{-# LANGUAGE CPP #-} {-# LANGUAGE OverloadedStrings #-} -------------------------------------------------------------------------------- -- See end of this file for licence information. -------------------------------------------------------------------------------- -- | -- Module : N3 -- Copyright : (c) 2003, Graham Klyne, 2009 Vasili I Galchin, 2011, 2012, 2013, 2014, 2018 Douglas Burke -- License : GPL V2 -- -- Maintainer : Douglas Burke -- Stability : experimental -- Portability : CPP, OverloadedStrings -- -- This Module implements a Notation 3 parser, returning a -- new 'RDFGraph' consisting of triples and namespace information parsed from -- the supplied N3 input string, or an error indication. -- -- REFERENCES: -- -- - \"Notation3 (N3): A readable RDF syntax\", -- W3C Team Submission 14 January 2008, -- <http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/> -- -- - Tim Berners-Lee's design issues series notes and description, -- <http://www.w3.org/DesignIssues/Notation3.html> -- -- - Notation 3 Primer by Sean Palmer, -- <http://www.w3.org/2000/10/swap/Primer.html> -- -- NOTES: -- -- - The parser needs to be updated to the latest version -- (\"W3C Team Submission 28 March 2011\", -- <http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/>) -- -- - UTF-8 handling is not really tested. -- -- - No performance testing has been applied. -- -- - Not all N3 grammar elements are supported, including: -- -- - @\@forSome@ (we read it in but ignore the arguments) -- -- - @\@forAll@ (this causes a parse error) -- -- - formulae are lightly tested -- -- - string support is incomplete (e.g. unrecognized escape characters -- such as @\\q@ are probably handled incorrectly) -- -------------------------------------------------------------------------------- module Swish.RDF.Parser.N3 ( ParseResult , parseN3 , parseN3fromText , parseAnyfromText , parseTextFromText, parseAltFromText , parseNameFromText -- , parsePrefixFromText , parseAbsURIrefFromText, parseLexURIrefFromText, parseURIref2FromText -- * Exports for parsers that embed Notation3 in a bigger syntax , N3Parser, N3State(..), SpecialMap , getPrefix -- a combination of the old defaultPrefix and namedPrefix productions , n3symbol -- replacement for uriRef2 -- TODO: check this is semantically correct , quickVariable -- was varid , lexUriRef , document, subgraph , newBlankNode ) where import Swish.GraphClass (arc) import Swish.Namespace ( Namespace , ScopedName , makeNamespace , getNamespaceTuple , getScopeNamespace , getScopedNameURI , getScopeNamespace , makeURIScopedName , makeQNameScopedName , makeNSScopedName , nullScopedName ) import Swish.QName (QName, newLName) import Swish.RDF.Graph ( RDFGraph, RDFLabel(..) , ToRDFLabel(..) , NamespaceMap , LookupFormula(..) , addArc , setFormula , setNamespaces , emptyRDFGraph ) import Swish.RDF.Datatype (makeDatatypedLiteral) import Swish.RDF.Vocabulary ( LanguageTag , toLangTag , rdfType , rdfFirst, rdfRest, rdfNil , owlSameAs, logImplies , xsdBoolean, xsdInteger, xsdDecimal, xsdDouble ) import Swish.RDF.Parser.Utils ( SpecialMap , ParseResult , runParserWithError -- , mapPrefix , prefixTable , specialTable , ignore , notFollowedBy , endBy , sepEndBy -- , manyTill , noneOf , char , ichar , string , stringT , symbol , lexeme , whiteSpace , hex4 , hex8 , appendURIs ) import Control.Applicative import Control.Monad (forM_, foldM) import Data.Char (isSpace, isDigit, ord, isAsciiLower) #if MIN_VERSION_base(4, 7, 0) import Data.Functor (($>)) #endif import Data.Maybe (fromMaybe, fromJust) import Data.Word (Word32) import Network.URI (URI(..), parseURIReference) import Text.ParserCombinators.Poly.StateText import qualified Data.Map as M import qualified Data.Text as T import qualified Data.Text.Lazy as L #if !MIN_VERSION_base(4, 7, 0) ($>) :: Functor f => f a -> b -> f b ($>) = flip (<$) #endif ---------------------------------------------------------------------- -- Define parser state and helper functions ---------------------------------------------------------------------- -- | N3 