{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module ZkFold.Symbolic.Data.List where
import Control.Monad (return)
import Data.Distributive (Distributive (..))
import Data.Function (const)
import Data.Functor (Functor)
import Data.Functor.Rep (Representable, distributeRep, pureRep, tabulate)
import Data.List.Infinite (Infinite (..))
import Data.Proxy (Proxy (..))
import Data.Traversable (traverse)
import Data.Tuple (snd)
import GHC.Generics (Generic, Generic1, Par1 (..), (:*:) (..), (:.:) (..))
import Prelude (fmap, fst, type (~), undefined, ($), (.), (<$>))
import ZkFold.Base.Algebra.Basic.Class
import ZkFold.Base.Data.Functor.Rep ()
import ZkFold.Base.Data.HFunctor (hmap)
import ZkFold.Base.Data.List.Infinite ()
import ZkFold.Base.Data.Product (fstP, sndP)
import ZkFold.Symbolic.Class
import ZkFold.Symbolic.Data.Bool (Bool (..))
import ZkFold.Symbolic.Data.Class
import ZkFold.Symbolic.Data.Combinators
import ZkFold.Symbolic.Data.Input (SymbolicInput)
import ZkFold.Symbolic.Data.Payloaded (Payloaded (Payloaded))
import ZkFold.Symbolic.Data.UInt (UInt)
import ZkFold.Symbolic.MonadCircuit
data ListItem l p a = ListItem
{ forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> l a
tailHash :: l a
, forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> l a
headLayout :: l a
, forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> p a
headPayload :: p a
}
deriving ((forall a b. (a -> b) -> ListItem l p a -> ListItem l p b)
-> (forall a b. a -> ListItem l p b -> ListItem l p a)
-> Functor (ListItem l p)
forall a b. a -> ListItem l p b -> ListItem l p a
forall a b. (a -> b) -> ListItem l p a -> ListItem l p b
forall (f :: Type -> Type).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
forall (l :: Type -> Type) (p :: Type -> Type) a b.
(Functor l, Functor p) =>
a -> ListItem l p b -> ListItem l p a
forall (l :: Type -> Type) (p :: Type -> Type) a b.
(Functor l, Functor p) =>
(a -> b) -> ListItem l p a -> ListItem l p b
$cfmap :: forall (l :: Type -> Type) (p :: Type -> Type) a b.
(Functor l, Functor p) =>
(a -> b) -> ListItem l p a -> ListItem l p b
fmap :: forall a b. (a -> b) -> ListItem l p a -> ListItem l p b
$c<$ :: forall (l :: Type -> Type) (p :: Type -> Type) a b.
(Functor l, Functor p) =>
a -> ListItem l p b -> ListItem l p a
<$ :: forall a b. a -> ListItem l p b -> ListItem l p a
Functor, (forall (a :: k). ListItem l p a -> Rep1 (ListItem l p) a)
-> (forall (a :: k). Rep1 (ListItem l p) a -> ListItem l p a)
-> Generic1 (ListItem l p)
forall (a :: k). Rep1 (ListItem l p) a -> ListItem l p a
forall (a :: k). ListItem l p a -> Rep1 (ListItem l p) a
forall k (f :: k -> Type).
(forall (a :: k). f a -> Rep1 f a)
-> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f
forall k (l :: k -> Type) (p :: k -> Type) (a :: k).
Rep1 (ListItem l p) a -> ListItem l p a
forall k (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> Rep1 (ListItem l p) a
$cfrom1 :: forall k (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> Rep1 (ListItem l p) a
from1 :: forall (a :: k). ListItem l p a -> Rep1 (ListItem l p) a
$cto1 :: forall k (l :: k -> Type) (p :: k -> Type) (a :: k).
Rep1 (ListItem l p) a -> ListItem l p a
to1 :: forall (a :: k). Rep1 (ListItem l p) a -> ListItem l p a
Generic1)
instance (Representable l, Representable p) => Distributive (ListItem l p) where
distribute :: forall (f :: Type -> Type) a.
Functor f =>
f (ListItem l p a) -> ListItem l p (f a)
distribute = f (ListItem l p a) -> ListItem l p (f a)
forall (f :: Type -> Type) (w :: Type -> Type) a.
