{-# language TypeOperators #-}
{-# language MultiParamTypeClasses #-}
{-# language FlexibleInstances #-}
{-# language FlexibleContexts #-}
{-# language PolyKinds #-}
{-# language DataKinds #-}
{-# language UndecidableInstances #-}
{-# language QuantifiedConstraints #-}
{-# language GADTs #-}
{-# language ScopedTypeVariables #-}
{-# language TypeApplications #-}
{-# language ConstraintKinds #-}
module Unbound.Generics.LocallyNameless.Kind.Derive (
aeqDefK
, fvAnyDefK
, closeDefK
, openDefK
, isPatDefK
, isTermDefK
, isEmbedDefK
, nthPatFindDefK
, namePatFindDefK
, swapsDefK
, lfreshenDefK
, freshenDefK
, acompareDefK
, buildSubstName
, gsubstDefK
, gsubstsDefK
) where
import Control.Arrow (first)
import Control.Monad (liftM)
import Data.Function (on)
import Data.Functor.Contravariant (Contravariant(..))
import Data.Kind
import Data.List (find)
import Data.Monoid (All(..))
import Type.Reflection
import Unbound.Generics.LocallyNameless.Alpha
import Unbound.Generics.LocallyNameless.Name
import Unbound.Generics.LocallyNameless.Fresh
import Unbound.Generics.LocallyNameless.LFresh
import Unbound.Generics.LocallyNameless.Subst
import Unbound.Generics.PermM
import Generics.Kind
type GenericAlpha a = (GenericK a, GAlphaK (RepK a) LoT0 LoT0)
aeqDefK :: forall a. (GenericAlpha a)
=> AlphaCtx -> a -> a -> Bool
aeqDefK c = (gaeqK c) `on` (fromK @_ @a @LoT0)
fvAnyDefK :: forall g a. (GenericAlpha a, Contravariant g, Applicative g)
=> AlphaCtx -> (AnyName -> g AnyName) -> a -> g a
fvAnyDefK c nfn = fmap (toK @_ @a @LoT0) . gfvAnyK c nfn . fromK @_ @a @LoT0
closeDefK :: forall a. (GenericAlpha a)
=> AlphaCtx -> NamePatFind -> a -> a
closeDefK c b = toK @_ @a @LoT0 . gcloseK c b . fromK @_ @a @LoT0
openDefK :: forall a. (GenericAlpha a)
=> AlphaCtx -> NthPatFind -> a -> a
openDefK c b = toK @_ @a @LoT0 . gopenK c b . fromK @_ @a @LoT0
isPatDefK :: forall a. (GenericAlpha a)
=> a -> DisjointSet AnyName
isPatDefK = gisPatK . fromK @_ @a @LoT0
isTermDefK :: forall a. (GenericAlpha a)
=> a -> All
isTermDefK = gisTermK . fromK @_ @a @LoT0
isEmbedDefK :: a -> Bool
isEmbedDefK _ = False
nthPatFindDefK :: forall a. (GenericAlpha a)
=> a -> NthPatFind
nthPatFindDefK = gnthPatFindK . fromK @_ @a @LoT0
namePatFindDefK :: forall a. (GenericAlpha a)
=> a -> NamePatFind
namePatFindDefK = gnamePatFindK . fromK @_ @a @LoT0
swapsDefK :: forall a. (GenericAlpha a)
=> AlphaCtx -> Perm AnyName -> a -> a
swapsDefK ctx perm = toK @_ @a @LoT0 . gswapsK ctx perm . fromK @_ @a @LoT0
lfreshenDefK :: forall m a b. (LFresh m, GenericAlpha a)
=> AlphaCtx -> a -> (a -> Perm AnyName -> m b) -> m b
lfreshenDefK ctx m cont = glfreshenK ctx (fromK @_ @a @LoT0 m) (cont . toK @_ @a @LoT0)
freshenDefK :: forall m a. (Fresh m, GenericAlpha a)
