{-# LANGUAGE DeriveDataTypeable, PolyKinds, Safe #-}
module Data.Functor.Product.PolyKinds (Product(..)) where
import Control.Applicative
import Control.Monad (MonadPlus(..))
import Control.Monad.Fix (MonadFix(..))
import Control.Monad.Zip (MonadZip(mzipWith))
import Data.Data (Data)
import Data.Functor.Classes
import GHC.Generics (Generic, Generic1)
import Prelude.Compat
data Product f g a = Pair (f a) (g a)
deriving (Data, Generic, Generic1, Eq, Ord, Read, Show)
instance (Eq1 f, Eq1 g) => Eq1 (Product f g) where
liftEq eq (Pair x1 y1) (Pair x2 y2) = liftEq eq x1 x2 && liftEq eq y1 y2
instance (Ord1 f, Ord1 g) => Ord1 (Product f g) where
liftCompare comp (Pair x1 y1) (Pair x2 y2) =
liftCompare comp x1 x2 <> liftCompare comp y1 y2
instance (Read1 f, Read1 g) => Read1 (Product f g) where
liftReadPrec rp rl =
readData $
readBinaryWith (liftReadPrec rp rl) (liftReadPrec rp rl) "Pair" Pair
liftReadListPrec = liftReadListPrecDefault
liftReadList = liftReadListDefault
instance (Show1 f, Show1 g) => Show1 (Product f g) where
liftShowsPrec sp sl d (Pair x y) =
showsBinaryWith (liftShowsPrec sp sl) (liftShowsPrec sp sl) "Pair" d x y
instance (Functor f, Functor g) => Functor (Product f g) where
fmap f (Pair x y) = Pair (fmap f x) (fmap f y)
a <$ (Pair x y) = Pair (a <$ x) (a <$ y)
instance (Foldable f, Foldable g) => Foldable (Product f g) where
foldMap f (Pair x y) = foldMap f x <> foldMap f y
instance (Traversable f, Traversable g) => Traversable (Product f g) where
traverse f (Pair x y) = liftA2 Pair (traverse f x) (traverse f y)
instance (Applicative f, Applicative g) => Applicative (Product f g) where
pure x = Pair (pure x) (pure x)
Pair f g <*> Pair x y = Pair (f <*> x) (g <*> y)
liftA2 f (Pair a b) (Pair x y) = Pair (liftA2 f a x) (liftA2 f b y)
instance (Alternative f, Alternative g) => Alternative (Product f g) where
empty = Pair empty empty
Pair x1 y1 <|> Pair x2 y2 = Pair (x1 <|> x2) (y1 <|> y2)
instance (Monad f, Monad g) => Monad (Product f g) where
Pair m n >>= f =
Pair (m >>= fstP . f) (n >>= sndP . f)
where
fstP (Pair a _) = a
sndP (Pair _ b) = b
instance (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) where
mzero = Pair mzero mzero
Pair x1 y1 `mplus` Pair x2 y2 = Pair (x1 `mplus` x2) (y1 `mplus` y2)
instance (MonadFix f, MonadFix g) => MonadFix (Product f g) where
mfix f =
Pair (mfix (fstP . f)) (mfix (sndP . f))
where
fstP (Pair a _) = a
sndP (Pair _ b) = b
instance (MonadZip f, MonadZip g) => MonadZip (Product f g) where
mzipWith f (Pair x1 y1) (Pair x2 y2) = Pair (mzipWith f x1 x2) (mzipWith f y1 y2)