{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE UndecidableInstances #-}
module Language.Syntactic.Constructs.Binding where
import qualified Control.Monad.Identity as Monad
import Control.Monad.Reader
import Data.Ix
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Tree
import Data.Typeable
import Data.Hash
import Data.PolyProxy
import Data.DynamicAlt
import Language.Syntactic
import Language.Syntactic.Constructs.Condition
import Language.Syntactic.Constructs.Construct
import Language.Syntactic.Constructs.Decoration
import Language.Syntactic.Constructs.Identity
import Language.Syntactic.Constructs.Literal
import Language.Syntactic.Constructs.Monad
import Language.Syntactic.Constructs.Tuple
newtype VarId = VarId { varInteger :: Integer }
deriving (Eq, Ord, Num, Real, Integral, Enum, Ix)
instance Show VarId
where
show (VarId i) = show i
showVar :: VarId -> String
showVar v = "var" ++ show v
data Variable a
where
Variable :: VarId -> Variable (Full a)
instance Constrained Variable
where
{-# SPECIALIZE instance Constrained Variable #-}
{-# INLINABLE exprDict #-}
type Sat Variable = Top
exprDict = const Dict
instance Equality Variable
where
{-# INLINABLE equal #-}
{-# INLINABLE exprHash #-}
equal (Variable v1) (Variable v2) = v1==v2
exprHash (Variable _) = hashInt 0
instance Render Variable
where
{-# INLINABLE renderSym #-}
renderSym (Variable v) = showVar v
instance StringTree Variable
where
{-# INLINABLE stringTreeSym #-}
stringTreeSym [] (Variable v) = Node ("var:" ++ show v) []
data Lambda a
where
Lambda :: VarId -> Lambda (b :-> Full (a -> b))
instance Constrained Lambda
where
{-# INLINABLE exprDict #-}
type Sat Lambda = Top
exprDict = const Dict
instance Equality Lambda
where
{-# INLINABLE equal #-}
{-# INLINABLE exprHash #-}
equal (Lambda v1) (Lambda v2) = v1==v2
exprHash (Lambda _) = hashInt 0
instance Render Lambda
where
{-# INLINABLE renderSym #-}
{-# INLINABLE renderArgs #-}
renderSym (Lambda v) = "Lambda " ++ show v
renderArgs [body] (Lambda v) = "(\\" ++ showVar v ++ " -> " ++ body ++ ")"
instance StringTree Lambda
where
{-# INLINABLE stringTreeSym #-}
stringTreeSym [body] (Lambda v) = Node ("Lambda " ++ show v) [body]
reuseLambda :: Lambda (b :-> Full (a -> b)) -> Lambda (c :-> Full (a -> c))
reuseLambda (Lambda v) = Lambda v
{-# INLINABLE reuseLambda #-}
data Let a
where
Let :: Let (a :-> (a -> b) :-> Full b)
instance Constrained Let
where
{-# INLINABLE exprDict #-}
type Sat Let = Top
exprDict = const Dict
instance Equality Let
where
{-# INLINABLE equal #-}
{-# INLINABLE exprHash #-}
equal Let Let = True
exprHash Let = hashInt 0
instance Render Let
where
{-# INLINABLE renderSym #-}
{-# INLINABLE renderArgs #-}
renderSym Let = "Let"
renderArgs [] Let = "Let"
renderArgs [f,a] Let = "(" ++ unwords ["letBind",f,a] ++ ")"
instance StringTree Let
where
{-# INLINABLE stringTreeSym #-}
stringTreeSym [a,body] Let = case splitAt 7 node of
("Lambda ", var) -> Node ("Let " ++ var) [a,body']
_ -> Node "Let" [a,body]
where
Node node ~[body'] = body
instance Eval Let
where
{-# INLINABLE evaluate #-}
evaluate Let = flip ($)
subst :: forall dom a b
. ( ConstrainedBy dom Typeable
, Project Lambda dom
, Project Variable dom
)
=> VarId
-> ASTF dom a
-> ASTF dom b
-> ASTF dom b
subst v new = go
where
go :: AST dom c -> AST dom c
go a@((prj -> Just (Lambda w)) :$ _)
| v==w = a
go (f :$ a) = go f :$ go a
go var
| Just (Variable w) <- prj var
, v==w