=> AlphaCtx -> a -> m (a, Perm AnyName)
freshenDefK ctx = retractFFM . liftM (first (toK @_ @a @LoT0)) . gfreshenK ctx . fromK @_ @a @LoT0
acompareDefK :: forall a. (GenericAlpha a)
=> AlphaCtx -> a -> a -> Ordering
acompareDefK c = (gacompareK c) `on` (fromK @_ @a @LoT0)
class GAlphaK (f :: LoT k -> *) (a :: LoT k) (b :: LoT k) where
gaeqK :: AlphaCtx -> f a -> f b -> Bool
gfvAnyK :: (a ~ b, Contravariant g, Applicative g)
=> AlphaCtx -> (AnyName -> g AnyName) -> f a -> g (f a)
gcloseK :: a ~ b => AlphaCtx -> NamePatFind -> f a -> f a
gopenK :: a ~ b => AlphaCtx -> NthPatFind -> f a -> f a
gisPatK :: a ~ b => f a -> DisjointSet AnyName
gisTermK :: a ~ b => f a -> All
gnthPatFindK :: a ~ b => f a -> NthPatFind
gnamePatFindK :: a ~ b => f a -> NamePatFind
gswapsK :: a ~ b => AlphaCtx -> Perm AnyName -> f a -> f a
gfreshenK :: (a ~ b, Fresh m) => AlphaCtx -> f a -> FFM m (f a, Perm AnyName)
glfreshenK :: (a ~ b, LFresh m) => AlphaCtx -> f a -> (f a -> Perm AnyName -> m c) -> m c
gacompareK :: AlphaCtx -> f a -> f b -> Ordering
instance forall t a b.
(Alpha (Interpret t a), Alpha (Interpret t b),
Typeable (Interpret t a), Typeable (Interpret t b))
=> GAlphaK (Field t) a b where
gaeqK ctx (Field c1) (Field c2) =
case eqTypeRep (typeRep @(Interpret t a)) (typeRep @(Interpret t b)) of
Nothing -> False
Just HRefl -> aeq' ctx c1 c2
{-# INLINE gaeqK #-}
gfvAnyK ctx nfn = fmap Field . fvAny' ctx nfn . unField
{-# INLINE gfvAnyK #-}
gcloseK ctx b = Field . close ctx b . unField
{-# INLINE gcloseK #-}
gopenK ctx b = Field . open ctx b . unField
{-# INLINE gopenK #-}
gisPatK = isPat . unField
{-# INLINE gisPatK #-}
gisTermK = isTerm . unField
{-# INLINE gisTermK #-}
gnthPatFindK = nthPatFind . unField
{-# INLINE gnthPatFindK #-}
gnamePatFindK = namePatFind . unField
{-# INLINE gnamePatFindK #-}
gswapsK ctx perm = Field . swaps' ctx perm . unField
{-# INLINE gswapsK #-}
gfreshenK ctx = liftM (first Field) . liftFFM . freshen' ctx . unField
{-# INLINE gfreshenK #-}
glfreshenK ctx (Field c) cont = lfreshen' ctx c (cont . Field)
{-# INLINE glfreshenK #-}
gacompareK ctx (Field c1) (Field c2) =
case eqTypeRep (typeRep @(Interpret t a)) (typeRep @(Interpret t b)) of
Nothing -> compare (SomeTypeRep (typeRep @(Interpret t a)))
(SomeTypeRep (typeRep @(Interpret t b)))
Just HRefl -> acompare' ctx c1 c2
instance GAlphaK f a b => GAlphaK (M1 i d f) a b where
gaeqK ctx (M1 f1) (M1 f2) = gaeqK ctx f1 f2
{-# INLINE gaeqK #-}
gfvAnyK ctx nfn = fmap M1 . gfvAnyK ctx nfn . unM1
{-# INLINE gfvAnyK #-}
gcloseK ctx b = M1 . gcloseK ctx b . unM1
{-# INLINE gcloseK #-}
gopenK ctx b = M1 . gopenK ctx b . unM1
{-# INLINE gopenK #-}
gisPatK = gisPatK . unM1
{-# INLINE gisPatK #-}
gisTermK = gisTermK . unM1