(Representable f, Functor w) =>
w (f a) -> f (w a)
distributeRep
instance (Representable l, Representable p) => Representable (ListItem l p)
data List c x = List
{ forall (c :: (Type -> Type) -> Type) x. List c x -> c (Layout x)
lHash :: c (Layout x)
, forall (c :: (Type -> Type) -> Type) x. List c x -> c Par1
lSize :: c Par1
, forall (c :: (Type -> Type) -> Type) x.
List c x
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
lWitness :: Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
}
deriving ((forall x. List c x -> Rep (List c x) x)
-> (forall x. Rep (List c x) x -> List c x) -> Generic (List c x)
forall x. Rep (List c x) x -> List c x
forall x. List c x -> Rep (List c x) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (c :: (Type -> Type) -> Type) x x.
Rep (List c x) x -> List c x
forall (c :: (Type -> Type) -> Type) x x.
List c x -> Rep (List c x) x
$cfrom :: forall (c :: (Type -> Type) -> Type) x x.
List c x -> Rep (List c x) x
from :: forall x. List c x -> Rep (List c x) x
$cto :: forall (c :: (Type -> Type) -> Type) x x.
Rep (List c x) x -> List c x
to :: forall x. Rep (List c x) x -> List c x
Generic)
instance (SymbolicData x, c ~ Context x) => SymbolicData (List c x)
instance (SymbolicInput x, c ~ Context x) => SymbolicInput (List c x)
emptyList
:: forall context x
. SymbolicData x
=> Context x ~ context
=> List context x
emptyList :: forall (context :: (Type -> Type) -> Type) x.
(SymbolicData x, Context x ~ context) =>
List context x
emptyList = context (Layout x)
-> context Par1
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
-> List context x
forall (c :: (Type -> Type) -> Type) x.
c (Layout x)
-> c Par1
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
-> List c x
List (Layout x (BaseField context) -> context (Layout x)
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type).
(Symbolic c, Functor f) =>
f (BaseField c) -> c f
embed (Layout x (BaseField context) -> context (Layout x))
-> Layout x (BaseField context) -> context (Layout x)
forall a b. (a -> b) -> a -> b
$ BaseField context -> Layout x (BaseField context)
forall (f :: Type -> Type) a. Representable f => a -> f a
pureRep BaseField context
forall a. AdditiveMonoid a => a
zero) (Par1 (BaseField context) -> context Par1
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type).
(Symbolic c, Functor f) =>
f (BaseField c) -> c f
embed (Par1 (BaseField context) -> context Par1)
-> Par1 (BaseField context) -> context Par1
forall a b. (a -> b) -> a -> b
$ BaseField context -> Par1 (BaseField context)
forall p. p -> Par1 p
Par1 BaseField context
forall a. AdditiveMonoid a => a
zero) (Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
-> List context x)
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
-> List context x
forall a b. (a -> b) -> a -> b
$ (:.:)
Infinite (ListItem (Layout x) (Payload x)) (WitnessField context)
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
forall (f :: Type -> Type) (c :: (Type -> Type) -> Type).
f (WitnessField c) -> Payloaded f c
Payloaded ((:.:)
Infinite (ListItem (Layout x) (Payload x)) (WitnessField context)
-> Payloaded
(Infinite :.: ListItem (Layout x) (Payload x)) context)
-> (:.:)
Infinite (ListItem (Layout x) (Payload x)) (WitnessField context)
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
forall a b. (a -> b) -> a -> b
$ (Rep (Infinite :.: ListItem (Layout x) (Payload x))
-> WitnessField context)
-> (:.:)
Infinite (ListItem (Layout x) (Payload x)) (WitnessField context)
forall a.
(Rep (Infinite :.: ListItem (Layout x) (Payload x)) -> a)
-> (:.:) Infinite (ListItem (Layout x) (Payload x)) a
forall (f :: Type -> Type) a.
Representable f =>
(Rep f -> a) -> f a
tabulate (WitnessField context
-> (Natural,
Either
(WrappedRep (Layout x))
(Either (WrappedRep (Layout x)) (WrappedRep (Payload x))))
-> WitnessField context
forall a b. a -> b -> a
const WitnessField context
forall a. AdditiveMonoid a => a
zero)
null
:: forall context x
. Symbolic context
=> List context x
-> Bool context
null :: forall (context :: (Type -> Type) -> Type) x.
Symbolic context =>
List context x -> Bool context
null List{context Par1
context (Layout x)
Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
lHash :: forall (c :: (Type -> Type) -> Type) x. List c x -> c (Layout x)
lSize :: forall (c :: (Type -> Type) -> Type) x. List c x -> c Par1
lWitness :: forall (c :: (Type -> Type) -> Type) x.
