Copyright | (C) 2017 Alexey Vagarenko |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Alexey Vagarenko (vagarenko@gmail.com) |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
- class (PositiveDims dims ~ True, KnownNats dims) => IsTensor (dims :: [Nat]) e where
- type TensorConstructor (dims :: [Nat]) (e :: Type) = NAry (ElemsNumber dims) e (Tensor dims e)
- type family PositiveDims (dims :: [Nat]) :: Bool where ...
- fill :: forall (dims :: [Nat]) e. Fill dims e => e -> Tensor dims e
- zero :: (Fill dims e, Num e) => Tensor dims e
- enumFromN :: forall (dims :: [Nat]) e. EnumFromN dims e => e -> Tensor dims e
- type EnumFromN (dims :: [Nat]) e = (IsTensor dims e, EnumFromN (ElemsNumber dims), Num e)
- enumFromStepN :: forall (dims :: [Nat]) e. EnumFromStepN dims e => e -> e -> Tensor dims e
- type EnumFromStepN (dims :: [Nat]) e = (IsTensor dims e, EnumFromStepN (ElemsNumber dims), Num e)
- generate :: forall (dims :: [Nat]) (e :: Type) (kctx :: Type) (ctx :: kctx). Generate dims e kctx ctx => (forall (index :: [Nat]). MkCtx [Nat] kctx ctx index => Proxy index -> e) -> Tensor dims e
- type Generate (dims :: [Nat]) (e :: Type) (kctx :: Type) (ctx :: kctx) = (IsTensor dims e, DemoteWith [Nat] kctx ctx (AllIndexes dims))
- dimensions :: forall (dims :: [Nat]). KnownNats dims => [Int]
- elemsNumber :: forall (dims :: [Nat]). KnownNat (ElemsNumber dims) => Int
- subtensorsElemsNumbers :: forall (dims :: [Nat]). KnownNats (SubtensorsElemsNumbers dims) => [Int]
- type family ElemsNumber (dims :: [Nat]) :: Nat where ...
- type SubtensorsElemsNumbers (dims :: [Nat]) = Tail (SubtensorsElemsNumbers' dims)
- type FlattenIndex (index :: [Nat]) (dims :: [Nat]) = FlattenIndex' index (SubtensorsElemsNumbers dims)
- type AllIndexes (dims :: [Nat]) = Sequence (IndexesRanges dims)
- type NatsFromTo (from :: Nat) (to :: Nat) = NatsFromTo' from to (from <=? to)
- type family NormalizeDims (dims :: [Nat]) :: [Nat] where ...
- withTensor :: forall dims e r. (IsTensor dims e, ApplyNAry (ElemsNumber dims) e r) => Tensor dims e -> NAry (ElemsNumber dims) e r -> r
- add :: Add dims e => Tensor dims e -> Tensor dims e -> Tensor dims e
- type Add (dims :: [Nat]) e = (IsTensor dims e, Num e, ZipWith (ElemsNumber dims), Zip (ElemsNumber dims), Unzip (ElemsNumber dims), Map (ElemsNumber dims))
- diff :: Diff dims e => Tensor dims e -> Tensor dims e -> Tensor dims e
- type Diff (dims :: [Nat]) e = (IsTensor dims e, Num e, ZipWith (ElemsNumber dims), Zip (ElemsNumber dims), Unzip (ElemsNumber dims), Map (ElemsNumber dims))
- scale :: Scale dims e => Tensor dims e -> e -> Tensor dims e
- type Scale (dims :: [Nat]) e = (IsTensor dims e, Num e, Map (ElemsNumber dims))
- cons :: forall (axis :: Nat) (dims :: [Nat]) e. Cons axis dims e => Tensor (NormalizeDims (ConsSubtensorDims axis dims)) e -> Tensor dims e -> Tensor (DimsAfterCons axis dims) e
- type Cons (axis :: Nat) (dims :: [Nat]) e = (SetSlice (ConsSubtensorStartingIndex dims) (ConsSubtensorDims axis dims) (DimsAfterCons axis dims) e, SetSlice (ConsTensorStartingIndex axis dims) dims (DimsAfterCons axis dims) e, dims ~ NormalizeDims dims, Fill (DimsAfterCons axis dims) e)
- type ConsSubtensorDims (axis :: Nat) (dims :: [Nat]) = ConsSubtensorDims' axis dims 0
- type family DimsAfterCons (axis :: Nat) (dims :: [Nat]) :: [Nat] where ...
