toysolver-0.6.0: Assorted decision procedures for SAT, SMT, Max-SAT, PB, MIP, etc

Copyright(c) Masahiro Sakai 2012-2014
LicenseBSD-style
Maintainermasahiro.sakai@gmail.com
Stabilityprovisional
Portabilitynon-portable (BangPatterns, ScopedTypeVariables, CPP, DeriveDataTypeable, RecursiveDo)
Safe HaskellNone
LanguageHaskell2010

ToySolver.SAT

Contents

Description

A CDCL SAT solver.

It follows the design of MiniSat and SAT4J.

See also:

Synopsis

The Solver type

data Solver Source #

Solver instance

Instances
AddXORClause IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

addXORClause :: Solver -> [Lit] -> Bool -> IO () Source #

addXORClauseSoft :: Solver -> Lit -> [Lit] -> Bool -> IO () Source #

AddPBLin IO Solver Source # 
Instance details

Defined in ToySolver.SAT

AddCardinality IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

addAtLeast :: Solver -> [Lit] -> Int -> IO () Source #

addAtMost :: Solver -> [Lit] -> Int -> IO () Source #

addExactly :: Solver -> [Lit] -> Int -> IO () Source #

AddClause IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

addClause :: Solver -> Clause -> IO () Source #

NewVar IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

newVar :: Solver -> IO Var Source #

newVars :: Solver -> Int -> IO [Var] Source #

newVars_ :: Solver -> Int -> IO () Source #

newSolver :: IO Solver Source #

Create a new Solver instance.

newSolverWithConfig :: Config -> IO Solver Source #

Create a new Solver instance with a given configulation.

Basic data structures

type Var = Int Source #

Variable is represented as positive integers (DIMACS format).

type Lit = Int Source #

Positive (resp. negative) literals are represented as positive (resp. negative) integers. (DIMACS format).

literal Source #

Arguments

:: Var

variable

-> Bool

polarity

-> Lit 

Construct a literal from a variable and its polarity. True (resp False) means positive (resp. negative) literal.

litNot :: Lit -> Lit Source #

Negation of the Lit.

litVar :: Lit -> Var Source #

Underlying variable of the Lit

litPolarity :: Lit -> Bool Source #

Polarity of the Lit. True means positive literal and False means negative literal.

evalLit :: IModel m => m -> Lit -> Bool Source #

Problem specification

newVar :: NewVar m a => a -> m Var Source #

Add a new variable

newVars :: NewVar m a => a -> Int -> m [Var] Source #

Add variables. newVars a n = replicateM n (newVar a), but maybe faster.

newVars_ :: NewVar m a => a -> Int -> m () Source #

Add variables. newVars_ a n = newVars a n >> return (), but maybe faster.

resizeVarCapacity :: Solver -> Int -> IO () Source #

Pre-allocate internal buffer for n variables.

Clauses

class NewVar m a => AddClause m a | a -> m where Source #

Methods

addClause :: a -> Clause -> m () Source #

Instances
AddClause IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

addClause :: Solver -> Clause -> IO () Source #

PrimMonad m => AddClause m (PBStore m) Source # 
Instance details

Defined in ToySolver.SAT.Store.PB

Methods

addClause :: PBStore m -> Clause -> m () Source #

Monad m => AddClause m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.Tseitin

Methods

addClause :: Encoder m -> Clause -> m () Source #

Monad m => AddClause m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.PBNLC

Methods

addClause :: Encoder m -> Clause -> m () Source #

Monad m => AddClause m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.PB

Methods

addClause :: Encoder m -> Clause -> m () Source #

Monad m => AddClause m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.Cardinality

Methods

addClause :: Encoder m -> Clause -> m () Source #

PrimMonad m => AddClause m (CNFStore m) Source # 
Instance details

Defined in ToySolver.SAT.Store.CNF

Methods

addClause :: CNFStore m -> Clause -> m () Source #

type Clause = [Lit] Source #

Disjunction of Lit.

