at the given position.

write :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m () Source #

Replace the element at the given position.

modify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m () Source #

Modify the element at the given position.

modifyM :: PrimMonad m => MVector (PrimState m) a -> (a -> m a) -> Int -> m () Source #

Modify the element at the given position using a monadic function.

Since: 0.12.3.0

swap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m () Source #

Swap the elements at the given positions.

exchange :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m a Source #

Replace the element at the given position and return the old element.

unsafeRead :: PrimMonad m => MVector (PrimState m) a -> Int -> m a Source #

Yield the element at the given position. No bounds checks are performed.

unsafeWrite :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m () Source #

Replace the element at the given position. No bounds checks are performed.

unsafeModify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m () Source #

Modify the element at the given position. No bounds checks are performed.

unsafeModifyM :: PrimMonad m => MVector (PrimState m) a -> (a -> m a) -> Int -> m () Source #

Modify the element at the given position using a monadic function. No bounds checks are performed.

Since: 0.12.3.0

unsafeSwap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m () Source #

Swap the elements at the given positions. No bounds checks are performed.

unsafeExchange :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m a Source #

Replace the element at the given position and return the old element. No bounds checks are performed.

Folds

mapM_ :: PrimMonad m => (a -> m b) -> MVector (PrimState m) a -> m () Source #

O(n) Apply the monadic action to every element of the vector, discarding the results.

Since: 0.12.3.0

imapM_ :: PrimMonad m => (Int -> a -> m b) -> MVector (PrimState m) a -> m () Source #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results.

Since: 0.12.3.0

forM_ :: PrimMonad m => MVector (PrimState m) a -> (a -> m b) -> m () Source #

O(n) Apply the monadic action to every element of the vector, discarding the results. It's same as the flip mapM_.

Since: 0.12.3.0

iforM_ :: PrimMonad m => MVector (PrimState m) a -> (Int -> a -> m b) -> m () Source #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results. It's same as the flip imapM_.

Since: 0.12.3.0

foldl :: PrimMonad m => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold.

Since: 0.12.3.0

foldl' :: PrimMonad m => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold with strict accumulator.

Since: 0.12.3.0

foldM :: PrimMonad m => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold.

Since: 0.12.3.0

foldM' :: PrimMonad m => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold with strict accumulator.

Since: 0.12.3.0

foldr :: PrimMonad m => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold.

Since: 0.12.3.0

foldr' :: PrimMonad m => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold with strict accumulator.

Since: 0.12.3.0

foldrM :: PrimMonad m => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold.

Since: 0.12.3.0

foldrM' :: PrimMonad m => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold with strict accumulator.

Since: 0.12.3.0

ifoldl :: PrimMonad m => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold (function applied to each element and its index).

Since: 0.12.3.0

ifoldl' :: PrimMonad m => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold with strict accumulator (function applied to each element and its index).

Since: 0.12.3.0

ifoldM :: PrimMonad m => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold (action applied to each element and its index).

Since: 0.12.3.0

ifoldM' :: PrimMonad m => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold with strict accumulator (action applied to each element and its index).

Since: 0.12.3.0

ifoldr :: PrimMonad m => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold (function applied to each element and its index).

Since: 0.12.3.0

ifoldr' :: PrimMonad m => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold with strict accumulator (function applied to each element and its index).

Since: 0.12.3.0

ifoldrM :: PrimMonad m => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold (action applied to each element and its index).

Since: 0.12.3.0

ifoldrM' :: PrimMonad m => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold with strict accumulator (action applied to each element and its index).

Since: 0.12.3.0

Modifying vectors

nextPermutation :: (PrimMonad m, Ord e) => MVector (PrimState m) e -> m Bool Source #

Compute the next (lexicographically) permutation of given vector in-place. Returns False when input is the last permutation

Filling and copying

set :: PrimMonad m => MVector (PrimState m) a -> a -> m () Source #

Set all elements of the vector to the given value.

copy Source #

Arguments

:: PrimMonad m 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap.

move Source #

Arguments

:: PrimMonad m 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length.

If the vectors do not overlap, then this is equivalent to copy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

unsafeCopy Source #

Arguments

:: PrimMonad m 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap. This is not checked.

unsafeMove Source #

Arguments

:: PrimMonad m 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length, but this is not checked.

If the vectors do not overlap, then this is equivalent to unsafeCopy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

Arrays

fromMutableArray :: PrimMonad m => MutableArray (PrimState m) a -> m (MVector (PrimState m) a) Source #

O(n) Make a copy of a mutable array to a new mutable vector.

Since: 0.12.2.0

toMutableArray :: PrimMonad m => MVector (PrimState m) a -> m (MutableArray (PrimState m) a) Source #

O(n) Make a copy of a mutable vector into a new mutable array.

Since: 0.12.2.0