{-# INLINE gisTermK #-}
gnthPatFindK = gnthPatFindK . unM1
{-# INLINE gnthPatFindK #-}
gnamePatFindK = gnamePatFindK . unM1
{-# INLINE gnamePatFindK #-}
gswapsK ctx perm = M1 . gswapsK ctx perm . unM1
{-# INLINE gswapsK #-}
gfreshenK ctx = liftM (first M1) . gfreshenK ctx . unM1
{-# INLINE gfreshenK #-}
glfreshenK ctx (M1 f) cont =
glfreshenK ctx f (cont . M1)
{-# INLINE glfreshenK #-}
gacompareK ctx (M1 f1) (M1 f2) = gacompareK ctx f1 f2
instance GAlphaK U1 a b where
gaeqK _ctx _ _ = True
{-# INLINE gaeqK #-}
gfvAnyK _ctx _nfn _ = pure U1
gcloseK _ctx _b _ = U1
gopenK _ctx _b _ = U1
gisPatK _ = mempty
gisTermK _ = mempty
gnthPatFindK _ = mempty
gnamePatFindK _ = mempty
gswapsK _ctx _perm _ = U1
gfreshenK _ctx _ = return (U1, mempty)
{-# INLINE gfreshenK #-}
glfreshenK _ctx _ cont = cont U1 mempty
gacompareK _ctx _ _ = EQ
instance (GAlphaK f a b, GAlphaK g a b) => GAlphaK (f :*: g) a b where
gaeqK ctx (f1 :*: g1) (f2 :*: g2) =
gaeqK ctx f1 f2 && gaeqK ctx g1 g2
{-# INLINE gaeqK #-}
gfvAnyK ctx nfn (f :*: g) = (:*:) <$> gfvAnyK ctx nfn f
<*> gfvAnyK ctx nfn g
{-# INLINE gfvAnyK #-}
gcloseK ctx b (f :*: g) = gcloseK ctx b f :*: gcloseK ctx b g
{-# INLINE gcloseK #-}
gopenK ctx b (f :*: g) = gopenK ctx b f :*: gopenK ctx b g
{-# INLINE gopenK #-}
gisPatK (f :*: g) = gisPatK f <> gisPatK g
{-# INLINE gisPatK #-}
gisTermK (f :*: g) = gisTermK f <> gisTermK g
{-# INLINE gisTermK #-}
gnthPatFindK (f :*: g) = gnthPatFindK f <> gnthPatFindK g
{-# INLINE gnthPatFindK #-}
gnamePatFindK (f :*: g) = gnamePatFindK f <> gnamePatFindK g
{-# INLINE gnamePatFindK #-}
gswapsK ctx perm (f :*: g) =
gswapsK ctx perm f :*: gswapsK ctx perm g
{-# INLINE gswapsK #-}
gfreshenK ctx (f :*: g) = do
~(g', perm2) <- gfreshenK ctx g
~(f', perm1) <- gfreshenK ctx (gswapsK ctx perm2 f)
return (f' :*: g', perm1 <> perm2)
{-# INLINE gfreshenK #-}
glfreshenK ctx (f :*: g) cont =
glfreshenK ctx g $ \g' perm2 ->
glfreshenK ctx (gswapsK ctx perm2 f) $ \f' perm1 ->
cont (f' :*: g') (perm1 <> perm2)
{-# INLINE glfreshenK #-}
gacompareK ctx (f1 :*: g1) (f2 :*: g2) =
(gacompareK ctx f1 f2) <> (gacompareK ctx g1 g2)
instance (GAlphaK f a b, GAlphaK g a b) => GAlphaK (f :+: g) a b where
gaeqK ctx (L1 f1) (L1 f2) = gaeqK ctx f1 f2
gaeqK ctx (R1 g1) (R1 g2) = gaeqK ctx g1 g2
gaeqK _ctx _ _ = False
{-# INLINE gaeqK #-}
gfvAnyK ctx nfn (L1 f) = fmap L1 (gfvAnyK ctx nfn f)
gfvAnyK ctx nfn (R1 g) = fmap R1 (gfvAnyK ctx nfn g)
{-# INLINE gfvAnyK #-}
gcloseK ctx b (L1 f) = L1 (gcloseK ctx b f)
gcloseK ctx b (R1 g) = R1 (gcloseK ctx b g)
{-# INLINE gcloseK #-}
gopenK ctx b (L1 f) = L1 (gopenK ctx b f)
gopenK ctx b (R1 g) = R1 (gopenK ctx b g)
{-# INLINE gopenK #-}
gisPatK (L1 f) = gisPatK f
gisPatK (R1 g) = gisPatK g