List c x
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
lHash :: context (Layout x)
lSize :: context Par1
lWitness :: Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
..} = context Par1 -> Bool context
forall (c :: (Type -> Type) -> Type). c Par1 -> Bool c
Bool (context Par1 -> CircuitFun '[Par1] Par1 context -> context Par1
forall (f :: Type -> Type) (g :: Type -> Type).
context f -> CircuitFun '[f] g context -> context g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun '[f] g c -> c g
fromCircuitF context Par1
lSize (((Par1 i, Par1 i) -> Par1 i) -> m (Par1 i, Par1 i) -> m (Par1 i)
forall a b. (a -> b) -> m a -> m b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (Par1 i, Par1 i) -> Par1 i
forall a b. (a, b) -> a
fst (m (Par1 i, Par1 i) -> m (Par1 i))
-> (Par1 i -> m (Par1 i, Par1 i)) -> Par1 i -> m (Par1 i)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Par1 i -> m (Par1 i, Par1 i)
forall i a w (m :: Type -> Type) (f :: Type -> Type).
(MonadCircuit i a w m, Representable f, Traversable f) =>
f i -> m (f i, f i)
runInvert))
infixr 5 .:
(.:)
:: forall context x
. SymbolicOutput x
=> Context x ~ context
=> x
-> List context x
-> List context x
x
x .: :: forall (context :: (Type -> Type) -> Type) x.
(SymbolicOutput x, Context x ~ context) =>
x -> List context x -> List context x
.: List{context Par1
context (Layout x)
Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
lHash :: forall (c :: (Type -> Type) -> Type) x. List c x -> c (Layout x)
lSize :: forall (c :: (Type -> Type) -> Type) x. List c x -> c Par1
lWitness :: forall (c :: (Type -> Type) -> Type) x.
List c x
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
lHash :: context (Layout x)
lSize :: context Par1
lWitness :: Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
..} = context (Layout x)
-> context Par1
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
-> List context x
forall (c :: (Type -> Type) -> Type) x.
c (Layout x)
-> c Par1
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
-> List c x
List context (Layout x)
incSum context Par1
incSize ((context (Layout x) -> Layout x (WitnessField context)
forall (f :: Type -> Type).
Functor f =>
context f -> f (WitnessField context)
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type).
(Symbolic c, Functor f) =>
c f -> f (WitnessField c)
witnessF context (Layout x)
lHash, context (Layout x) -> Layout x (WitnessField context)
forall (f :: Type -> Type).
Functor f =>
context f -> f (WitnessField context)
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type).
(Symbolic c, Functor f) =>
c f -> f (WitnessField c)
witnessF (x -> Support x -> Context x (Layout x)
forall x. SymbolicData x => x -> Support x -> Context x (Layout x)
arithmetize x
x Proxy context
Support x
forall {k} (t :: k). Proxy t
Proxy), x -> Support x -> Payload x (WitnessField (Context x))
forall x.
SymbolicData x =>
x -> Support x -> Payload x (WitnessField (Context x))
payload x
x Proxy context
Support x
forall {k} (t :: k). Proxy t
Proxy)(Layout x (WitnessField context), Layout x (WitnessField context),
Payload x (WitnessField context))
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
forall {c :: (Type -> Type) -> Type} {c :: (Type -> Type) -> Type}
{l :: Type -> Type} {p :: Type -> Type}.
(WitnessField c ~ WitnessField c) =>
(l (WitnessField c), l (WitnessField c), p (WitnessField c))
-> Payloaded (Infinite :.: ListItem l p) c
-> Payloaded (Infinite :.: ListItem l p) c
<:<Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) context
lWitness)
where
(l (WitnessField c)
a, l (WitnessField c)
b, p (WitnessField c)
c) <:< :: (l (WitnessField c), l (WitnessField c), p (WitnessField c))
-> Payloaded (Infinite :.: ListItem l p) c
-> Payloaded (Infinite :.: ListItem l p) c
<:< Payloaded (Comp1 Infinite (ListItem l p (WitnessField c))
l) = (:.:) Infinite (ListItem l p) (WitnessField c)
-> Payloaded (Infinite :.: ListItem l p) c
forall (f :: Type -> Type) (c :: (Type -> Type) -> Type).