- snoc :: forall (axis :: Nat) (dims :: [Nat]) e. Snoc axis dims e => Tensor dims e -> Tensor (NormalizeDims (SnocSubtensorDims axis dims)) e -> Tensor (DimsAfterSnoc axis dims) e
- type Snoc (axis :: Nat) (dims :: [Nat]) e = (SetSlice (SnocSubtensorStartingIndex axis dims) (SnocSubtensorDims axis dims) (DimsAfterSnoc axis dims) e, SetSlice (SnocTensorStartingIndex dims) dims (DimsAfterSnoc axis dims) e, dims ~ NormalizeDims dims, Fill (DimsAfterSnoc axis dims) e)
- type SnocSubtensorDims (axis :: Nat) (dims :: [Nat]) = SnocSubtensorDims' axis dims 0
- type family DimsAfterSnoc (axis :: Nat) (dims :: [Nat]) :: [Nat] where ...
- append :: forall (axis :: Nat) (dims0 :: [Nat]) (dims1 :: [Nat]) e. Append axis dims0 dims1 e => Tensor dims0 e -> Tensor dims1 e -> Tensor (DimsAfterAppend axis dims0 dims1) e
- type Append (axis :: Nat) (dims0 :: [Nat]) (dims1 :: [Nat]) e = (SetSlice (AppendFstTensorStartingIndex dims0) dims0 (DimsAfterAppend axis dims0 dims1) e, SetSlice (AppendSndTensorStartingIndex axis dims1) dims1 (DimsAfterAppend axis dims0 dims1) e, dims0 ~ NormalizeDims dims0, dims1 ~ NormalizeDims dims1, Fill (DimsAfterAppend axis dims0 dims1) e)
- type DimsAfterAppend (axis :: Nat) (dims0 :: [Nat]) (dims1 :: [Nat]) = DimsAfterAppend' axis dims0 dims1 0
- remove :: forall (axis :: Nat) (indexOnAxis :: Nat) (dims :: [Nat]) e. Remove axis indexOnAxis dims e => Tensor dims e -> Tensor (DimsAfterRemove axis indexOnAxis dims) e
- type Remove (axis :: Nat) (indexOnAxis :: Nat) (dims :: [Nat]) e = (IsTensor dims e, IsTensor (DimsAfterRemove axis indexOnAxis dims) e, RemoveWrk (ElemsInSlice (RemoveSliceStartIndex axis indexOnAxis dims) (RemoveSliceDims axis indexOnAxis dims) dims))
- type family DimsAfterRemove (axis :: Nat) (index :: Nat) (dims :: [Nat]) :: [Nat] where ...
- type family NestedList (depth :: Nat) (e :: Type) :: Type where ...
- toNestedList :: forall dims e. ToNestedList dims e => Tensor dims e -> NestedList (Length dims) e
- type ToNestedList (dims :: [Nat]) e = (IsTensor dims e, ToNestedListWrk dims e)
- tensorElem :: forall (index :: [Nat]) (dims :: [Nat]) e. TensorElem index dims e => Lens' (Tensor dims e) e
- type TensorElem index dims e = (SubtensorCtx index dims e, NormalizeDims (SubtensorDims index dims) ~ '[])
- type Subtensor index dims e = Tensor (NormalizeDims (SubtensorDims index dims)) e
- type family SubtensorStartIndex (index :: [Nat]) (dims :: [Nat]) :: [Nat] where ...
- type family SubtensorDims (index :: [Nat]) (dims :: [Nat]) :: [Nat] where ...
- subtensor :: forall (index :: [Nat]) (dims :: [Nat]) e. SubtensorCtx index dims e => Lens' (Tensor dims e) (Subtensor index dims e)
- type SubtensorCtx index dims e = (GetSubtensor index dims e, SetSubtensor index dims e)
- getSubtensor :: forall (index :: [Nat]) (dims :: [Nat]) e. GetSubtensor index dims e => Tensor dims e -> Subtensor index dims e
- type GetSubtensor index dims e = GetSlice (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e
- getSubtensorElems :: forall (index :: [Nat]) (dims :: [Nat]) e. GetSubtensorElems index dims e => Tensor dims e -> [e]
- type GetSubtensorElems index dims e = GetSliceElems (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e
- setSubtensor :: forall (index :: [Nat]) (dims :: [Nat]) e. SetSubtensor index dims e => Tensor dims e -> Subtensor index dims e -> Tensor dims e
- type SetSubtensor index dims e = SetSlice (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e
- setSubtensorElems :: forall (index :: [Nat]) (dims :: [Nat]) e. SetSubtensorElems index dims e => Tensor dims e -> [e] -> Maybe (Tensor dims e)
- type SetSubtensorElems index dims e = SetSliceElems (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e
- mapSubtensorElems :: forall (index :: [Nat]) (dims :: [Nat]) e. MapSubtensorElems index dims e => Tensor dims e -> (e -> e) -> Tensor dims e
- type MapSubtensorElems index dims e = MapSliceElems (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e
- type family SliceEndIndex (startIndex :: [Nat]) (sliceDims :: [Nat]) (dims :: [Nat]) :: [Nat] where ...