parser state data N3State = N3State { graphState :: RDFGraph -- Graph under construction , thisNode :: RDFLabel -- current context node (aka 'this') , prefixUris :: NamespaceMap -- namespace prefix mapping table , syntaxUris :: SpecialMap -- special name mapping table , nodeGen :: Word32 -- blank node id generator , keywordsList :: [T.Text] -- contents of the @keywords statement , allowLocalNames :: Bool -- True if @keywords used so that bare names are QNames in default namespace } -- | Functions to update N3State vector (use with stUpdate) setPrefix :: Maybe T.Text -> URI -> N3State -> N3State setPrefix pre uri st = st { prefixUris=p' } where p' = M.insert pre uri (prefixUris st) -- | Set name for special syntax element setSName :: String -> ScopedName -> N3State -> N3State setSName nam snam st = st { syntaxUris=s' } where s' = M.insert nam snam (syntaxUris st) setSUri :: String -> URI -> N3State -> N3State setSUri nam = setSName nam . makeURIScopedName -- | Set the list of tokens that can be used without needing the leading -- \@ symbol. setKeywordsList :: [T.Text] -> N3State -> N3State setKeywordsList ks st = st { keywordsList = ks, allowLocalNames = True } -- Functions to access state: -- | Get name for special syntax element, default null getSName :: N3State -> String -> ScopedName getSName st nam = M.findWithDefault nullScopedName nam $ syntaxUris st getSUri :: N3State -> String -> URI getSUri st nam = getScopedNameURI $ getSName st nam -- Map prefix to URI getPrefixURI :: N3State -> Maybe T.Text -> Maybe URI getPrefixURI st pre = M.lookup pre (prefixUris st) getKeywordsList :: N3State -> [T.Text] getKeywordsList = keywordsList getAllowLocalNames :: N3State -> Bool getAllowLocalNames = allowLocalNames -- Return function to update graph in N3 parser state, -- using the supplied function of a graph -- updateGraph :: (RDFGraph -> RDFGraph) -> N3State -> N3State updateGraph f s = s { graphState = f (graphState s) } ---------------------------------------------------------------------- -- Define top-level parser function: -- accepts a string and returns a graph or error ---------------------------------------------------------------------- -- | The N3 parser. type N3Parser a = Parser N3State a -- | Parse a string as N3 (with no real base URI). -- -- See 'parseN3' if you need to provide a base URI. -- parseN3fromText :: L.Text -- ^ input in N3 format. -> ParseResult parseN3fromText = flip parseN3 Nothing -- | Parse a string with an optional base URI. -- -- See also 'parseN3fromString'. -- parseN3 :: L.Text -- ^ input in N3 format. -> Maybe QName -- ^ optional base URI -> ParseResult parseN3 txt mbase = parseAnyfromText document mbase txt {- -- useful for testing test :: String -> RDFGraph test = either error id . parseAnyfromString document Nothing -} hashURI :: URI hashURI = fromJust $ parseURIReference "#" emptyState :: Maybe QName -- ^ starting base for the graph -> N3State emptyState mbase = let pmap = M.singleton Nothing hashURI muri = fmap (makeQNameScopedName Nothing) mbase smap = M.fromList $ specialTable muri in N3State { graphState = emptyRDFGraph , thisNode = NoNode , prefixUris = pmap , syntaxUris = smap , nodeGen = 0 , keywordsList = ["a", "is", "of", "true", "false"] -- not 100% sure about true/false here , allowLocalNames = False } -- TODO: change from QName to URI for the base? -- | Function to supply initial context and parse supplied term. -- parseAnyfromText :: N3Parser a -- ^ parser to apply -> Maybe QName -- ^ base URI of the input, or @Nothing@ to use default base value -> L.Text -- ^ input to be parsed -> Either String a parseAnyfromText parser mbase = runParserWithError parser (emptyState mbase) -- | Create a new blank node. newBlankNode :: N3Parser RDFLabel newBlankNode = do n <- stQuery (succ . nodeGen) stUpdate $ \s -> s { nodeGen = n } return $ Blank (show n) -- Test functions for selected element parsing -- TODO: remove these -- | Used in testing. parseTextFromText :: String -> L.Text -> Either String String parseTextFromText s = parseAnyfromText (string s) Nothing -- | Used in testing. parseAltFromText :: String -> String -> L.Text -> Either String String parseAltFromText s1 s2 = parseAnyfromText (string s1 <|> string s2) Nothing -- | Used in testing. parseNameFromText :: L.Text -> Either String String parseNameFromText = parseAnyfromText n3NameStr Nothing {- This has been made tricky by the attempt to remove the default list of prefixes from the starting point of a N3 parse and the subsequent attempt to add every new namespace we come across to the parser state. So we add in the original default namespaces for testing, since this routine is really for testing. -} addTestPrefixes :: N3Parser () addTestPrefixes = stUpdate $ \st -> st { prefixUris = M.fromList $ map getNamespaceTuple prefixTable } -- should append to existing map {- parsePrefixFromText :: L.Text -> Either String URI parsePrefixFromText = parseAnyfromText p Nothing where p = do addTestPrefixes pref <- n3Name st <- stGet case getPrefixURI st (Just pref) of Just uri -> return uri _ -> fail $ "Undefined prefix: '" ++ pref ++ "'" -} -- | Used in testing. parseAbsURIrefFromText :: L.Text -> Either String URI parseAbsURIrefFromText = parseAnyfromText explicitURI Nothing -- | Used in testing. parseLexURIrefFromText :: L.Text -> Either String URI parseLexURIrefFromText = parseAnyfromText lexUriRef Nothing -- | Used in testing. parseURIref2FromText :: L.Text -> Either String ScopedName parseURIref2FromText = parseAnyfromText (addTestPrefixes *> n3symbol) Nothing ---------------------------------------------------------------------- -- Syntax productions ---------------------------------------------------------------------- -- helper routines comma, semiColon , fullStop :: N3Parser () comma = ignore $ symbol "," semiColon = ignore $ symbol ";" fullStop = ignore $ symbol "." -- a specialization of bracket/between br :: String -> String -> N3Parser a -> N3Parser a br lsym rsym = bracket (symbol lsym) (symbol rsym) -- to make porting from parsec to polyparse easier between :: Parser s lbr -> Parser s rbr -> Parser s a -> Parser s a between = bracket -- The @ character is optional if the keyword is in the -- keyword list -- atSign :: T.Text -> N3Parser () atSign s = do st <- stGet let p = ichar '@' if s `elem` getKeywordsList st then ignore $ optional p else p atWord :: T.Text -> N3Parser T.Text atWord s = do atSign s -- TODO: does it really make sense to add the not-followed-by-a-colon rule here? -- apply to both cases even though should only really be necessary -- when the at sign is not given -- lexeme $ stringT s *> notFollowedBy (== ':') return s {- Since operatorLabel can be used to add a label with an unknown namespace, we need to ensure that the namespace is added if not known. If the namespace prefix is already in use then it is over-written (rather than add a new prefix for the label). TODO: - could we use the reverse lookupmap functionality to find if the given namespace URI is in the namespace list? If it is, use it's key otherwise do a mapReplace for the input namespace. -} operatorLabel :: ScopedName -> N3Parser RDFLabel operatorLabel snam = do st <- stGet let (pkey, pval) = getNamespaceTuple $ getScopeNamespace snam opmap = prefixUris st rval = Res snam -- TODO: the lookup and the replacement could be fused case M.lookup pkey opmap of Just val | val == pval -> return rval | otherwise -> do stUpdate $ \s -> s { prefixUris = M.insert pkey pval opmap } return rval _ -> do stUpdate $ \s -> s { prefixUris = M.insert pkey pval opmap } return rval {- Add statement to graph in N3 parser state. To support literals that are written directly/implicitly - i.e. as true/false/1/1.0/1.0e23 - rather than a string with an explicit datatype we need to special case handling of the object label for literals. Is this actually needed? The N3 Formatter now doesn't display the xsd: datatypes on output, but there may be issues with other formats (e.g RDF/XML once