{-# INLINE gisPatK #-}
gisTermK (L1 f) = gisTermK f
gisTermK (R1 g) = gisTermK g
{-# INLINE gisTermK #-}
gnthPatFindK (L1 f) = gnthPatFindK f
gnthPatFindK (R1 g) = gnthPatFindK g
{-# INLINE gnthPatFindK #-}
gnamePatFindK (L1 f) = gnamePatFindK f
gnamePatFindK (R1 g) = gnamePatFindK g
{-# INLINE gnamePatFindK #-}
gswapsK ctx perm (L1 f) = L1 (gswapsK ctx perm f)
gswapsK ctx perm (R1 f) = R1 (gswapsK ctx perm f)
{-# INLINE gswapsK #-}
gfreshenK ctx (L1 f) = liftM (first L1) (gfreshenK ctx f)
gfreshenK ctx (R1 f) = liftM (first R1) (gfreshenK ctx f)
{-# INLINE gfreshenK #-}
glfreshenK ctx (L1 f) cont =
glfreshenK ctx f (cont . L1)
glfreshenK ctx (R1 g) cont =
glfreshenK ctx g (cont . R1)
{-# INLINE glfreshenK #-}
gacompareK _ctx (L1 _) (R1 _) = LT
gacompareK _ctx (R1 _) (L1 _) = GT
gacompareK ctx (L1 f1) (L1 f2) = gacompareK ctx f1 f2
gacompareK ctx (R1 g1) (R1 g2) = gacompareK ctx g1 g2
{-# INLINE gacompareK #-}
instance ((Interpret c a, Interpret c b) => GAlphaK f a b)
=> GAlphaK (c :=>: f) a b where
gaeqK ctx (SuchThat f1) (SuchThat f2) = gaeqK ctx f1 f2
{-# INLINE gaeqK #-}
gfvAnyK ctx nfn (SuchThat f) = fmap SuchThat (gfvAnyK ctx nfn f)
{-# INLINE gfvAnyK #-}
gcloseK ctx b (SuchThat f) = SuchThat (gcloseK ctx b f)
{-# INLINE gcloseK #-}
gopenK ctx b (SuchThat f) = SuchThat (gopenK ctx b f)
{-# INLINE gopenK #-}
gisPatK (SuchThat f) = gisPatK f
{-# INLINE gisPatK #-}
gisTermK (SuchThat f) = gisTermK f
{-# INLINE gisTermK #-}
gnthPatFindK (SuchThat f) = gnthPatFindK f
{-# INLINE gnthPatFindK #-}
gnamePatFindK (SuchThat f) = gnamePatFindK f
{-# INLINE gnamePatFindK #-}
gswapsK ctx perm (SuchThat f) = SuchThat (gswapsK ctx perm f)
{-# INLINE gswapsK #-}
gfreshenK ctx (SuchThat f) = liftM (first SuchThat) (gfreshenK ctx f)
{-# INLINE gfreshenK #-}
glfreshenK ctx (SuchThat f) cont = glfreshenK ctx f (cont . SuchThat)
{-# INLINE glfreshenK #-}
gacompareK ctx (SuchThat f1) (SuchThat f2) = gacompareK ctx f1 f2
{-# INLINE gacompareK #-}
instance (forall (t1 :: k) (t2 :: k). GAlphaK f (t1 :&&: a) (t2 :&&: b))
=> GAlphaK (Exists k f) a b where
gaeqK ctx (Exists f1) (Exists f2) = gaeqK ctx f1 f2
{-# INLINE gaeqK #-}
gfvAnyK ctx nfn (Exists f) = fmap Exists (gfvAnyK ctx nfn f)
{-# INLINE gfvAnyK #-}
gcloseK ctx b (Exists f) = Exists (gcloseK ctx b f)
{-# INLINE gcloseK #-}
gopenK ctx b (Exists f) = Exists (gopenK ctx b f)
{-# INLINE gopenK #-}
gisPatK (Exists f) = gisPatK f
{-# INLINE gisPatK #-}
gisTermK (Exists f) = gisTermK f
{-# INLINE gisTermK #-}
gnthPatFindK (Exists f) = gnthPatFindK f
{-# INLINE gnthPatFindK #-}
gnamePatFindK (Exists f) = gnamePatFindK f
{-# INLINE gnamePatFindK #-}
gswapsK ctx perm (Exists f) = Exists (gswapsK ctx perm f)
{-# INLINE gswapsK #-}
