uu-interleaved-0.2.0.1: Providing an interleaving combinator for use with applicative style implementations.

Safe HaskellSafe
LanguageHaskell98

Control.Applicative.Interleaved

Contents

Description

This module contains the additional data types, instance definitions and functions to run parsers in an interleaved way. If all the interleaved parsers recognise a single connected piece of the input text this incorporates the permutation parsers. For some examples see the module Text.ParserCombinators.UU.Demo.MergeAndPermute.

Synopsis

Classes

class Splittable f where Source #

Minimal complete definition

getNonPure, getPure

Methods

getNonPure :: f a -> Maybe (f a) Source #

getPure :: f a -> Maybe a Source #

Types

data Gram f a Source #

Since we want to get access to the individual parsers which recognise a consecutive piece of the input text we define a new data type, which lifts the underlying parsers to the grammatical level, so they can be transformed, manipulated, and run in a piecewise way. Gram is defined in such a way that we can always access the first parsers to be ran from such a structure. We require that all the Alts do not recognise the empty string. These should be covered by the Maybe in the Gram constructor.

Constructors

Gram [Alt f a] (Maybe a) 
Instances
Functor f => Monad (Gram f) Source # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

(>>=) :: Gram f a -> (a -> Gram f b) -> Gram f b #

(>>) :: Gram f a -> Gram f b -> Gram f b #

return :: a -> Gram f a #

fail :: String -> Gram f a #

Functor f => Functor (Gram f) Source #

We define instances for the data type Gram for Functor, Applicative, Alternative and ExtAlternative

Instance details

Defined in Control.Applicative.Interleaved

Methods

fmap :: (a -> b) -> Gram f a -> Gram f b #

(<$) :: a -> Gram f b -> Gram f a #

Functor f => Applicative (Gram f) Source #

The left hand side operand is gradually transformed so we get access to its first component

Instance details

Defined in Control.Applicative.Interleaved

Methods

pure :: a -> Gram f a #

(<*>) :: Gram f (a -> b) -> Gram f a -> Gram f b #

liftA2 :: (a -> b -> c) -> Gram f a -> Gram f b -> Gram f c #

(*>) :: Gram f a -> Gram f b -> Gram f b #

(<*) :: Gram f a -> Gram f b -> Gram f a #

Functor f => Alternative (Gram f) Source # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

empty :: Gram f a #

(<|>) :: Gram f a -> Gram f a -> Gram f a #

some :: Gram f a -> Gram f [a] #

many :: Gram f a -> Gram f [a] #

Show a => Show (Gram f a) Source # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

showsPrec :: Int -> Gram f a -> ShowS #

show :: Gram f a -> String #

showList :: [Gram f a] -> ShowS #

Functor f => Semigroup (Gram f (r -> r)) Source # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

(<>) :: Gram f (r -> r) -> Gram f (r -> r) -> Gram f (r -> r) #

sconcat :: NonEmpty (Gram f (r -> r)) -> Gram f (r -> r) #

stimes :: Integral b => b -> Gram f (r -> r) -> Gram f (r -> r) #

Functor f => Monoid (Gram f (r -> r)) Source # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

mempty :: Gram f (r -> r) #

mappend :: Gram f (r -> r) -> Gram f (r -> r) -> Gram f (r -> r) #

mconcat :: [Gram f (r -> r)] -> Gram f (r -> r) #

data Alt f a Source #

Constructors

Seq (f (b -> a)) (Gram f b) 
Bind (f b) (b -> Gram f a) 
Instances
Functor f => Functor (Alt f) Source # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Functions

mkG :: (Splittable f, Functor f) => f a -> Gram f a Source #

The function mkGram splits a simple parser into the possibly empty part and the non-empty part. The non-empty part recognises a consecutive part of the input. Here we use the functions getOneP and getZeroP which are provided in the uu-parsinglib package, but they could easily be provided by other packages too.

mkP :: (Monad f, Applicative f, Alternative f) => Gram f a -> f a Source #

mkParser converts a Grammar back into a parser, which can subsequenly be run.

(<<||>) :: Functor f => Gram f (b -> a) -> Gram f b -> Gram f a infixl 4 Source #

The function <<||> is a special version of <||>, which only starts a new instance of its right operand when the left operand cannot proceed. This is used in the function pmMany, where we want to merge as many instances of its argument, but no more than that.