f (WitnessField c) -> Payloaded f c
Payloaded ((:.:) Infinite (ListItem l p) (WitnessField c)
-> Payloaded (Infinite :.: ListItem l p) c)
-> (:.:) Infinite (ListItem l p) (WitnessField c)
-> Payloaded (Infinite :.: ListItem l p) c
forall a b. (a -> b) -> a -> b
$ Infinite (ListItem l p (WitnessField c))
-> (:.:) Infinite (ListItem l p) (WitnessField c)
forall k2 k1 (f :: k2 -> Type) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (l (WitnessField c)
-> l (WitnessField c)
-> p (WitnessField c)
-> ListItem l p (WitnessField c)
forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
l a -> l a -> p a -> ListItem l p a
ListItem l (WitnessField c)
a l (WitnessField c)
b p (WitnessField c)
c ListItem l p (WitnessField c)
-> Infinite (ListItem l p (WitnessField c))
-> Infinite (ListItem l p (WitnessField c))
forall a. a -> Infinite a -> Infinite a
:< Infinite (ListItem l p (WitnessField c))
l)
xRepr :: context (Layout x)
xRepr :: context (Layout x)
xRepr = x -> Support x -> Context x (Layout x)
forall x. SymbolicData x => x -> Support x -> Context x (Layout x)
arithmetize x
x (forall {k} (t :: k). Proxy t
forall (t :: (Type -> Type) -> Type). Proxy t
Proxy @context)
incSize :: context Par1
incSize :: context Par1
incSize = context Par1 -> CircuitFun '[Par1] Par1 context -> context Par1
forall (f :: Type -> Type) (g :: Type -> Type).
context f -> CircuitFun '[f] g context -> context g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun '[f] g c -> c g
fromCircuitF context Par1
lSize (\(Par1 i
s) -> i -> Par1 i
forall p. p -> Par1 p
Par1 (i -> Par1 i) -> m i -> m (Par1 i)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ClosedPoly i (BaseField context) -> m i
forall var a w (m :: Type -> Type).
MonadCircuit var a w m =>
ClosedPoly var a -> m var
newAssigned (\i -> x
p -> i -> x
p i
s x -> x -> x
forall a. AdditiveSemigroup a => a -> a -> a
+ x
forall a. MultiplicativeMonoid a => a
one))
incSum :: context (Layout x)
incSum :: context (Layout x)
incSum = context (Layout x)
-> context (Layout x)
-> context Par1
-> (forall {i} {m :: Type -> Type}.
(NFData i,
MonadCircuit i (BaseField context) (WitnessField context) m) =>
FunBody '[Layout x, Layout x, Par1] (Layout x) i m)
-> context (Layout x)
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type) (h :: Type -> Type) (k :: Type -> Type).
Symbolic c =>
c f -> c g -> c h -> CircuitFun '[f, g, h] k c -> c k
fromCircuit3F context (Layout x)
lHash context (Layout x)
xRepr context Par1
incSize ((forall {i} {m :: Type -> Type}.
(NFData i,
MonadCircuit i (BaseField context) (WitnessField context) m) =>
FunBody '[Layout x, Layout x, Par1] (Layout x) i m)
-> context (Layout x))
-> (forall {i} {m :: Type -> Type}.
(NFData i,
MonadCircuit i (BaseField context) (WitnessField context) m) =>
FunBody '[Layout x, Layout x, Par1] (Layout x) i m)
-> context (Layout x)
forall a b. (a -> b) -> a -> b
$
\Layout x i
vHash Layout x i
vRepr (Par1 i
s) -> (i -> i -> m i) -> Layout x i -> Layout x i -> m (Layout x i)
forall (f :: Type -> Type) (m :: Type -> Type) a b c.
(Representable f, Traversable f, Applicative m) =>
(a -> b -> m c) -> f a -> f b -> m (f c)
mzipWithMRep (i -> i -> i -> m i
forall i a w (m :: Type -> Type).
MonadCircuit i a w m =>
i -> i -> i -> m i
hashFun i
s) Layout x i
vHash Layout x i
vRepr
hashFun :: MonadCircuit i a w m => i -> i -> i -> m i
hashFun :: forall i a w (m :: Type -> Type).
MonadCircuit i a w m =>
i -> i -> i -> m i
hashFun i
s i
h i
t = ClosedPoly i a -> m i
forall var a w (m :: Type -> Type).
