{-# LANGUAGE     OverloadedStrings       #-}



module SvgIcons.Icons.Cosmos 
  ( svgCosmos
  , moonCrescent
  , moonHalf
  , sun
  ) where

import           Text.Blaze.Svg11 ((!))
import           Text.Blaze.Svg11 as S
import           Text.Blaze.Svg11.Attributes as A

import SvgIcons.Core.Utils



{- |
A list with all the icons of this module, 
together with appropriate names.

>svgCosmos :: [ (String , S.Svg) ]
>svgCosmos =
>  [ (,) "moonCrescent"  moonCrescent
>  , (,) "moonHalf"      moonHalf
>  , (,) "sun"          (sun 14)
>  ]
-}
svgCosmos :: [ (String , S.Svg) ]
svgCosmos :: [(String, Svg)]
svgCosmos =
  [ (,) String
"moonCrescent"  Svg
moonCrescent
  , (,) String
"moonHalf"      Svg
moonHalf
  , (,) String
"sun"          (Int -> Svg
sun Int
14)
  ]


--------------------------------------------------------------------------------




{- |
![fill style](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/sun_fill.svg)

![fill and stroke](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/sun_full.svg)

![stroke style](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/sun_strk.svg)

Takes a natural number @n@ which draws @2*n@ rays.
-}
sun :: Int -> Svg
sun :: Int -> Svg
sun Int
n =
    Svg -> Svg
S.g 
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.class_ AttributeValue
"HaskellSvgIcons__sun"
      forall a b. (a -> b) -> a -> b
$ do
        Svg
S.circle
          forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.x AttributeValue
"0"
          forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.y AttributeValue
"0"
          forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.r AttributeValue
"0.5"
        Svg
S.path
          forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.strokeLinecap AttributeValue
"round"
          forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.d AttributeValue
rays
  where
    r1 :: Double
r1 = Double
0.6
    r2 :: Double
r2 = Double
0.78
    r3 :: Double
r3 = Double
0.96
    α :: Double
α  = Double
2forall a. Num a => a -> a -> a
*forall a. Floating a => a
pi forall a. Fractional a => a -> a -> a
/ (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
    angles :: [Double]
angles = [ Double
n forall a. Num a => a -> a -> a
* Double
α | Double
n <- [Double
0 .. (Double
2forall a. Num a => a -> a -> a
*forall a. Floating a => a
pi forall a. Fractional a => a -> a -> a
/ Double
α)]]
    rays :: AttributeValue
rays = 
      Path -> AttributeValue
mkPath forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Double -> Path
doubleRay [Double]
angles
    doubleRay :: Double -> Path
doubleRay Double
β = do
      Double -> Double -> Path
ray Double
r2 Double
β
      Double -> Double -> Path
ray Double
r3 (Double
β forall a. Num a => a -> a -> a
+ Double
αforall a. Fractional a => a -> a -> a
/Double
2)
    ray :: Double -> Double -> Path
ray Double
r Double
β = do
      forall a. Show a => a -> a -> Path
m   (Double
r1 forall a. Num a => a -> a -> a
* forall a. Floating a => a -> a
cos Double
β)  (Double
r1 forall a. Num a => a -> a -> a
* forall a. Floating a => a -> a
sin Double
β)
      forall a. Show a => a -> a -> Path
l   (Double
r  forall a. Num a => a -> a -> a
* forall a. Floating a => a -> a
cos Double
β)  (Double
r  forall a. Num a => a -> a -> a
* forall a. Floating a => a -> a
sin Double
β)



{- |
![fill style](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/moonHalf_fill.svg)

![fill and stroke](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/moonHalf_full.svg)

![stroke style](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/moonHalf_strk.svg)
-}
moonHalf :: Svg
moonHalf :: Svg
moonHalf =
    Svg
S.path
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.class_ AttributeValue
"HaskellSvgIcons__moonHalf"
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.strokeLinejoin AttributeValue
"round"
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.d AttributeValue
moonDirs
  where
    kx :: Double
kx = Double
0.72
    ky :: Double
ky = Double
0.7
    r1 :: Double
r1 = Double
0.92
    r2 :: Double
r2 = Double
0.71
    moonDirs :: AttributeValue
moonDirs = Path -> AttributeValue
mkPath forall a b. (a -> b) -> a -> b
$ do
      forall a. Show a => a -> a -> Path
m   ( Double
kx) (-Double
ky)
      forall a. Show a => a -> a -> a -> Bool -> Bool -> a -> a -> Path
aa    Double
r1    Double
r1   Double
0  Bool
True  Bool
False ( Double
kx) ( Double
ky)
      forall a. Show a => a -> a -> a -> Bool -> Bool -> a -> a -> Path
aa    Double
r2    Double
r2   Double
0  Bool
True  Bool
True  ( Double
kx) (-Double
ky)
      Path
S.z



{- |
![fill style](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/moonCrescent_fill.svg)

![fill and stroke](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/moonCrescent_full.svg)

![stroke style](https://raw.githubusercontent.com/RamiroPastor/SvgIcons/main/svg/icons/cosmos/moonCrescent_strk.svg)
-}
moonCrescent :: Svg
moonCrescent :: Svg
moonCrescent =
    Svg
S.path
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.class_ AttributeValue
"HaskellSvgIcons__moonCrescent"
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.strokeLinejoin AttributeValue
"round"
      forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.d AttributeValue
moonDirs
  where
    kx :: Double
kx = Double
0.55
    ky :: Double
ky = Double
0.55
    r1 :: Double
r1 = Double
0.8
    r2 :: Double
r2 = Double
0.65
    moonDirs :: AttributeValue
moonDirs = Path -> AttributeValue
mkPath forall a b. (a -> b) -> a -> b
$ do
      forall a. Show a => a -> a -> Path
m   ( Double
kx) (-Double
ky)
      forall a. Show a => a -> a -> a -> Bool -> Bool -> a -> a -> Path
aa    Double
r1    Double
r1   Double
0  Bool
True  Bool
False ( Double
kx) ( Double
ky)
      forall a. Show a => a -> a -> a -> Bool -> Bool -> a -> a -> Path
aa    Double
r2    Double
r2   Double
0  Bool
True  Bool
True  ( Double
kx) (-Double
ky)
      Path
S.z