- type ElemsInSlice (startIndex :: [Nat]) (sliceDims :: [Nat]) (dims :: [Nat]) = ElemsInSlice' startIndex (SliceEndIndex startIndex sliceDims dims) (AllIndexes dims)
- slice :: forall startIndex sliceDims dims e. Slice startIndex sliceDims dims e => Lens' (Tensor dims e) (Tensor (NormalizeDims sliceDims) e)
- type Slice startIndex sliceDims dims e = (IsTensor dims e, IsTensor (NormalizeDims sliceDims) e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims), SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims))
- getSlice :: forall startIndex sliceDims dims e. GetSlice startIndex sliceDims dims e => Tensor dims e -> Tensor (NormalizeDims sliceDims) e
- type GetSlice startIndex sliceDims dims e = (IsTensor dims e, IsTensor (NormalizeDims sliceDims) e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims))
- getSliceElems :: forall startIndex sliceDims dims e. GetSliceElems startIndex sliceDims dims e => Tensor dims e -> [e]
- type GetSliceElems startIndex sliceDims dims e = (IsTensor dims e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims))
- setSlice :: forall startIndex sliceDims dims e. SetSlice startIndex sliceDims dims e => Tensor dims e -> Tensor (NormalizeDims sliceDims) e -> Tensor dims e
- type SetSlice startIndex sliceDims dims e = (IsTensor dims e, IsTensor (NormalizeDims sliceDims) e, SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims))
- setSliceElems :: forall startIndex sliceDims dims e. SetSliceElems startIndex sliceDims dims e => Tensor dims e -> [e] -> Maybe (Tensor dims e)
- type SetSliceElems startIndex sliceDims dims e = (IsTensor dims e, SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims))
- mapSliceElems :: forall startIndex sliceDims dims e. MapSliceElems startIndex sliceDims dims e => Tensor dims e -> (e -> e) -> Tensor dims e
- type MapSliceElems startIndex sliceDims dims e = (IsTensor dims e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims), SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims), Map (ElemsNumber sliceDims))
- type MonoFunctorCtx (dims :: [Nat]) e = (IsTensor dims e, Map (ElemsNumber dims))
- type MonoFoldableCtx (dims :: [Nat]) e = (IsTensor dims e, Foldr (ElemsNumber dims), Foldl (ElemsNumber dims), Foldr1 (ElemsNumber dims), Foldl1 (ElemsNumber dims))
- type MonoTraversableCtx (dims :: [Nat]) e = (IsTensor dims e, Map (ElemsNumber dims), Foldr (ElemsNumber dims), Foldl (ElemsNumber dims), Foldr1 (ElemsNumber dims), Foldl1 (ElemsNumber dims))
- type MonoZipCtx (dims :: [Nat]) e = (IsTensor dims e, Map (ElemsNumber dims), ZipWith (ElemsNumber dims), Zip (ElemsNumber dims), Unzip (ElemsNumber dims))
- unsafeWithTensorPtr :: (IsTensor dims e, Storable e, KnownNat (ElemsNumber dims)) => Tensor dims e -> (Ptr e -> IO a) -> IO a
Tensor class
class (PositiveDims dims ~ True, KnownNats dims) => IsTensor (dims :: [Nat]) e where Source #
Data family of unboxed tensors. Dimensions of a tensor are represented as type-level list of
naturals. For instance, Tensor [3] Float
is a vector of 3 Float
elements; Tensor [4,3] Double
is a matrix with 4 rows 3 columns of Double
and so on.
tensor :: TensorConstructor dims e Source #
Alias for a concrete tensor data constructor.
>>>
tensor @[2,2] @Int 0 1 2 3
Tensor'2'2 [[0,1],[2,3]]
unsafeFromList :: [e] -> Tensor dims e Source #
Build tensor from the list. The list must contain at least length
elements or method will throw an exception.
toList :: Tensor dims e -> [] e Source #
Convert tensor to list.
type TensorConstructor (dims :: [Nat]) (e :: Type) = NAry (ElemsNumber dims) e (Tensor dims e) Source #
Type of a tensor data constructor.