(<||>) :: Functor f => Gram f (a1 -> a2) -> Gram f a1 -> Gram f a2 infixl 4 Source #

The function <||> is the merging equivalent of <*>. Instead of running its two arguments consecutively, the input is split into parts which serve as input for the left operand and parts which are served to the right operand.

sepBy :: (Monad f, Applicative f, Alternative f) => Gram f a -> f b -> f a Source #

sepBy is like mkP, with the additional feature that we require separators between the components. Probably only useful in the permuting case.

gmList :: Functor f => Gram f a -> Gram f [a] Source #

Run a sufficient number of p's in a merged fashion, but no more than necessary!!

Modules

(<>) :: Semigroup a => a -> a -> a infixr 6 #

An associative operation.

class Semigroup a => Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

Minimal complete definition

mempty

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

NOTE: This method is redundant and has the default implementation mappend = '(<>)' since base-4.11.0.0.

mconcat :: [a] -> a #

Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances
Monoid Ordering

Since: base-2.1

Instance details

Defined in GHC.Base

Monoid ()

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid [a]

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Semigroup a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

(Ord a, Bounded a) => Monoid (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup a => Monoid (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Monoid b => Monoid (a -> b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

(Monoid a, Monoid b) => Monoid (a, b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Functor f => Monoid (Gram f (r -> r)) # 
Instance details

Defined in Control.Applicative.Interleaved

Methods

mempty :: Gram f (r -> r) #

mappend :: Gram f (r -> r) -> Gram f (r -> r) -> Gram f (r -> r) #

mconcat :: [Gram f (r -> r)] -> Gram f (r -> r) #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Monoid a => Monoid (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

newtype First a #

Maybe monoid returning the leftmost non-Nothing value.

First a is isomorphic to Alt Maybe a, but precedes it historically.

>>> getFirst (First (Just "hello") <> First Nothing <> First (Just "world"))
Just "hello"

Constructors

First 

Fields

Instances
Monad First 
Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Functor First 
Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Applicative First 
Instance details

Defined in Data.Monoid

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Foldable First

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Eq a => Eq (First a) 
Instance details

Defined in Data.Monoid

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Ord a => Ord (First a) 
Instance details

Defined in Data.Monoid

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Read a => Read (First a) 
Instance details

Defined in Data.Monoid

Show a => Show (First a) 
Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Generic (First a) 
Instance details

Defined in Data.Monoid

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Generic1 First 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 First :: k -> * #

Methods

from1 :: First a -> Rep1 First a #

to1 :: Rep1 First a -> First a #

type Rep (First a) 
Instance details

Defined in Data.Monoid

type Rep (First a) = D1 (MetaData "First" "Data.Monoid" "base" True) (C1 (MetaCons "First" PrefixI True) (S1 (MetaSel (Just "getFirst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe a))))
type Rep1 First 
Instance details

Defined in Data.Monoid

type Rep1 First = D1 (MetaData "First" "Data.Monoid" "base" True) (C1 (MetaCons "First" PrefixI True) (S1 (MetaSel (Just "getFirst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 Maybe)))

newtype Last a #

Maybe monoid returning the rightmost non-Nothing value.

Last a is isomorphic to Dual (First a), and thus to Dual (Alt Maybe a)

>>> getLast (Last (Just "hello") <> Last Nothing <> Last (Just "world"))
Just "world"

Constructors

Last 

Fields

Instances
Monad Last 
Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Functor Last 
Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Applicative Last 
Instance details

Defined in Data.Monoid

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Foldable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Eq a => Eq (Last a) 
Instance details

Defined in Data.Monoid

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Ord a => Ord (Last a) 
Instance details

Defined in Data.Monoid

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Read a => Read (Last a) 
Instance details

Defined in Data.Monoid

Show a => Show (Last a) 
Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Generic (Last a) 
Instance details

Defined in Data.Monoid

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Generic1 Last 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 Last :: k -> * #

Methods

from1 :: Last a -> Rep1 Last a #

to1 :: Rep1 Last a -> Last a #

type Rep (Last a) 
Instance details

Defined in Data.Monoid

type Rep (Last a) = D1 (MetaData "Last" "Data.Monoid" "base" True) (C1 (MetaCons "Last" PrefixI True) (S1 (MetaSel (Just "getLast") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe a))))
type Rep1 Last 
Instance details

Defined in Data.Monoid

type Rep1 Last = D1 (MetaData "Last" "Data.Monoid" "base" True) (C1 (MetaCons "Last" PrefixI True) (S1 (MetaSel (Just "getLast") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 Maybe)))

newtype Dual a #

The dual of a Monoid, obtained by swapping the arguments of mappend.