Cardinality constraints

class AddClause m a => AddCardinality m a | a -> m where Source #

Minimal complete definition

addAtLeast

Methods

addAtLeast Source #

Arguments

:: a 
-> [Lit]

set of literals {l1,l2,..} (duplicated elements are ignored)

-> Int

n

-> m () 

Add a cardinality constraints atleast({l1,l2,..},n).

addAtMost Source #

Arguments

:: a 
-> [Lit]

set of literals {l1,l2,..} (duplicated elements are ignored)

-> Int

n

-> m () 

Add a cardinality constraints atmost({l1,l2,..},n).

addExactly Source #

Arguments

:: a 
-> [Lit]

set of literals {l1,l2,..} (duplicated elements are ignored)

-> Int

n

-> m () 

Add a cardinality constraints exactly({l1,l2,..},n).

Instances
AddCardinality IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

addAtLeast :: Solver -> [Lit] -> Int -> IO () Source #

addAtMost :: Solver -> [Lit] -> Int -> IO () Source #

addExactly :: Solver -> [Lit] -> Int -> IO () Source #

PrimMonad m => AddCardinality m (PBStore m) Source # 
Instance details

Defined in ToySolver.SAT.Store.PB

Methods

addAtLeast :: PBStore m -> [Lit] -> Int -> m () Source #

addAtMost :: PBStore m -> [Lit] -> Int -> m () Source #

addExactly :: PBStore m -> [Lit] -> Int -> m () Source #

Monad m => AddCardinality m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.PBNLC

Methods

addAtLeast :: Encoder m -> [Lit] -> Int -> m () Source #

addAtMost :: Encoder m -> [Lit] -> Int -> m () Source #

addExactly :: Encoder m -> [Lit] -> Int -> m () Source #

PrimMonad m => AddCardinality m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.PB

Methods

addAtLeast :: Encoder m -> [Lit] -> Int -> m () Source #

addAtMost :: Encoder m -> [Lit] -> Int -> m () Source #

addExactly :: Encoder m -> [Lit] -> Int -> m () Source #

PrimMonad m => AddCardinality m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.Cardinality

Methods

addAtLeast :: Encoder m -> [Lit] -> Int -> m () Source #

addAtMost :: Encoder m -> [Lit] -> Int -> m () Source #

addExactly :: Encoder m -> [Lit] -> Int -> m () Source #

type AtLeast = ([Lit], Int) Source #

type Exactly = ([Lit], Int) Source #

(Linear) pseudo-boolean constraints

class AddCardinality m a => AddPBLin m a | a -> m where Source #

Minimal complete definition

addPBAtLeast

Methods

addPBAtLeast Source #

Arguments

:: a 
-> PBLinSum

list of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> m () 

Add a pseudo boolean constraints c1*l1 + c2*l2 + … ≥ n.

addPBAtMost Source #

Arguments

:: a 
-> PBLinSum

list of [(c1,l1),(c2,l2),…]

-> Integer

n

-> m () 

Add a pseudo boolean constraints c1*l1 + c2*l2 + … ≤ n.

addPBExactly Source #

Arguments

:: a 
-> PBLinSum

list of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> m () 

Add a pseudo boolean constraints c1*l1 + c2*l2 + … = n.

addPBAtLeastSoft Source #

Arguments

:: a 
-> Lit

Selector literal sel

-> PBLinSum

list of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> m () 

Add a soft pseudo boolean constraints sel ⇒ c1*l1 + c2*l2 + … ≥ n.

addPBAtMostSoft Source #

Arguments

:: a 
-> Lit

Selector literal sel

-> PBLinSum

list of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> m () 

Add a soft pseudo boolean constraints sel ⇒ c1*l1 + c2*l2 + … ≤ n.

addPBExactlySoft Source #

Arguments

:: a 
-> Lit

Selector literal sel

-> PBLinSum

list of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> m () 

Add a soft pseudo boolean constraints sel ⇒ c1*l1 + c2*l2 + … = n.