it is supported). -} type AddStatement = RDFLabel -> N3Parser () addStatement :: RDFLabel -> RDFLabel -> AddStatement addStatement s p o@(TypedLit _ dtype) | dtype `elem` [xsdBoolean, xsdInteger, xsdDecimal, xsdDouble] = do ost <- stGet let stmt = arc s p o oldp = prefixUris ost ogs = graphState ost (ns, uri) = getNamespaceTuple $ getScopeNamespace dtype newp = M.insert ns uri oldp stUpdate $ \st -> st { prefixUris = newp, graphState = addArc stmt ogs } addStatement s p o = stUpdate (updateGraph (addArc (arc s p o) )) addStatementRev :: RDFLabel -> RDFLabel -> AddStatement addStatementRev o p s = addStatement s p o {- A number of productions require a name, which starts with [A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff] and then has [\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]* we encode this as the n3Name production -} isaz, is09, isaz09 :: Char -> Bool isaz = isAsciiLower is09 = isDigit isaz09 c = isaz c || is09 c match :: (Ord a) => a -> [(a,a)] -> Bool match v = any (\(l,h) -> v >= l && v <= h) startChar :: Char -> Bool startChar c = let i = ord c in c == '_' || match c [('A', 'Z'), ('a', 'z')] || match i [(0x00c0, 0x00d6), (0x00d8, 0x00f6), (0x00f8, 0x02ff), (0x0370, 0x037d), (0x037f, 0x1fff), (0x200c, 0x200d), (0x2070, 0x218f), (0x2c00, 0x2fef), (0x3001, 0xd7ff), (0xf900, 0xfdcf), (0xfdf0, 0xfffd), (0x00010000, 0x000effff)] inBody :: Char -> Bool inBody c = let i = ord c in c `elem` ("-_"::String) || i == 0x007 || match c [('0', '9'), ('A', 'Z'), ('a', 'z')] || match i [(0x00c0, 0x00d6), (0x00d8, 0x00f6), (0x00f8, 0x037d), (0x037f, 0x1fff), (0x200c, 0x200d), (0x203f, 0x2040), (0x2070, 0x218f), (0x2c00, 0x2fef), (0x3001, 0xd7ff), (0xf900, 0xfdcf), (0xfdf0, 0xfffd), (0x00010000, 0x000effff)] -- should this be strict or lazy text? n3Name :: N3Parser T.Text n3Name = T.cons <$> n3Init <*> n3Body where n3Init = satisfy startChar n3Body = L.toStrict <$> manySatisfy inBody n3NameStr :: N3Parser String n3NameStr = T.unpack <$> n3Name {- quickvariable ::= \?[A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]* -} -- TODO: is mapping to Var correct? -- | Match @?<variable name>@. quickVariable :: N3Parser RDFLabel quickVariable = char '?' *> (Var <$> n3NameStr) {- string ::= ("""[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*""")|("[^"\\]*(?:\\.[^"\\]*)*") or string ::= tripleQuoted | singleQUoted -} n3string :: N3Parser T.Text n3string = tripleQuoted <|> singleQuoted {- singleQuoted ::= "[^"\\]*(?:\\.[^"\\]*)*" asciiChars :: String asciiChars = map chr [0x20..0x7e] asciiCharsN3 :: String asciiCharsN3 = filter (`notElem` "\\\"") asciiChars -} digit :: N3Parser Char digit = satisfy isDigit {- This is very similar to NTriples accept that also allow the escaping of ' even though it is not required. The Python rules allow \N{name}, where name is the Unicode name. It's not clear whether we need to support this too, so for now we do not. -} protectedChar :: N3Parser Char protectedChar = (char 't' $> '\t') <|> (char 'n' $> '\n') <|> (char 'r' $> '\r') <|> (char '"' $> '"') <|> (char '\'' $> '\'') <|> (char '\\' $> '\\') <|> (char 'u' *> hex4) <|> (char 'U' *> hex8) -- Accept an escape character or any character as long as it isn't -- a new-line or quote. Unrecognized escape sequences should therefore -- be left alone by this. -- n3Character :: N3Parser Char n3Character = (char '\\' *> (protectedChar <|> return '\\')) <|> noneOf "\"\n" {- <|> (oneOf asciiCharsN3 <?> "ASCII character") -- TODO: bodyChar and asciiCharsN3 overlap <|> (oneOf bodyChar <?