{-# LANGUAGE OverloadedLists #-} {-# LANGUAGE UndecidableInstances #-} module ZkFold.Base.Protocol.Plonkup.PlonkConstraint where import Control.Monad (guard, replicateM, return) import Data.Binary (Binary) import Data.Containers.ListUtils (nubOrd) import Data.Eq (Eq (..)) import Data.Function (($), (.)) import Data.Functor ((<$>)) import Data.Functor.Rep (Rep) import Data.List (find, head, map, permutations, sort, (!!), (++)) import Data.Map (Map) import qualified Data.Map as Map import Data.Maybe (Maybe (..), fromMaybe, mapMaybe) import Data.Ord (Ord) import GHC.IsList (IsList (..)) import Numeric.Natural (Natural) import Test.QuickCheck (Arbitrary (..)) import Text.Show (Show) import ZkFold.Base.Algebra.Basic.Class import ZkFold.Base.Algebra.Polynomials.Multivariate (Poly, evalMonomial, evalPolynomial, polynomial, var, variables) import ZkFold.Base.Data.ByteString (toByteString) import ZkFold.Prelude (length, take) import ZkFold.Symbolic.Compiler.ArithmeticCircuit.Internal import ZkFold.Symbolic.Compiler.ArithmeticCircuit.Var (toVar) data PlonkConstraint i a = PlonkConstraint { forall (i :: Type -> Type) a. PlonkConstraint i a -> a qm :: a , forall (i :: Type -> Type) a. PlonkConstraint i a -> a ql :: a , forall (i :: Type -> Type) a. PlonkConstraint i a -> a qr :: a , forall (i :: Type -> Type) a. PlonkConstraint i a -> a qo :: a , forall (i :: Type -> Type) a. PlonkConstraint i a -> a qc :: a , forall (i :: Type -> Type) a. PlonkConstraint i a -> Var a i x1 :: Var a i , forall (i :: Type -> Type) a. PlonkConstraint i a -> Var a i x2 :: Var a i , forall (i :: Type -> Type) a. PlonkConstraint i a -> Var a i x3 :: Var a i } deriving instance (Show a, Show (Rep i)) => Show (PlonkConstraint i a) deriving instance (Eq a, Eq (Rep i)) => Eq (PlonkConstraint i a) instance (Ord a, Arbitrary a, Binary a, Ord (Rep i), Semiring a) => Arbitrary (PlonkConstraint i a) where arbitrary :: Gen (PlonkConstraint i a) arbitrary = do a qm <- Gen a forall a. Arbitrary a => Gen a arbitrary a ql <- Gen a forall a. Arbitrary a => Gen a arbitrary a qr <- Gen a forall a. Arbitrary a => Gen a arbitrary a qo <- Gen a forall a. Arbitrary a => Gen a arbitrary a qc <- Gen a forall a. Arbitrary a => Gen a arbitrary let arbitraryNewVar :: Gen (Var a i) arbitraryNewVar = SysVar i -> Var a i forall a (i :: Type -> Type). Semiring a => SysVar i -> Var a i toVar (SysVar i -> Var a i) -> (a -> SysVar i) -> a -> Var a i forall b c a. (b -> c) -> (a -> b) -> a -> c . ByteString -> SysVar i forall (i :: Type -> Type). ByteString -> SysVar i NewVar (ByteString -> SysVar i) -> (a -> ByteString) -> a -> SysVar i forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a. Binary a => a -> ByteString toByteString @a (a -> Var a i) -> Gen a -> Gen (Var a i) forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> Gen a forall a. Arbitrary a => Gen a arbitrary [Var a i] xs <- [Var a i] -> [Var a i] forall a. Ord a => [a] -> [a] sort ([Var a i] -> [Var a i]) -> Gen [Var a i] -> Gen [Var a i] forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Gen (Var a i) -> Gen [Var a i] forall (m :: Type -> Type) a. Applicative m => Int -> m a -> m [a] replicateM Int 3 Gen (Var a i) arbitraryNewVar let x1 :: Var a i x1 = [Var a i] -> Var a i forall a. HasCallStack => [a] -> a head [Var a i] xs; x2 :: Var a i x2 = [Var a i] xs [Var a i] -> Int -> Var a i forall a. HasCallStack => [a] -> Int -> a !! Int 1; x3 :: Var a i x3 = [Var a i] xs [Var a i] -> Int -> Var a i forall a. HasCallStack => [a] -> Int -> a !! Int 2 PlonkConstraint i a -> Gen (PlonkConstraint i a) forall a. a -> Gen a forall (m :: Type -> Type) a. Monad m => a -> m a return (PlonkConstraint i a -> Gen (PlonkConstraint i a)) -> PlonkConstraint i a -> Gen (PlonkConstraint i a) forall a b. (a -> b) -> a -> b $ a -> a -> a -> a -> a -> Var a i -> Var a i -> Var a i -> PlonkConstraint i a forall (i :: Type -> Type) a. a -> a -> a -> a -> a -> Var a i -> Var a i -> Var a i -> PlonkConstraint i a PlonkConstraint a qm a ql a qr a qo a qc Var a i x1 Var a i x2 Var a i x3 toPlonkConstraint :: forall a i . (Ord a, FiniteField a, Ord (Rep i)) => Poly a (Var a i) Natural -> PlonkConstraint i a toPlonkConstraint :: forall a (i :: Type -> Type). (Ord a, FiniteField a, Ord (Rep i)) => Poly a (Var a i) Natural -> PlonkConstraint i a toPlonkConstraint Poly a (Var a i) Natural p = let xs :: [Maybe (Var a i)] xs = Var a i -> Maybe (Var a i) forall a. a -> Maybe a Just (Var a i -> Maybe (Var a i)) -> [Var a i] -> [Maybe (Var a i)] forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> Set (Var a i) -> [Item (Set (Var a i))] forall l. IsList l => l -> [Item l] toList (Poly a (Var a i) Natural -> Set (Var a i) forall c v. Ord v => Poly c v Natural -> Set v variables Poly a (Var a i) Natural p) perms :: [[Maybe (Var a i)]] perms = [[Maybe (Var a i)]] -> [[Maybe (Var a i)]] forall a. Ord a => [a] -> [a] nubOrd ([[Maybe (Var a i)]] -> [[Maybe (Var a i)]]) -> [[Maybe (Var a i)]] -> [[Maybe (Var a i)]] forall a b. (a -> b) -> a -> b $ ([Maybe (Var a i)] -> [Maybe (Var a i)]) -> [[Maybe (Var a i)]] -> [[Maybe (Var a i)]] forall a b. (a -> b) -> [a] -> [b] map (Natural -> [Maybe (Var a i)] -> [Maybe (Var a i)] forall a. HasCallStack => Natural -> [a] -> [a] take Natural 3) ([[Maybe (Var a i)]] -> [[Maybe (Var a i)]]) -> [[Maybe (Var a i)]] -> [[Maybe (Var a i)]] forall a b. (a -> b) -> a -> b $ [Maybe (Var a i)] -> [[Maybe (Var a i)]] forall a. [a] -> [[a]] permutations ([Maybe (Var a i)] -> [[Maybe (Var a i)]]) -> [Maybe (Var a i)] -> [[Maybe (Var a i)]] forall a b. (a -> b) -> a -> b $ case [Maybe (Var a i)] -> Natural forall (t :: Type -> Type) a. Foldable t => t a -> Natural length [Maybe (Var a i)] xs of Natural 0 -> [Maybe (Var a i) Item [Maybe (Var a i)] forall a. Maybe a Nothing, Maybe (Var a i) Item [Maybe (Var a i)] forall a. Maybe a Nothing, Maybe (Var a i) Item [Maybe (Var a i)] forall a. Maybe a Nothing] Natural 1 -> [Maybe (Var a i) Item [Maybe (Var a i)] forall a. Maybe a Nothing, Maybe (Var a i) Item [Maybe (Var a i)] forall a. Maybe a Nothing, [Maybe (Var a i)] -> Maybe (Var a i) forall a. HasCallStack => [a] -> a head [Maybe (Var a i)] xs, [Maybe (Var a i)] -> Maybe (Var a i) forall a. HasCallStack => [a] -> a head [Maybe (Var a i)] xs] Natural 2 -> [Maybe (Var a i) Item [Maybe (Var a i)] forall a. Maybe a Nothing] [Maybe (Var a i)] -> [Maybe (Var a i)] -> [Maybe (Var a i)] forall a. [a] -> [a] -> [a] ++ [Maybe (Var a i)] xs [Maybe (Var a i)] -> [Maybe (Var a i)] -> [Maybe (Var a i)] forall a. [a] -> [a] -> [a] ++ [Maybe (Var a i)] xs Natural _ -> [Maybe (Var a i)] xs [Maybe (Var a i)] -> [Maybe (Var a i)] -> [Maybe (Var a i)] forall a. [a] -> [a] -> [a] ++ [Maybe (Var a i)] xs getCoef :: Map (Maybe (Var a i)) Natural -> a getCoef :: Map (Maybe (Var a i)) Natural -> a getCoef Map (Maybe (Var a i)) Natural m = case ((a, Map (Var a i) Natural) -> Bool) -> [(a, Map (Var a i) Natural)] -> Maybe (a, Map (Var a i) Natural) forall (t :: Type -> Type) a. Foldable t => (a -> Bool) -> t a -> Maybe a find (\(a _, Map (Var a i) Natural as) -> Map (Maybe (Var a i)) Natural m Map (Maybe (Var a i)) Natural -> Map (Maybe (Var a i)) Natural -> Bool forall a. Eq a => a -> a -> Bool == (Var a i -> Maybe (Var a i)) -> Map (Var a i) Natural -> Map (Maybe (Var a i)) Natural forall k2 k1 a. Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a Map.mapKeys Var a i -> Maybe (Var a i) forall a. a -> Maybe a Just Map (Var a i) Natural as) (Poly a (Var a i) Natural -> [Item (Poly a (Var a i) Natural)] forall l. IsList l => l -> [Item l] toList Poly a (Var a i) Natural p) of Just (a c, Map (Var a i) Natural _) -> a c Maybe (a, Map (Var a i) Natural) _ -> a forall a. AdditiveMonoid a => a zero getCoefs :: [Maybe (Var a i)] -> Maybe (PlonkConstraint i a) getCoefs :: [Maybe (Var a i)] -> Maybe (PlonkConstraint i a) getCoefs [Item [Maybe (Var a i)] a, Item [Maybe (Var a i)] b, Item [Maybe (Var a i)] c] = do let xa :: [(Maybe (Var a i), Natural)] xa = [(Maybe (Var a i) Item [Maybe (Var a i)] a, Natural 1)] xb :: [(Maybe (Var a i), Natural)] xb = [(Maybe (Var a i) Item [Maybe (Var a i)] b, Natural 1)] xc :: [(Maybe (Var a i), Natural)] xc = [(Maybe (Var a i) Item [Maybe (Var a i)] c, Natural 1)] xaxb :: [(Maybe (Var a i), Natural)] xaxb = [(Maybe (Var a i), Natural)] xa [(Maybe (Var a i), Natural)] -> [(Maybe (Var a i), Natural)] -> [(Maybe (Var a i), Natural)] forall a. [a] -> [a] -> [a] ++ [(Maybe (Var a i), Natural)] xb qm :: a qm = Map (Maybe (Var a i)) Natural -> a getCoef (Map (Maybe (Var a i)) Natural -> a) -> Map (Maybe (Var a i)) Natural -> a forall a b. (a -> b) -> a -> b $ (Natural -> Natural -> Natural) -> [(Maybe (Var a i), Natural)] -> Map (Maybe (Var a i)) Natural forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a Map.fromListWith Natural -> Natural -> Natural forall a. AdditiveSemigroup a => a -> a -> a (+) [(Maybe (Var a i), Natural)] xaxb ql :: a ql = Map (Maybe (Var a i)) Natural -> a getCoef (Map (Maybe (Var a i)) Natural -> a) -> Map (Maybe (Var a i)) Natural -> a forall a b. (a -> b) -> a -> b $ [Item (Map (Maybe (Var a i)) Natural)] -> Map (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Map (Maybe (Var a i)) Natural)] xa qr :: a qr = Map (Maybe (Var a i)) Natural -> a getCoef (Map (Maybe (Var a i)) Natural -> a) -> Map (Maybe (Var a i)) Natural -> a forall a b. (a -> b) -> a -> b $ [Item (Map (Maybe (Var a i)) Natural)] -> Map (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Map (Maybe (Var a i)) Natural)] xb qo :: a qo = Map (Maybe (Var a i)) Natural -> a getCoef (Map (Maybe (Var a i)) Natural -> a) -> Map (Maybe (Var a i)) Natural -> a forall a b. (a -> b) -> a -> b $ [Item (Map (Maybe (Var a i)) Natural)] -> Map (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Map (Maybe (Var a i)) Natural)] xc qc :: a qc = Map (Maybe (Var a i)) Natural -> a getCoef Map (Maybe (Var a i)) Natural forall k a. Map k a Map.empty Bool -> Maybe () forall (f :: Type -> Type). Alternative f => Bool -> f () guard (Bool -> Maybe ()) -> Bool -> Maybe () forall a b. (a -> b) -> a -> b $ ((Var a i -> Poly a (Maybe (Var a i)) Natural) -> Mono (Var a i) Natural -> Poly a (Maybe (Var a i)) Natural) -> (Var a i -> Poly a (Maybe (Var a i)) Natural) -> Poly a (Var a i) Natural -> Poly a (Maybe (Var a i)) Natural forall c i j b. (AdditiveMonoid b, Scale c b) => ((i -> b) -> Mono i j -> b) -> (i -> b) -> Poly c i j -> b evalPolynomial (Var a i -> Poly a (Maybe (Var a i)) Natural) -> Mono (Var a i) Natural -> Poly a (Maybe (Var a i)) Natural forall i j b. (MultiplicativeMonoid b, Exponent b j) => (i -> b) -> Mono i j -> b evalMonomial (Maybe (Var a i) -> Poly a (Maybe (Var a i)) Natural forall c i j. Polynomial c i j => i -> Poly c i j var (Maybe (Var a i) -> Poly a (Maybe (Var a i)) Natural) -> (Var a i -> Maybe (Var a i)) -> Var a i -> Poly a (Maybe (Var a i)) Natural forall b c a. (b -> c) -> (a -> b) -> a -> c . Var a i -> Maybe (Var a i) forall a. a -> Maybe a Just) Poly a (Var a i) Natural p Poly a (Maybe (Var a i)) Natural -> Poly a (Maybe (Var a i)) Natural -> Poly a (Maybe (Var a i)) Natural forall a. AdditiveGroup a => a -> a -> a - [(a, Mono (Maybe (Var a i)) Natural)] -> Poly a (Maybe (Var a i)) Natural forall c i j. Polynomial c i j => [(c, Mono i j)] -> Poly c i j polynomial [(a qm, [Item (Mono (Maybe (Var a i)) Natural)] -> Mono (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Mono (Maybe (Var a i)) Natural)] xaxb), (a ql, [Item (Mono (Maybe (Var a i)) Natural)] -> Mono (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Mono (Maybe (Var a i)) Natural)] xa), (a qr, [Item (Mono (Maybe (Var a i)) Natural)] -> Mono (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Mono (Maybe (Var a i)) Natural)] xb), (a qo, [Item (Mono (Maybe (Var a i)) Natural)] -> Mono (Maybe (Var a i)) Natural forall l. IsList l => [Item l] -> l fromList [(Maybe (Var a i), Natural)] [Item (Mono (Maybe (Var a i)) Natural)] xc), (a qc, Mono (Maybe (Var a i)) Natural forall a. MultiplicativeMonoid a => a one)] Poly a (Maybe (Var a i)) Natural -> Poly a (Maybe (Var a i)) Natural -> Bool forall a. Eq a => a -> a -> Bool == Poly a (Maybe (Var a i)) Natural forall a. AdditiveMonoid a => a zero let va :: Var a i va = Var a i -> Maybe (Var a i) -> Var a i forall a. a -> Maybe a -> a fromMaybe (a -> Var a i forall a (i :: Type -> Type). a -> Var a i ConstVar a forall a. MultiplicativeMonoid a => a one) Maybe (Var a i) Item [Maybe (Var a i)] a vb :: Var a i vb = Var a i -> Maybe (Var a i) -> Var a i forall a. a -> Maybe a -> a fromMaybe (a -> Var a i forall a (i :: Type -> Type). a -> Var a i ConstVar a forall a. MultiplicativeMonoid a => a one) Maybe (Var a i) Item [Maybe (Var a i)] b vc :: Var a i vc = Var a i -> Maybe (Var a i) -> Var a i forall a. a -> Maybe a -> a fromMaybe (a -> Var a i forall a (i :: Type -> Type). a -> Var a i ConstVar a forall a. MultiplicativeMonoid a => a one) Maybe (Var a i) Item [Maybe (Var a i)] c PlonkConstraint i a -> Maybe (PlonkConstraint i a) forall a. a -> Maybe a forall (m :: Type -> Type) a. Monad m => a -> m a return (PlonkConstraint i a -> Maybe (PlonkConstraint i a)) -> PlonkConstraint i a -> Maybe (PlonkConstraint i a) forall a b. (a -> b) -> a -> b $ a -> a -> a -> a -> a -> Var a i -> Var a i -> Var a i -> PlonkConstraint