>>> getDual (mappend (Dual "Hello") (Dual "World"))
"WorldHello"

Constructors

Dual 

Fields

Instances
Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Applicative Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Bounded a => Bounded (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Eq a => Eq (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Ord a => Ord (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

Read a => Read (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Generic (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Dual a) :: * -> * #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Semigroup a => Semigroup (Dual a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Generic1 Dual 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Dual :: k -> * #

Methods

from1 :: Dual a -> Rep1 Dual a #

to1 :: Rep1 Dual a -> Dual a #

type Rep (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Dual a) = D1 (MetaData "Dual" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Dual" PrefixI True) (S1 (MetaSel (Just "getDual") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))
type Rep1 Dual 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Dual = D1 (MetaData "Dual" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Dual" PrefixI True) (S1 (MetaSel (Just "getDual") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

newtype Endo a #

The monoid of endomorphisms under composition.

>>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
>>> appEndo computation "Haskell"
"Hello, Haskell!"

Constructors

Endo 

Fields

Instances
Generic (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Endo a) :: * -> * #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

type Rep (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Endo a) = D1 (MetaData "Endo" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Endo" PrefixI True) (S1 (MetaSel (Just "appEndo") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (a -> a))))

newtype All #

Boolean monoid under conjunction (&&).

>>> getAll (All True <> mempty <> All False)
False
>>> getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8]))
False

Constructors

All 

Fields

Instances
Bounded All 
Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Eq All 
Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Ord All 
Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

Read All 
Instance details

Defined in Data.Semigroup.Internal

Show All 
Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Generic All 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep All :: * -> * #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Semigroup All

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

type Rep All 
Instance details

Defined in Data.Semigroup.Internal

type Rep All = D1 (MetaData "All" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "All" PrefixI True) (S1 (MetaSel (Just "getAll") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Bool)))

newtype Any #

Boolean monoid under disjunction (||).

>>> getAny (Any True <> mempty <> Any False)
True
>>> getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8]))
True

Constructors

Any 

Fields

Instances
Bounded Any 
Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Eq Any 
Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Ord Any 
Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

Read Any 
Instance details

Defined in Data.Semigroup.Internal

Show Any 
Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Generic Any 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep Any :: * -> * #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Semigroup Any

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

type Rep Any 
Instance details

Defined in Data.Semigroup.Internal

type Rep Any = D1 (MetaData "Any" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Any" PrefixI True) (S1 (MetaSel (Just "getAny") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Bool)))

newtype Sum a #

Monoid under addition.

>>> getSum (Sum 1 <> Sum 2 <> mempty)
3

Constructors

Sum 

Fields

Instances
Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Applicative Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Bounded a => Bounded (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Eq a => Eq (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Num a => Num (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Ord a => Ord (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Read a => Read (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Generic (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Sum a) :: * -> * #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Num a => Semigroup (Sum a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Generic1 Sum 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Sum :: k -> * #

Methods

from1 :: Sum a -> Rep1 Sum a #

to1 :: Rep1 Sum a -> Sum a #

type Rep (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Sum a) = D1 (MetaData "Sum" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Sum" PrefixI True) (S1 (MetaSel (Just "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))
type Rep1 Sum 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Sum = D1 (MetaData "Sum" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Sum" PrefixI True) (S1 (MetaSel (Just "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

newtype Product a #

Monoid under multiplication.

>>> getProduct (Product 3 <> Product 4 <> mempty)
12

Constructors

Product 

Fields

Instances
Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Applicative Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Bounded a => Bounded (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Eq a => Eq (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Num a => Num (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Ord a => Ord (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Read a => Read (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Generic (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Product a) :: * -> * #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Num a => Semigroup (Product a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Generic1 Product 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Product :: k -> * #

Methods

from1 :: Product a -> Rep1 Product a #

to1 :: Rep1 Product a -> Product a #

type Rep (Product a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Product a) = D1 (MetaData "Product" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Product" PrefixI True) (S1 (MetaSel (Just "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))
type Rep1 Product 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Product = D1 (MetaData "Product" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Product" PrefixI True) (S1 (MetaSel (Just "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

getAlt :: Alt f a -> f a #