, Dict <- exprDictSub pTypeable new
, Dict <- exprDictSub pTypeable var
, Just new' <- gcast new
= new'
go a = a
betaReduce
:: ( ConstrainedBy dom Typeable
, Project Lambda dom
, Project Variable dom
)
=> ASTF dom a
-> ASTF dom (a -> b)
-> ASTF dom b
betaReduce new (lam :$ body)
| Just (Lambda v) <- prj lam = subst v new body
{-# INLINABLE betaReduce #-}
class EvalBind sub
where
evalBindSym
:: (EvalBind dom, ConstrainedBy dom Typeable, Typeable (DenResult sig))
=> sub sig
-> Args (AST dom) sig
-> Reader [(VarId,Dynamic)] (DenResult sig)
default evalBindSym
:: (Eval sub, EvalBind dom, ConstrainedBy dom Typeable, Typeable (DenResult sig))
=> sub sig
-> Args (AST dom) sig
-> Reader [(VarId,Dynamic)] (DenResult sig)
evalBindSym = evalBindSymDefault
{-# INLINABLE evalBindSym #-}
instance (EvalBind sub1, EvalBind sub2) => EvalBind (sub1 :+: sub2)
where
{-# SPECIALIZE instance (EvalBind sub1, EvalBind sub2) => EvalBind (sub1 :+: sub2) #-}
{-# INLINABLE evalBindSym #-}
evalBindSym (InjL a) = evalBindSym a
evalBindSym (InjR a) = evalBindSym a
evalBindM :: (EvalBind dom, ConstrainedBy dom Typeable) =>
ASTF dom a -> Reader [(VarId,Dynamic)] a
evalBindM a
| Dict <- exprDictSub pTypeable a
= liftM result $ match (\s -> liftM Full . evalBindSym s) a
{-# INLINABLE evalBindM #-}
evalBind :: (EvalBind dom, ConstrainedBy dom Typeable) => ASTF dom a -> a
evalBind = flip runReader [] . evalBindM
{-# INLINABLE evalBind #-}
appDen :: Denotation sig -> Args Monad.Identity sig -> DenResult sig
appDen a Nil = a
appDen f (a :* as) = appDen (f $ result $ Monad.runIdentity a) as
{-# INLINABLE appDen #-}
evalBindSymDefault
:: (Eval sub, EvalBind dom, ConstrainedBy dom Typeable)
=> sub sig
-> Args (AST dom) sig
-> Reader [(VarId,Dynamic)] (DenResult sig)
evalBindSymDefault sym args = do
args' <- mapArgsM (liftM (Monad.Identity . Full) . evalBindM) args
return $ appDen (evaluate sym) args'
{-# INLINABLE evalBindSymDefault #-}
instance EvalBind dom => EvalBind (dom :| pred)
where
{-# SPECIALIZE instance (EvalBind dom) => EvalBind (dom :| pred) #-}
{-# INLINABLE evalBindSym #-}
evalBindSym (C a) = evalBindSym a
instance EvalBind dom => EvalBind (dom :|| pred)
where
{-# SPECIALIZE instance (EvalBind dom) => EvalBind (dom :|| pred) #-}
{-# INLINABLE evalBindSym #-}
evalBindSym (C' a) = evalBindSym a
instance EvalBind dom => EvalBind (SubConstr1 c dom p)
where
{-# SPECIALIZE instance (EvalBind dom) => EvalBind (SubConstr1 c dom p) #-}
{-# INLINABLE evalBindSym #-}
evalBindSym (SubConstr1 a) = evalBindSym a
instance EvalBind dom => EvalBind (SubConstr2 c dom pa pb)
where
{-# SPECIALIZE instance (EvalBind dom) => EvalBind (SubConstr2 c dom pa pb) #-}
{-# INLINABLE evalBindSym #-}
evalBindSym (SubConstr2 a) = evalBindSym a
instance EvalBind Empty
where
{-# SPECIALIZE instance EvalBind Empty #-}
evalBindSym = error "Not implemented: evalBindSym for Empty"
instance EvalBind dom => EvalBind (Decor info dom)
where
{-# SPECIALIZE instance (EvalBind dom) => EvalBind (Decor info dom) #-}
{-# INLINABLE evalBindSym #-}
evalBindSym = evalBindSym . decorExpr
instance EvalBind Identity where {-# SPECIALIZE instance EvalBind Identity #-}
instance EvalBind Construct where {-# SPECIALIZE instance EvalBind Construct #-}
instance EvalBind Literal where {-# SPECIALIZE instance EvalBind Literal #-}
instance EvalBind Condition where {-# SPECIALIZE instance EvalBind Condition #-}