i a forall (i :: Type -> Type) a. a -> a -> a -> a -> a -> Var a i -> Var a i -> Var a i -> PlonkConstraint i a PlonkConstraint a qm a ql a qr a qo a qc Var a i va Var a i vb Var a i vc getCoefs [Maybe (Var a i)] _ = Maybe (PlonkConstraint i a) forall a. Maybe a Nothing in case ([Maybe (Var a i)] -> Maybe (PlonkConstraint i a)) -> [[Maybe (Var a i)]] -> [PlonkConstraint i a] forall a b. (a -> Maybe b) -> [a] -> [b] mapMaybe [Maybe (Var a i)] -> Maybe (PlonkConstraint i a) getCoefs [[Maybe (Var a i)]] perms of [] -> Poly a (Var a i) Natural -> PlonkConstraint i a forall a (i :: Type -> Type). (Ord a, FiniteField a, Ord (Rep i)) => Poly a (Var a i) Natural -> PlonkConstraint i a toPlonkConstraint Poly a (Var a i) Natural forall a. AdditiveMonoid a => a zero [PlonkConstraint i a] _ -> [PlonkConstraint i a] -> PlonkConstraint i a forall a. HasCallStack => [a] -> a head ([PlonkConstraint i a] -> PlonkConstraint i a) -> [PlonkConstraint i a] -> PlonkConstraint i a forall a b. (a -> b) -> a -> b $ ([Maybe (Var a i)] -> Maybe (PlonkConstraint i a)) -> [[Maybe (Var a i)]] -> [PlonkConstraint i a] forall a b. (a -> Maybe b) -> [a] -> [b] mapMaybe [Maybe (Var a i)] -> Maybe (PlonkConstraint i a) getCoefs [[Maybe (Var a i)]] perms fromPlonkConstraint :: (Ord a, Field a, Ord (Rep i)) => PlonkConstraint i a -> Poly a (Var a i) Natural fromPlonkConstraint :: forall a (i :: Type -> Type). (Ord a, Field a, Ord (Rep i)) => PlonkConstraint i a -> Poly a (Var a i) Natural fromPlonkConstraint (PlonkConstraint a qm a ql a qr a qo a qc Var a i a Var a i b Var a i c) = let xa :: Poly a (Var a i) Natural xa = Var a i -> Poly a (Var a i) Natural forall c i j. Polynomial c i j => i -> Poly c i j var Var a i a xb :: Poly a (Var a i) Natural xb = Var a i -> Poly a (Var a i) Natural forall c i j. Polynomial c i j => i -> Poly c i j var Var a i b xc :: Poly a (Var a i) Natural xc = Var a i -> Poly a (Var a i) Natural forall c i j. Polynomial c i j => i -> Poly c i j var Var a i c xaxb :: Poly a (Var a i) Natural xaxb = Poly a (Var a i) Natural xa Poly a (Var a i) Natural -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall a. MultiplicativeSemigroup a => a -> a -> a * Poly a (Var a i) Natural xb in a -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall b a. Scale b a => b -> a -> a scale a qm Poly a (Var a i) Natural xaxb Poly a (Var a i) Natural -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall a. AdditiveSemigroup a => a -> a -> a + a -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall b a. Scale b a => b -> a -> a scale a ql Poly a (Var a i) Natural xa Poly a (Var a i) Natural -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall a. AdditiveSemigroup a => a -> a -> a + a -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall b a. Scale b a => b -> a -> a scale a qr Poly a (Var a i) Natural xb Poly a (Var a i) Natural -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall a. AdditiveSemigroup a => a -> a -> a + a -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall b a. Scale b a => b -> a -> a scale a qo Poly a (Var a i) Natural xc Poly a (Var a i) Natural -> Poly a (Var a i) Natural -> Poly a (Var a i) Natural forall a. AdditiveSemigroup a => a -> a -> a + a -> Poly a (Var a i) Natural forall a b. FromConstant a b => a -> b fromConstant a qc