MonadCircuit var a w m =>
ClosedPoly var a -> m var
newAssigned (((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
h) ((i -> x) -> x) -> ((i -> x) -> x) -> (i -> x) -> x
forall a. AdditiveSemigroup a => a -> a -> a
+ ((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
t) ((i -> x) -> x) -> ((i -> x) -> x) -> (i -> x) -> x
forall a. MultiplicativeSemigroup a => a -> a -> a
* ((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
s))
uncons ::
forall c x.
SymbolicOutput x =>
Context x ~ c =>
List c x -> (x, List c x)
uncons :: forall (c :: (Type -> Type) -> Type) x.
(SymbolicOutput x, Context x ~ c) =>
List c x -> (x, List c x)
uncons List{c Par1
c (Layout x)
Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
lHash :: forall (c :: (Type -> Type) -> Type) x. List c x -> c (Layout x)
lSize :: forall (c :: (Type -> Type) -> Type) x. List c x -> c Par1
lWitness :: forall (c :: (Type -> Type) -> Type) x.
List c x
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
lHash :: c (Layout x)
lSize :: c Par1
lWitness :: Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
..} = case Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
lWitness of
Payloaded (Comp1 (ListItem {Layout x (WitnessField c)
Payload x (WitnessField c)
tailHash :: forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> l a
headLayout :: forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> l a
headPayload :: forall {k} (l :: k -> Type) (p :: k -> Type) (a :: k).
ListItem l p a -> p a
tailHash :: Layout x (WitnessField c)
headLayout :: Layout x (WitnessField c)
headPayload :: Payload x (WitnessField c)
..} :< Infinite (ListItem (Layout x) (Payload x) (WitnessField c))
tWitness)) ->
( (Support x -> (c (Layout x), Payload x (WitnessField c))) -> x
forall x (c :: (Type -> Type) -> Type).
(SymbolicData x, Context x ~ c) =>
(Support x -> (c (Layout x), Payload x (WitnessField c))) -> x
forall (c :: (Type -> Type) -> Type).
(Context x ~ c) =>
(Support x -> (c (Layout x), Payload x (WitnessField c))) -> x
restore ((Support x -> (c (Layout x), Payload x (WitnessField c))) -> x)
-> (Support x -> (c (Layout x), Payload x (WitnessField c))) -> x
forall a b. (a -> b) -> a -> b
$ (c (Layout x), Payload x (WitnessField c))
-> Proxy c -> (c (Layout x), Payload x (WitnessField c))
forall a b. a -> b -> a
const ((forall a. (:*:) (Layout x) (Layout x) a -> Layout x a)
-> c (Layout x :*: Layout x) -> c (Layout x)
forall {k} (c :: (k -> Type) -> Type) (f :: k -> Type)
(g :: k -> Type).
HFunctor c =>
(forall (a :: k). f a -> g a) -> c f -> c g
forall (f :: Type -> Type) (g :: Type -> Type).
(forall a. f a -> g a) -> c f -> c g
hmap (:*:) (Layout x) (Layout x) a -> Layout x a
forall a. (:*:) (Layout x) (Layout x) a -> Layout x a
forall {k} (f :: k -> Type) (g :: k -> Type) (a :: k).
(:*:) f g a -> f a
fstP c (Layout x :*: Layout x)
preimage, Payload x (WitnessField c)
headPayload)
, c (Layout x)
-> c Par1
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
-> List c x
forall (c :: (Type -> Type) -> Type) x.
c (Layout x)
-> c Par1
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
-> List c x
List ((forall a. (:*:) (Layout x) (Layout x) a -> Layout x a)
-> c (Layout x :*: Layout x) -> c (Layout x)
forall {k} (c :: (k -> Type) -> Type) (f :: k -> Type)
(g :: k -> Type).
HFunctor c =>
(forall (a :: k). f a -> g a) -> c f -> c g
forall (f :: Type -> Type) (g :: Type -> Type).
(forall a. f a -> g a) -> c f -> c g
hmap (:*:) (Layout x) (Layout x) a -> Layout x a
forall a. (:*:) (Layout x) (Layout x) a -> Layout x a
forall {k} (f :: k -> Type) (g :: k -> Type) (a :: k).