gfreshenK ctx (Exists f) = liftM (first Exists) (gfreshenK ctx f)
{-# INLINE gfreshenK #-}
glfreshenK ctx (Exists f) cont = glfreshenK ctx f (cont . Exists)
{-# INLINE glfreshenK #-}
gacompareK ctx (Exists f1) (Exists f2) = gacompareK ctx f1 f2
gsubstDefK :: forall a b. (GenericK a, GSubstK b (RepK a) LoT0, Subst b a)
=> Name b -> b -> a -> a
gsubstDefK n u x =
if (isFreeName n)
then case (isvar x :: Maybe (SubstName a b)) of
Just (SubstName m) | m == n -> u
_ -> case (isCoerceVar x :: Maybe (SubstCoerce a b)) of
Just (SubstCoerce m f) | m == n -> maybe x id (f u)
_ -> toK @_ @a @LoT0 $ gsubstK n u (fromK @_ @a @LoT0 x)
else error $ "Cannot substitute for bound variable " ++ show n
gsubstsDefK :: forall a b. (GenericK a, GSubstK b (RepK a) LoT0, Subst b a)
=> [(Name b, b)] -> a -> a
gsubstsDefK ss x
| all (isFreeName . fst) ss =
case (isvar x :: Maybe (SubstName a b)) of
Just (SubstName m) | Just (_, u) <- find ((==m) . fst) ss -> u
_ -> case isCoerceVar x :: Maybe (SubstCoerce a b) of
Just (SubstCoerce m f) | Just (_, u) <- find ((==m) . fst) ss -> maybe x id (f u)
_ -> toK @_ @a @LoT0 $ gsubstsK ss (fromK @_ @a @LoT0 x)
| otherwise =
error $ "Cannot substitute for bound variable in: " ++ show (map fst ss)
buildSubstName :: forall a b. (Typeable a, Typeable b)
=> Name a -> Maybe (SubstName a b)
buildSubstName x = case eqTypeRep (typeRep @a) (typeRep @b) of
Nothing -> Nothing
Just HRefl -> Just (SubstName x)
class GSubstK b (f :: LoT k -> *) (a :: LoT k) where
gsubstK :: Name b -> b -> f a -> f a
gsubstsK :: [(Name b, b)] -> f a -> f a
instance Subst b (Interpret t a) => GSubstK b (Field t) a where
gsubstK nm val = Field . subst nm val . unField
gsubstsK ss = Field . substs ss . unField
instance GSubstK b f a => GSubstK b (M1 i c f) a where
gsubstK nm val = M1 . gsubstK nm val . unM1
gsubstsK ss = M1 . gsubstsK ss . unM1
instance GSubstK b U1 a where
gsubstK _nm _val _ = U1
gsubstsK _ss _ = U1
instance (GSubstK b f a, GSubstK b g a) => GSubstK b (f :*: g) a where
gsubstK nm val (f :*: g) = gsubstK nm val f :*: gsubstK nm val g
gsubstsK ss (f :*: g) = gsubstsK ss f :*: gsubstsK ss g
instance (GSubstK b f a, GSubstK b g a) => GSubstK b (f :+: g) a where
gsubstK nm val (L1 f) = L1 $ gsubstK nm val f
gsubstK nm val (R1 g) = R1 $ gsubstK nm val g
gsubstsK ss (L1 f) = L1 $ gsubstsK ss f
gsubstsK ss (R1 g) = R1 $ gsubstsK ss g
instance ((Interpret c a) => GSubstK b f a) => GSubstK b (c :=>: f) a where
gsubstK nm val (SuchThat f) = SuchThat $ gsubstK nm val f
gsubstsK ss (SuchThat f) = SuchThat $ gsubstsK ss f
instance (forall (t :: k). GSubstK b f (t :&&: a)) => GSubstK b (Exists k f) a where
gsubstK nm val (Exists f) = Exists $ gsubstK nm val f
gsubstsK ss (Exists f) = Exists $ gsubstsK ss f