instance EvalBind Tuple where {-# SPECIALIZE instance EvalBind Tuple #-}
instance EvalBind Select where {-# SPECIALIZE instance EvalBind Select #-}
instance EvalBind Let where {-# SPECIALIZE instance EvalBind Let #-}
instance Monad m => EvalBind (MONAD m) where
{-# SPECIALIZE instance Monad m => EvalBind (MONAD m) #-}
instance EvalBind Variable
where
{-# SPECIALIZE instance EvalBind Variable #-}
{-# INLINABLE evalBindSym #-}
evalBindSym (Variable v) _ = do
env <- ask
case lookup v env of
Nothing -> return $ error "evalBind: evaluating free variable"
Just a -> case fromDyn a of
Just b -> return b
_ -> return $ error "evalBind: internal type error"
instance EvalBind Lambda
where
{-# SPECIALIZE instance EvalBind Lambda #-}
{-# INLINABLE evalBindSym #-}
evalBindSym lam@(Lambda v) (body :* Nil) = do
env <- ask
return
$ \a -> flip runReader ((v, toDyn (funType lam) a):env)
$ evalBindM body
where
funType :: Lambda (b :-> Full (a -> b)) -> P (a -> b)
funType = const P
class VarEqEnv a
where
prjVarEqEnv :: a -> [(VarId,VarId)]
modVarEqEnv :: ([(VarId,VarId)] -> [(VarId,VarId)]) -> (a -> a)
instance VarEqEnv [(VarId,VarId)]
where
{-# INLINABLE prjVarEqEnv #-}
{-# INLINABLE modVarEqEnv #-}
prjVarEqEnv = id
modVarEqEnv = id
class AlphaEq sub1 sub2 dom env
where
alphaEqSym
:: sub1 a
-> Args (AST dom) a
-> sub2 b
-> Args (AST dom) b
-> Reader env Bool
default alphaEqSym
:: (AlphaEq dom dom dom env, Equality sub2, sub1 ~ sub2)
=> sub1 a
-> Args (AST dom) a
-> sub2 b
-> Args (AST dom) b
-> Reader env Bool
alphaEqSym = alphaEqSymDefault
{-# INLINABLE alphaEqSym #-}
instance (AlphaEq subA1 subB1 dom env, AlphaEq subA2 subB2 dom env) =>
AlphaEq (subA1 :+: subA2) (subB1 :+: subB2) dom env
where
{-# SPECIALIZE instance
(AlphaEq subA1 subB1 dom env, AlphaEq subA2 subB2 dom env) =>
AlphaEq (subA1 :+: subA2) (subB1 :+: subB2) dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (InjL a) aArgs (InjL b) bArgs = alphaEqSym a aArgs b bArgs
alphaEqSym (InjR a) aArgs (InjR b) bArgs = alphaEqSym a aArgs b bArgs
alphaEqSym _ _ _ _ = return False
alphaEqM :: AlphaEq dom dom dom env =>
ASTF dom a -> ASTF dom b -> Reader env Bool
alphaEqM a b = simpleMatch (alphaEqM2 b) a
{-# INLINABLE alphaEqM #-}
alphaEqM2 :: AlphaEq dom dom dom env =>
ASTF dom b -> dom a -> Args (AST dom) a -> Reader env Bool
alphaEqM2 b a aArgs = simpleMatch (alphaEqSym a aArgs) b
{-# INLINABLE alphaEqM2 #-}
alphaEq :: AlphaEq dom dom dom [(VarId,VarId)] =>
ASTF dom a -> ASTF dom b -> Bool
alphaEq a b = flip runReader ([] :: [(VarId,VarId)]) $ alphaEqM a b
{-# INLINABLE alphaEq #-}
alphaEqSymDefault :: (Equality sub, AlphaEq dom dom dom env)
=> sub a
-> Args (AST dom) a
-> sub b
-> Args (AST dom) b
-> Reader env Bool
alphaEqSymDefault a aArgs b bArgs
| equal a b = alphaEqChildren a' b'
| otherwise = return False
where
a' = appArgs (Sym (undefined :: dom a)) aArgs
b' = appArgs (Sym (undefined :: dom b)) bArgs
{-# INLINABLE alphaEqSymDefault #-}
alphaEqChildren :: AlphaEq dom dom dom env =>
AST dom a -> AST dom b -> Reader env Bool
alphaEqChildren (Sym _) (Sym _) = return True
alphaEqChildren (f :$ a) (g :$ b) = liftM2 (&&)
(alphaEqChildren f g)
(alphaEqM a b)
alphaEqChildren _ _ = return False
{-# INLINABLE alphaEqChildren #-}
instance AlphaEq sub sub dom env => AlphaEq (sub :| pred) (sub :| pred) dom env
where
{-# SPECIALIZE instance (AlphaEq sub sub dom env) =>
AlphaEq (sub :| pred) (sub :| pred) dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (C a) aArgs (C b) bArgs = alphaEqSym a aArgs b bArgs