(:*:) f g a -> g a
sndP c (Layout x :*: Layout x)
preimage) c Par1
decSize (Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
-> List c x)
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
-> List c x
forall a b. (a -> b) -> a -> b
$ (:.:) Infinite (ListItem (Layout x) (Payload x)) (WitnessField c)
-> Payloaded (Infinite :.: ListItem (Layout x) (Payload x)) c
forall (f :: Type -> Type) (c :: (Type -> Type) -> Type).
f (WitnessField c) -> Payloaded f c
Payloaded (Infinite (ListItem (Layout x) (Payload x) (WitnessField c))
-> (:.:)
Infinite (ListItem (Layout x) (Payload x)) (WitnessField c)
forall k2 k1 (f :: k2 -> Type) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 Infinite (ListItem (Layout x) (Payload x) (WitnessField c))
tWitness))
where
decSize :: c Par1
decSize = c Par1 -> CircuitFun '[Par1] Par1 c -> c Par1
forall (f :: Type -> Type) (g :: Type -> Type).
c f -> CircuitFun '[f] g c -> c g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun '[f] g c -> c g
fromCircuitF c Par1
lSize (CircuitFun '[Par1] Par1 c -> c Par1)
-> CircuitFun '[Par1] Par1 c -> c Par1
forall a b. (a -> b) -> a -> b
$ \(Par1 i
i) ->
i -> Par1 i
forall p. p -> Par1 p
Par1 (i -> Par1 i) -> m i -> m (Par1 i)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ClosedPoly i (BaseField c) -> m i
forall var a w (m :: Type -> Type).
MonadCircuit var a w m =>
ClosedPoly var a -> m var
newAssigned (((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
i) ((i -> x) -> x) -> ((i -> x) -> x) -> (i -> x) -> x
forall a. AdditiveGroup a => a -> a -> a
- (i -> x) -> x
forall a. MultiplicativeMonoid a => a
one)
preimage :: c (Layout x :*: Layout x)
preimage :: c (Layout x :*: Layout x)
preimage = c Par1
-> c (Layout x)
-> (forall {i} {m :: Type -> Type}.
(NFData i, MonadCircuit i (BaseField c) (WitnessField c) m) =>
FunBody '[Par1, Layout x] (Layout x :*: Layout x) i m)
-> c (Layout x :*: Layout x)
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type) (h :: Type -> Type).
Symbolic c =>
c f -> c g -> CircuitFun '[f, g] h c -> c h
fromCircuit2F c Par1
lSize c (Layout x)
lHash ((forall {i} {m :: Type -> Type}.
(NFData i, MonadCircuit i (BaseField c) (WitnessField c) m) =>
FunBody '[Par1, Layout x] (Layout x :*: Layout x) i m)
-> c (Layout x :*: Layout x))
-> (forall {i} {m :: Type -> Type}.
(NFData i, MonadCircuit i (BaseField c) (WitnessField c) m) =>
FunBody '[Par1, Layout x] (Layout x :*: Layout x) i m)
-> c (Layout x :*: Layout x)
forall a b. (a -> b) -> a -> b
$ \(Par1 i
s) Layout x i
y -> do
Layout x i
tH :*: Layout x i
hH <- (WitnessField c -> m i)
-> (:*:) (Layout x) (Layout x) (WitnessField c)
-> m ((:*:) (Layout x) (Layout x) i)
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: Type -> Type) a b.
Applicative f =>
(a -> f b)
-> (:*:) (Layout x) (Layout x) a
-> f ((:*:) (Layout x) (Layout x) b)
traverse WitnessField c -> m i
forall var a w (m :: Type -> Type).
MonadCircuit var a w m =>
w -> m var
unconstrained (Layout x (WitnessField c)
tailHash Layout x (WitnessField c)
-> Layout x (WitnessField c)
-> (:*:) (Layout x) (Layout x) (WitnessField c)
forall k (f :: k -> Type) (g :: k -> Type) (p :: k).
f p -> g p -> (:*:) f g p
:*: Layout x (WitnessField c)
headLayout)
Layout x i
hash <- (i -> i -> m i) -> Layout x i -> Layout x i -> m (Layout x i)
forall (f :: Type -> Type) (m :: Type -> Type) a b c.
(Representable f, Traversable f, Applicative m) =>
(a -> b -> m c) -> f a -> f b -> m (f c)
mzipWithMRep (i -> i -> i -> m i
forall i a w (m :: Type -> Type).
MonadCircuit i a w m =>
i -> i -> i -> m i
hashFun i
s) Layout x i
hH Layout x i
tH
Layout x ()
_ <- (i -> i -> m ()) -> Layout x i -> Layout x i -> m (Layout x ())
forall (f :: Type -> Type) (m :: Type -> Type) a b c.
