{-# LANGUAGE OverloadedStrings #-}
module SvgIcons.Icons.Math
( svgMath
, lambda
, lemniscate
) where
import Text.Blaze.Svg11 ((!))
import Text.Blaze.Svg11 as S
import Text.Blaze.Svg11.Attributes as A
import SvgIcons.Core.Utils
svgMath :: [ (String , S.Svg) ]
svgMath :: [(String, Svg)]
svgMath =
[ (,) String
"lambda" Svg
lambda
, (,) String
"lemniscate" Svg
lemniscate
]
lambda :: S.Svg
lambda :: Svg
lambda =
Svg -> Svg
S.g forall a b. (a -> b) -> a -> b
$ do
Svg
S.path
forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.strokeLinejoin AttributeValue
"round"
forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.d (Path -> AttributeValue
mkPath forall a b. (a -> b) -> a -> b
$ Path
rightLeg forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Path
leftLeg forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Path
arm)
forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.transform (forall a. Show a => a -> a -> AttributeValue
translate Double
0 (-Double
0.02))
where
(Integer
c1,Integer
c2) = (,) ( Integer
0 ) ( Integer
0 )
(Double
a1,Double
a2) = (,) (-Double
0.376) ( Double
0.962)
(Double
b1,Double
b2) = (,) (-Double
0.548) ( Double
a2 )
(Double
d1,Double
d2) = (,) ( Double
0.088) (-Double
0.098)
leftLeg :: Path
leftLeg = do
forall a. Show a => a -> a -> Path
S.l Integer
c1 Integer
c2
forall a. Show a => a -> a -> Path
S.l Double
a1 Double
a2
forall a. Show a => a -> a -> Path
S.l Double
b1 Double
b2
forall a. Show a => a -> a -> Path
S.l Double
m1 Double
m2
(Double
e1,Double
e2) = (,) ( Double
0.226) ( Double
0.54 )
(Double
f1,Double
f2) = (,) ( Double
0.326) ( Double
0.864)
(Double
g1,Double
g2) = (,) ( Double
0.610) ( Double
0.890)
(Double
h1,Double
h2) = (,) ( Double
0.652) ( Double
0.576)
(Double
j1,Double
j2) = (,) ( Double
0.710) ( Double
1.10 )
(Double
k1,Double
k2) = (,) ( Double
0.234) ( Double
j2 )
(Double
l1,Double
l2) = (,) ( Double
0.142) ( Double
0.60 )
(Double
m1,Double
m2) = (,) (-Double
0.054) (-Double
0.274)
rightLeg :: Path
rightLeg = do
forall a. Show a => a -> a -> Path
S.m Double
d1 Double
d2
forall a. Show a => a -> a -> Path
S.l Double
e1 Double
e2
forall a. Show a => a -> a -> a -> a -> a -> a -> Path
S.c Double
f1 Double
f2 Double
g1 Double
g2 Double
h1 Double
h2
forall a. Show a => a -> a -> a -> a -> a -> a -> Path
S.c Double
j1 Double
j2 Double
k1 Double
k2 Double
l1 Double
l2
(Double
n1,Double
n2) = (,) (-Double
0.12 ) (-Double
0.86 )
(Double
o1,Double
o2) = (,) (-Double
0.470) ( Double
n2 )
(Double
p1,Double
p2) = (,) (-Double
0.550) (-Double
0.502)
(Double
r1,Double
r2) = (,) (-Double
0.570) (-Double
1.06 )
(Double
s1,Double
s2) = (,) (-Double
0.142) ( Double
r2 )
(Double
t1,Double
t2) = (,) (-Double
0.04 ) (-Double
0.66 )
arm :: Path
arm = do
forall a. Show a => a -> a -> a -> a -> a -> a -> Path
S.c Double
n1 Double
n2 Double
o1 Double
o2 Double
p1 Double
p2
forall a. Show a => a -> a -> a -> a -> a -> a -> Path
S.c Double
r1 Double
r2 Double
s1 Double
s2 Double
t1 Double
t2
forall a. Show a => a -> a -> Path
S.l Double
d1 Double
d2
lemniscate :: Svg
lemniscate :: Svg
lemniscate =
Svg
S.path
forall h. Attributable h => h -> Attribute -> h
! AttributeValue -> Attribute
A.d AttributeValue
dirs
where
k :: Double
k = Double
0.5
r :: Double
r = Double
0.4
dirs :: AttributeValue
dirs = Path -> AttributeValue
mkPath forall a b. (a -> b) -> a -> b
$ do
forall a. Show a => a -> a -> Path
m (-Double
k) (-Double
r)
forall a. Show a => a -> a -> a -> Bool -> Bool -> a -> a -> Path
aa Double
r Double
r Double
0 Bool
True Bool
False (-Double
k) ( Double
r)
forall a. Show a => a -> a -> a -> a -> a -> a -> Path
c Double
0 Double
r Double
0 (-Double
r) ( Double
k) (-Double
r)
forall a. Show a => a -> a -> a -> Bool -> Bool -> a -> a -> Path
aa Double
r Double
r Double
0 Bool
True Bool
True ( Double
k) ( Double
r)
forall a. Show a => a -> a -> a -> a -> a -> a -> Path
c Double
0 Double
r Double
0 (-Double
r) (-Double
k) (-Double
r)
Path
S.z