instance AlphaEq sub sub dom env => AlphaEq (sub :|| pred) (sub :|| pred) dom env
where
{-# SPECIALIZE instance (AlphaEq sub sub dom env) =>
AlphaEq (sub :|| pred) (sub :|| pred) dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (C' a) aArgs (C' b) bArgs = alphaEqSym a aArgs b bArgs
instance AlphaEq sub sub dom env => AlphaEq (SubConstr1 c sub p) (SubConstr1 c sub p) dom env
where
{-# SPECIALIZE instance (AlphaEq sub sub dom env) =>
AlphaEq (SubConstr1 c sub p) (SubConstr1 c sub p) dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (SubConstr1 a) aArgs (SubConstr1 b) bArgs = alphaEqSym a aArgs b bArgs
instance AlphaEq sub sub dom env =>
AlphaEq (SubConstr2 c sub pa pb) (SubConstr2 c sub pa pb) dom env
where
{-# SPECIALIZE instance (AlphaEq sub sub dom env) =>
AlphaEq (SubConstr2 c sub pa pb) (SubConstr2 c sub pa pb) dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (SubConstr2 a) aArgs (SubConstr2 b) bArgs = alphaEqSym a aArgs b bArgs
instance AlphaEq Empty Empty dom env
where
{-# SPECIALIZE instance AlphaEq Empty Empty dom env #-}
alphaEqSym = error "Not implemented: alphaEqSym for Empty"
instance AlphaEq dom dom dom env => AlphaEq Condition Condition dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Condition Condition dom env #-}
instance AlphaEq dom dom dom env => AlphaEq Construct Construct dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Construct Construct dom env #-}
instance AlphaEq dom dom dom env => AlphaEq Identity Identity dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Identity Identity dom env #-}
instance AlphaEq dom dom dom env => AlphaEq Let Let dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Let Let dom env #-}
instance AlphaEq dom dom dom env => AlphaEq Literal Literal dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Literal Literal dom env #-}
instance AlphaEq dom dom dom env => AlphaEq Select Select dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Select Select dom env #-}
instance AlphaEq dom dom dom env => AlphaEq Tuple Tuple dom env where
{-# SPECIALIZE instance AlphaEq dom dom dom env =>
AlphaEq Tuple Tuple dom env #-}
instance AlphaEq sub sub dom env =>
AlphaEq (Decor info sub) (Decor info sub) dom env
where
{-# SPECIALIZE instance (AlphaEq sub sub dom env) =>
AlphaEq (Decor info sub) (Decor info sub) dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym a aArgs b bArgs =
alphaEqSym (decorExpr a) aArgs (decorExpr b) bArgs
instance (AlphaEq dom dom dom env, Monad m) => AlphaEq (MONAD m) (MONAD m) dom env
where
{-# SPECIALIZE instance (AlphaEq dom dom dom env, Monad m) =>
AlphaEq (MONAD m) (MONAD m) dom env #-}
instance (AlphaEq dom dom dom env, VarEqEnv env) =>
AlphaEq Variable Variable dom env
where
{-# SPECIALIZE instance (AlphaEq dom dom dom env, VarEqEnv env) =>
AlphaEq Variable Variable dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (Variable v1) _ (Variable v2) _ = do
env <- asks prjVarEqEnv
case lookup v1 env of
Nothing -> return (v1==v2)
Just v2' -> return (v2==v2')
instance (AlphaEq dom dom dom env, VarEqEnv env) =>
AlphaEq Lambda Lambda dom env
where
{-# SPECIALIZE instance (AlphaEq dom dom dom env, VarEqEnv env) =>
AlphaEq Lambda Lambda dom env #-}
{-# INLINABLE alphaEqSym #-}
alphaEqSym (Lambda v1) (body1 :* Nil) (Lambda v2) (body2 :* Nil) =
local (modVarEqEnv ((v1,v2):)) $ alphaEqM body1 body2