(Representable f, Traversable f, Applicative m) =>
(a -> b -> m c) -> f a -> f b -> m (f c)
mzipWithMRep (\i
i i
j -> ClosedPoly i (BaseField c) -> m ()
forall var a w (m :: Type -> Type).
MonadCircuit var a w m =>
ClosedPoly var a -> m ()
constraint (((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
i) ((i -> x) -> x) -> ((i -> x) -> x) -> (i -> x) -> x
forall a. AdditiveGroup a => a -> a -> a
- ((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
j))) Layout x i
hash Layout x i
y
(:*:) (Layout x) (Layout x) i -> m ((:*:) (Layout x) (Layout x) i)
forall a. a -> m a
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Layout x i
hH Layout x i -> Layout x i -> (:*:) (Layout x) (Layout x) i
forall k (f :: k -> Type) (g :: k -> Type) (p :: k).
f p -> g p -> (:*:) f g p
:*: Layout x i
tH)
head ::
SymbolicOutput x =>
Context x ~ c =>
List c x -> x
head :: forall x (c :: (Type -> Type) -> Type).
(SymbolicOutput x, Context x ~ c) =>
List c x -> x
head = (x, List c x) -> x
forall a b. (a, b) -> a
fst ((x, List c x) -> x)
-> (List c x -> (x, List c x)) -> List c x -> x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. List c x -> (x, List c x)
forall (c :: (Type -> Type) -> Type) x.
(SymbolicOutput x, Context x ~ c) =>
List c x -> (x, List c x)
uncons
tail ::
SymbolicOutput x =>
Context x ~ c =>
List c x -> List c x
tail :: forall x (c :: (Type -> Type) -> Type).
(SymbolicOutput x, Context x ~ c) =>
List c x -> List c x
tail = (x, List c x) -> List c x
forall a b. (a, b) -> b
snd ((x, List c x) -> List c x)
-> (List c x -> (x, List c x)) -> List c x -> List c x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. List c x -> (x, List c x)
forall (c :: (Type -> Type) -> Type) x.
(SymbolicOutput x, Context x ~ c) =>
List c x -> (x, List c x)
uncons
last :: List context x -> x
last :: forall (context :: (Type -> Type) -> Type) x. List context x -> x
last = List context x -> x
forall a. HasCallStack => a
undefined
(++) :: List context x -> List context x -> List context x
List context x
_ ++ :: forall (context :: (Type -> Type) -> Type) x.
List context x -> List context x -> List context x
++ List context x
_ = List context x
forall a. HasCallStack => a
undefined
filter ::
(x -> Bool context)
-> List context x
-> List context x
filter :: forall x (context :: (Type -> Type) -> Type).
(x -> Bool context) -> List context x -> List context x
filter = (x -> Bool context) -> List context x -> List context x
forall a. HasCallStack => a
undefined
delete :: x -> List context x -> List context x
delete :: forall x (context :: (Type -> Type) -> Type).
x -> List context x -> List context x
delete = x -> List context x -> List context x
forall a. HasCallStack => a
undefined
(\\) :: List context x -> List context x -> List context x
List context x
_ \\ :: forall (context :: (Type -> Type) -> Type) x.
List context x -> List context x -> List context x
\\ List context x
_ = List context x
forall a. HasCallStack => a
undefined
singleton
:: forall context x
. SymbolicOutput x
=> Context x ~ context
=> x
-> List context x
singleton :: forall (context :: (Type -> Type) -> Type) x.
(SymbolicOutput x, Context x ~ context) =>
x -> List context x
singleton x
x = x
x x -> List context x -> List context x
forall (context :: (Type -> Type) -> Type) x.
(SymbolicOutput x, Context x ~ context) =>
x -> List context x -> List context x
.: List context x
forall (context :: (Type -> Type) -> Type) x.
(SymbolicData x, Context x ~ context) =>
List context x
emptyList
(!!) :: List context x -> UInt n Auto context -> x
!! :: forall (context :: (Type -> Type) -> Type) x (n :: Natural).
List context x -> UInt n 'Auto context -> x
(!!) = List context x -> UInt n 'Auto context -> x
forall a. HasCallStack => a
undefined
concat :: List context (List context x) -> List context x
concat :: forall (context :: (Type -> Type) -> Type) x.
List context (List context x) -> List context x
concat = List context (List context x) -> List context x
forall a. HasCallStack => a
undefined