> "Unicode character") -} sQuot :: N3Parser Char sQuot = char '"' {- TODO: there must be a better way of building up the Text -} singleQuoted :: N3Parser T.Text singleQuoted = T.pack <$> bracket sQuot sQuot (many n3Character) {- tripleQUoted ::= """[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*""" The following may not match the output format we now create (with the move to the Turtle Candidate Recommendation), so re-writing as a test, but this means pulling in a lot of Turtle productions, which should be shared. tripleQuoted = tQuot *> fmap T.pack (manyTill (n3Character <|> sQuot <|> char '\n') tQuot) where -- tQuot = try (count 3 sQuot) tQuot = exactly 3 sQuot -} tripleQuoted :: N3Parser T.Text tripleQuoted = let sep = exactly 3 sQuot in T.concat <$> bracket sep sep (many _tCharsLong) {-- Turtle productions: start --} oneOrTwo :: N3Parser T.Text oneOrTwo = do ignore $ char '"' mb <- optional (char '"') case mb of Just _ -> return "\"\"" _ -> return "\"" _multiQuote :: N3Parser T.Text _multiQuote = do mq <- optional oneOrTwo r <- noneOf "\"\\" return $ fromMaybe T.empty mq `T.snoc` r _tCharsLong :: N3Parser T.Text _tCharsLong = T.singleton <$> _protChar <|> _multiQuote _protChar :: N3Parser Char _protChar = char '\\' *> (_echar' <|> _uchar') _echar' :: N3Parser Char _echar' = (char 't' $> '\t') <|> (char 'b' $> '\b') <|> (char 'n' $> '\n') <|> (char 'r' $> '\r') <|> (char 'f' $> '\f') <|> (char '\\' $> '\\') <|> (char '"' $> '"') <|> (char '\'' $> '\'') _uchar' :: N3Parser Char _uchar' = (char 'u' *> commit hex4) <|> (char 'U' *> commit hex8) {-- Turtle productions: end --} getDefaultPrefix :: N3Parser Namespace getDefaultPrefix = do s <- stGet case getPrefixURI s Nothing of Just uri -> return $ makeNamespace Nothing uri _ -> fail "No default prefix defined; how unexpected!" addBase :: URI -> N3Parser () addBase = stUpdate . setSUri "base" addPrefix :: Maybe T.Text -> URI -> N3Parser () addPrefix p = stUpdate . setPrefix p {-| Update the set of keywords that can be given without an \@ sign. -} updateKeywordsList :: [T.Text] -> N3Parser () updateKeywordsList = stUpdate . setKeywordsList {- document ::= | statements_optional EOF -} -- | Process a N3 document, returning a graph. document :: N3Parser RDFGraph document = mkGr <$> (whiteSpace *> statementsOptional *> eof *> stGet) where mkGr s = setNamespaces (prefixUris s) (graphState s) {- statements_optional ::= | statement "." statements_optional | void -} statementsOptional :: N3Parser () statementsOptional = ignore $ endBy (lexeme statement) fullStop {- statement ::= | declaration | existential | simpleStatement | universal -} statement :: N3Parser () statement = declaration <|> existential <|> universal <|> simpleStatement -- having an error here leads to less informative errors in general, it seems -- <?> "statement (existential or universal quantification or a simple statement)" {- declaration ::= | "@base" explicituri | "@keywords" barename_csl | "@prefix" prefix explicituri -} -- TODO: do we need the try statements here? atWord would need to have a try on '@' -- (if applicable) which should mean being able to get rid of try -- declaration :: N3Parser () declaration = oneOf [ atWord "base" >> explicitURI >>= addBase, atWord "keywords" >> bareNameCsl >>= updateKeywordsList, atWord "prefix" *> getPrefix ] {- (try (atWord "base") >> explicitURI >>= addBase) <|> (try (atWord "keywords") >> bareNameCsl >>= updateKeywordsList) <|> (try (atWord "prefix") *> getPrefix) -} -- | Process the remainder of an @\@prefix@ line (after this -- has been processed). The prefix value and URI are added to the parser -- state. getPrefix :: N3Parser () getPrefix = do p <- lexeme prefix u <- explicitURI addPrefix p u {- explicituri ::= <[^>]*> Note: white space is to be ignored within <> -} explicitURI :: N3Parser URI explicitURI = do ignore $ char '<' ustr <- manyFinally' ((satisfy isSpace *> next) <|> next) (char '>') case parseURIReference ustr of Nothing -> failBad $ "Invalid URI: <" ++ ustr ++ ">" Just uref -> do s <- stGet let base = getSUri s "base" either fail return $ appendURIs base uref -- production from the old parser; used in SwishScript -- | An explicitly given URI followed by white space. lexUriRef :: N3Parser URI lexUriRef = lexeme explicitURI {- barename ::= [A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]* barename_csl ::= | barename barename_csl_tail | void barename_csl_tail ::= | "," barename barename_csl_tail | void -} bareNameCsl :: N3Parser [T.Text] bareNameCsl = sepBy (lexeme bareName) comma bareName :: N3Parser T.Text bareName = n3Name {- prefix ::= ([A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*)?: -} prefix :: N3Parser (Maybe T.Text) prefix = optional (lexeme n3Name) <* char ':' {- symbol ::= | explicituri | qname symbol_csl ::= | symbol symbol_csl_tail | void symbol_csl_tail ::= | "," symbol symbol_csl_tail | void -} -- | Match a N3 symbol (an explicit URI or a QName) -- and convert it to a 'ScopedName'. n3symbol :: N3Parser ScopedName n3symbol = (makeURIScopedName <$> explicitURI) <|> qname symbolCsl :: N3Parser [ScopedName] symbolCsl = sepBy (lexeme n3symbol) comma {- qname ::= (([A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*)?:)?[A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]* TODO: Note that, for now, we explicitly handle blank nodes (of the form _:name) direcly in pathItem'. This is not a good idea since qname' is used elsewhere and so shouldn't we do the same thing there too? -} -- for now assume that the parsing rule for the local part -- will not create an invalid LName. toName :: Namespace -> T.Text -> ScopedName toName ns l = case newLName l of Just local -> makeNSScopedName ns local _ -> error $ "Invalid local name: " ++ T.unpack l qname :: N3Parser ScopedName qname = qname1 <|> qname2 qname1 :: N3Parser ScopedName qname1 = fmap (uncurry toName) (char ':' >> g) where g = (,) <$> getDefaultPrefix <*> (n3Name <|> return "") qname2 :: N3Parser ScopedName qname2 = n3Name >>= fullOrLocalQName fullOrLocalQName :: T.Text -> N3Parser ScopedName fullOrLocalQName name = (char ':' *> fullQName name) <|> localQName name fullQName :: T.Text -> N3Parser ScopedName fullQName name = toName <$> findPrefix name <*> (n3Name <|> pure "") findPrefix :: T.Text -> N3Parser Namespace findPrefix pre = do st <- stGet case M.lookup (Just pre) (prefixUris st) of Just uri -> return $ makeNamespace (Just pre) uri Nothing -> failBad $ "Prefix '" ++ T.unpack pre ++ ":' not bound." localQName :: T.Text -> N3Parser ScopedName localQName name = do st <- stGet if getAllowLocalNames st then let g = (,) <$> getDefaultPrefix <*> pure name in uncurry toName <$> g else fail ("Invalid 'bare' word: " ++ T.unpack name)-- TODO: not ideal error message; can we handle this case differently? {- existential ::= | "@forSome" symbol_csl For now we just read in the symbols and ignore them, since we do not mark blank nodes as existentially quantified (we assume this is the case). TODO: fix this? -} existential :: N3Parser () -- existential = try (atWord "forSome") *> symbolCsl >> return () existential = (atWord "forSome" *> symbolCsl) $> () {- simpleStatement ::= | subject propertylist -} simpleStatement :: N3Parser () simpleStatement = subject >>= propertyListWith {- subject ::= | expression -} subject :: N3Parser RDFLabel subject = lexeme expression {- expression ::= | pathitem pathtail pathtail ::= | "!" expression | "^" expression | void -} expression :: N3Parser RDFLabel expression = do i <- pathItem let backwardExpr = char '!' $> addStatementRev forwardExpr = char '^' $> addStatement mpt <- optional ( (,) <$> lexeme (forwardExpr <|> backwardExpr) <*> lexeme expression ) case mpt of Nothing -> return i Just (addFunc, pt) -> do bNode <- newBlankNode addFunc bNode pt i return bNode {- pathitem ::= | "(" pathlist ")" | "[" propertylist "]" | "{" formulacontent "}" | boolean | literal | numericliteral | quickvariable | symbol pathlist ::= | expression pathlist | void Need to think about how to handle formulae, since need to know the context of the call to know where to add them. TOOD: may include direct support for blank nodes here, namely convert _:stringval -> Blank stringval since although this should be done by symbol the types don't seem to easily match up (at first blush anyway) -} pathItem :: N3Parser RDFLabel pathItem = br "(" ")" pathList <|> br "[" "]" propertyListBNode <|> br "{" "}" formulaContent -- <|> try boolean <|> boolean <|> literal <|> numericLiteral <|> quickVariable <|> Blank <$> (string "_:" *> n3NameStr) -- TODO a hack that needs fixing <|> Res <$> n3symbol {- we create a blank node for the list and return it, whilst adding the list contents to the graph -} pathList :: N3Parser RDFLabel pathList = do cts <- many (lexeme expression) eNode <- operatorLabel rdfNil case cts of [] -> return eNode (c:cs) -> do sNode <- newBlankNode first <- operatorLabel rdfFirst addStatement sNode first c lNode <- foldM addElem sNode cs rest <- operatorLabel rdfRest addStatement lNode rest eNode return sNode where addElem prevNode curElem = do bNode <- newBlankNode first <- operatorLabel rdfFirst rest <- operatorLabel rdfRest addStatement prevNode rest bNode addStatement bNode first curElem return bNode {- formulacontent ::= | statementlist statementlist ::= | statement statementtail | void statementtail ::= | "." statementlist | void -} restoreState :: N3State -> N3Parser N3State restoreState origState = do oldState <- stGet stUpdate $ \_ -> origState { nodeGen = nodeGen oldState } return oldState {- We create a subgraph and assign it to a blank node, returning the blank node. At present it is a combination of the subgraph and formula productions from the origial parser. TODO: is it correct? -} formulaContent :: N3Parser RDFLabel formulaContent = do bNode <- newBlankNode pstate <- stGet stUpdate $ \st -> st { graphState = emptyRDFGraph, thisNode = bNode } statementList oldState <- restoreState pstate stUpdate $ updateGraph $ setFormula (Formula bNode (graphState oldState)) return bNode -- | Process a sub graph and assign it to the given label. subgraph :: RDFLabel -> N3Parser RDFGraph subgraph this = do pstate <- stGet stUpdate $ \st -> st { graphState = emptyRDFGraph, thisNode = this } statementsOptional -- parse statements of formula oldState <- restoreState pstate return $ graphState oldState statementList :: N3Parser () statementList = ignore $ sepEndBy (lexeme statement) fullStop {- boolean ::= | "@false" | "@true" -} boolean :: N3Parser RDFLabel boolean = makeDatatypedLiteral xsdBoolean <$> (atWord "false" <|> atWord "true") -- (try (atWord "false") <|> atWord "true") {- dtlang ::= | "@" langcode | "^^" symbol | void literal ::= | string dtlang langcode ::= [a-z]+(-[a-z0-9]+)* -} literal :: N3Parser RDFLabel literal = do lit <- n3string opt <- optional dtlang return $ case opt of Just (Left lcode) -> LangLit lit lcode Just (Right dtype) -> TypedLit lit dtype _ -> Lit lit dtlang :: N3Parser (Either LanguageTag ScopedName) dtlang = (char '@' *> (Left <$> langcode)) <|> string "^^" *> (Right <$> n3symbol) -- Note that toLangTag may fail since it does some extra -- validation not done by the parser (mainly on the length of the -- primary and secondary tags). -- -- NOTE: This parser does not accept multiple secondary tags which RFC3066 -- does. -- langcode :: N3Parser LanguageTag langcode = do h <- many1Satisfy isaz mt <- optional (L.cons <$> char '-' <*> many1Satisfy isaz09) let lbl = L.toStrict $ L.append h $ fromMaybe L.empty mt case toLangTag lbl of Just lt -> return lt _ -> fail ("Invalid language tag: " ++ T.unpack lbl) -- should this be failBad? {- decimal ::= [-+]?[0-9]+(\.[0-9]+)? double ::= [-+]?[0-9]+(\.[0-9]+)?([eE][-+]?[0-9]+) integer ::= [-+]?[0-9]+ numericliteral ::= | decimal | double | integer We actually support 1. for decimal values which isn't supported by the above production. TODO: we could convert via something like maybeRead value :: Double >>= Just . toRDFLabel which would mean we store the canonical XSD value in the label, but it is not useful for the xsd:decimal case since we currently don't have a Haskell type that goes with it. -} numericLiteral :: N3Parser RDFLabel numericLiteral = -- -- try (makeDatatypedLiteral xsdDouble <$> n3double) -- try (d2s <$> n3double) -- <|> try (makeDatatypedLiteral xsdDecimal <$> n3decimal) d2s <$> n3double <|> makeDatatypedLiteral xsdDecimal . T.pack <$> n3decimal <|> makeDatatypedLiteral xsdInteger . T.pack <$> n3integer n3sign :: N3Parser