Instances
AddPBLin IO Solver Source # 
Instance details

Defined in ToySolver.SAT

PrimMonad m => AddPBLin m (PBStore m) Source # 
Instance details

Defined in ToySolver.SAT.Store.PB

Monad m => AddPBLin m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.PBNLC

PrimMonad m => AddPBLin m (Encoder m) Source # 
Instance details

Defined in ToySolver.SAT.Encoder.PB

XOR clauses

class AddClause m a => AddXORClause m a | a -> m where Source #

Minimal complete definition

addXORClause

Methods

addXORClause Source #

Arguments

:: a 
-> [Lit]

literals [l1, l2, …, ln]

-> Bool

rhs

-> m () 

Add a parity constraint l1 ⊕ l2 ⊕ … ⊕ ln = rhs

addXORClauseSoft Source #

Arguments

:: a 
-> Lit

Selector literal sel

-> [Lit]

literals [l1, l2, …, ln]

-> Bool

rhs

-> m () 

Add a soft parity constraint sel ⇒ l1 ⊕ l2 ⊕ … ⊕ ln = rhs

Instances
AddXORClause IO Solver Source # 
Instance details

Defined in ToySolver.SAT

Methods

addXORClause :: Solver -> [Lit] -> Bool -> IO () Source #

addXORClauseSoft :: Solver -> Lit -> [Lit] -> Bool -> IO () Source #

type XORClause = ([Lit], Bool) Source #

XOR clause

'([l1,l2..ln], b)' means l1 ⊕ l2 ⊕ ⋯ ⊕ ln = b.

Note that:

  • True can be represented as ([], False)
  • False can be represented as ([], True)

Theory

Solving

solve :: Solver -> IO Bool Source #

Solve constraints. Returns True if the problem is SATISFIABLE. Returns False if the problem is UNSATISFIABLE.

solveWith Source #

Arguments

:: Solver 
-> [Lit]

Assumptions

-> IO Bool 

Solve constraints under assuptions. Returns True if the problem is SATISFIABLE. Returns False if the problem is UNSATISFIABLE.

cancel :: Solver -> IO () Source #

Cancel exectution of solve or solveWith.

This can be called from other threads.

Extract results

class IModel a where Source #

Methods

evalVar :: a -> Var -> Bool Source #

Instances
IModel (Var -> Bool) Source # 
Instance details

Defined in ToySolver.SAT.Types

Methods

evalVar :: (Var -> Bool) -> Var -> Bool Source #

IModel (UArray Var Bool) Source # 
Instance details

Defined in ToySolver.SAT.Types

Methods

evalVar :: UArray Var Bool -> Var -> Bool Source #

IModel (Array Var Bool) Source # 
Instance details

Defined in ToySolver.SAT.Types

Methods

evalVar :: Array Var Bool -> Var -> Bool Source #

type Model = UArray Var Bool Source #

A model is represented as a mapping from variables to its values.

getModel :: Solver -> IO Model Source #

After solve returns True, it returns an satisfying assignment.

getFailedAssumptions :: Solver -> IO [Lit] Source #

After solveWith returns False, it returns a set of assumptions that leads to contradiction. In particular, if it returns an empty set, the problem is unsatisiable without any assumptions.

getAssumptionsImplications :: Solver -> IO [Lit] Source #

EXPERIMENTAL API: After solveWith returns True or failed with BudgetExceeded exception, it returns a set of literals that are implied by assumptions.

Solver configulation

setVarPolarity :: Solver -> Var -> Bool -> IO () Source #

The default polarity of a variable.

setLogger :: Solver -> (String -> IO ()) -> IO () Source #

set callback function for receiving messages.

setRandomGen :: Solver -> GenIO -> IO () Source #

Set random generator used by the random variable selection

getRandomGen :: Solver -> IO GenIO Source #

Get random generator used by the random variable selection

Read state

getNVars :: Solver -> IO Int Source #

number of variables of the problem.

getNConstraints :: Solver -> IO Int Source #

number of constraints.

getNLearntConstraints :: Solver -> IO Int Source #

number of learnt constrints.

getFixedLiterals :: Solver -> IO [Lit] Source #

it returns a set of literals that are fixed without any assumptions.

Internal API