Char n3sign = char '+' <|> char '-' n3integer :: N3Parser String n3integer = do ms <- optional n3sign ds <- many1 digit case ms of Just s -> return $ s : ds _ -> return ds n3decimal :: N3Parser String -- n3decimal = (++) <$> n3integer <*> ( (:) <$> char '.' <*> many1 digit ) n3decimal = (++) <$> n3integer <*> ( (:) <$> char '.' <*> many digit ) n3double :: N3Parser String n3double = (++) <$> n3decimal <*> ( (:) <$> satisfy (`elem` ("eE"::String)) <*> n3integer ) -- Convert a double, as returned by n3double, into it's -- canonical XSD form. We assume that n3double returns -- a syntactivally valid Double, so do not bother with reads here -- d2s :: String -> RDFLabel d2s s = toRDFLabel (read s :: Double) {- propertylist ::= | verb object objecttail propertylisttail | void propertylisttail ::= | ";" propertylist | void -} -- it's probably important that bNode is created *after* -- processing the plist (mainly for the assumptions made by -- formatting the output as N3; e.g. list/sequence ordering) -- propertyListBNode :: N3Parser RDFLabel propertyListBNode = do plist <- sepEndBy ((,) <$> lexeme verb <*> objectList) semiColon bNode <- newBlankNode let addList ((addFunc,vrb),items) = mapM_ (addFunc bNode vrb) items forM_ plist addList return bNode propertyListWith :: RDFLabel -> N3Parser () propertyListWith subj = let -- term = lexeme verb >>= objectListWith subj term = lexeme verb >>= \(addFunc, vrb) -> objectListWith (addFunc subj vrb) in ignore $ sepEndBy term semiColon {- object ::= | expression objecttail ::= | "," object objecttail | void We change the production rule from objecttail to objectlist for lists of objects (may change back). -} object :: N3Parser RDFLabel object = lexeme expression objectList :: N3Parser [RDFLabel] objectList = sepBy1 object comma objectWith :: AddStatement -> N3Parser () objectWith addFunc = object >>= addFunc objectListWith :: AddStatement -> N3Parser () objectListWith addFunc = ignore $ sepBy1 (objectWith addFunc) comma {- objectList1 :: N3Parser [RDFLabel] objectList1 = sepBy1 object comma -} {- verb ::= | "<=" | "=" | "=>" | "@a" | "@has" expression | "@is" expression "@of" | expression -} verb :: N3Parser (RDFLabel -> RDFLabel -> AddStatement, RDFLabel) verb = -- we check reverse first so that <= is tried before looking for a URI via expression rule (,) addStatementRev <$> verbReverse <|> (,) addStatement <$> verbForward -- those verbs for which subject is on the right and object on the left verbReverse :: N3Parser RDFLabel verbReverse = string "<=" *> operatorLabel logImplies <|> between (atWord "is") (atWord "of") (lexeme expression) {- try (string "<=") *> operatorLabel logImplies <|> between (try (atWord "is")) (atWord "of") (lexeme expression) -} -- those verbs with subject on the left and object on the right verbForward :: N3Parser RDFLabel verbForward = -- (try (string "=>") *> operatorLabel logImplies) (string "=>" *> operatorLabel logImplies) <|> (string "=" *> operatorLabel owlSameAs) -- <|> (try (atWord "a") *> operatorLabel rdfType) <|> (atWord "a" *> operatorLabel rdfType) <|> (atWord "has" *> lexeme expression) <|> lexeme expression {- universal ::= | "@forAll" symbol_csl TODO: what needs to be done to support universal quantification -} universal :: N3Parser () universal = -- try (atWord "forAll") *> atWord "forAll" *> failBad "universal (@forAll) currently unsupported." -- will be something like: *> symbolCsl -------------------------------------------------------------------------------- -- -- Copyright (c) 2003, Graham Klyne, 2009 Vasili I Galchin, -- 2011, 2012, 2013, 2014, 2018 Douglas Burke -- All rights reserved. -- -- This file is part of Swish. -- -- Swish is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- Swish is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with Swish; if not, write to: -- The Free Software Foundation, Inc., -- 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -- --------------------------------------------------------------------------------