>>>
:kind! TensorConstructor '[2,2] Float
TensorConstructor '[2,2] Float :: * = Float -> Float -> Float -> Float -> Tensor '[2, 2] Float
type family PositiveDims (dims :: [Nat]) :: Bool where ... Source #
Check if all dimensions are greater than 0.
PositiveDims '[] = True | |
PositiveDims (d ': ds) = (1 <=? d) && PositiveDims ds |
Construction
fill :: forall (dims :: [Nat]) e. Fill dims e => e -> Tensor dims e Source #
Tensor filled with given elements.
Tensor which elements are enumeration starting from given value.
type EnumFromN (dims :: [Nat]) e = (IsTensor dims e, EnumFromN (ElemsNumber dims), Num e) Source #
Constraints for enumFromN
function.
:: forall (dims :: [Nat]). EnumFromStepN dims e | |
=> e | Starting value. |
-> e | Step. |
-> Tensor dims e |
Tensor which elements are enumeration starting from given value with given step.
type EnumFromStepN (dims :: [Nat]) e = (IsTensor dims e, EnumFromStepN (ElemsNumber dims), Num e) Source #
Constraints for enumFromStepN
function.
:: forall (dims :: [Nat]) (e :: Type) (kctx :: Type) (ctx :: kctx). Generate dims e kctx ctx | |
=> (forall (index :: [Nat]). MkCtx [Nat] kctx ctx index => Proxy index -> e) | Generator function that takes index as type parameter will be called for each index. |
-> Tensor dims e |
Generate a tensor by applying the function to each index.
ctx
type parameter is a producer of constraint of kind kctx
for each index. See MkCtx
for more info.
>>>
import Data.Singletons
>>>
type Ctx (dims :: [Nat]) (index :: [Nat]) = KnownNat (FlattenIndex index dims); $(genDefunSymbols [''Ctx])
>>>
generate @[2,3,4] @Int @([Nat] ~> Constraint) @(CtxSym1 [2,3,4]) $ \(Proxy :: Proxy index) -> fromIntegral $ natVal (Proxy @(FlattenIndex index [2,3,4]))
Tensor'2'3'4 [[[0,1,2,3],[4,5,6,7],[8,9,10,11]],[[12,13,14,15],[16,17,18,19],[20,21,22,23]]]
type Generate (dims :: [Nat]) (e :: Type) (kctx :: Type) (ctx :: kctx) = (IsTensor dims e, DemoteWith [Nat] kctx ctx (AllIndexes dims)) Source #
Constraints for generate
function.
Tensor shape
elemsNumber :: forall (dims :: [Nat]). KnownNat (ElemsNumber dims) => Int Source #
Number of elements in a tensor.
subtensorsElemsNumbers :: forall (dims :: [Nat]). KnownNats (SubtensorsElemsNumbers dims) => [Int] Source #
Number of elements of all subtensors of a tensor.
>>>
subtensorsElemsNumbers @[2,3,4]
[12,4,1]
>>>
subtensorsElemsNumbers @[4,4]
[4,1]
type family ElemsNumber (dims :: [Nat]) :: Nat where ... Source #
Number of elements in a tensor.
ElemsNumber '[] = 1 | |
ElemsNumber (d ': ds) = d * ElemsNumber ds |
type SubtensorsElemsNumbers (dims :: [Nat]) = Tail (SubtensorsElemsNumbers' dims) Source #
Number of elements of all subtensors of a tensor with given shape dims
.
>>>
:kind! SubtensorsElemsNumbers '[2,3,4]
SubtensorsElemsNumbers '[2,3,4] :: [Nat] = '[12, 4, 1]
>>>
:kind! SubtensorsElemsNumbers '[4,4]
SubtensorsElemsNumbers '[4,4] :: [Nat] = '[4, 1]
type FlattenIndex (index :: [Nat]) (dims :: [Nat]) = FlattenIndex' index (SubtensorsElemsNumbers dims) Source #
Convert multidimentional index
in tensor of shape dims
to flat index.
index
parameter must have the same length as dims
.
>>>
:kind! FlattenIndex '[1,1,1] '[2,3,4]
FlattenIndex '[1,1,1] '[2,3,4] :: Nat = 17
type AllIndexes (dims :: [Nat]) = Sequence (IndexesRanges dims) Source #
Sequence of all indexes in a tensor of shape dims
.
>>>
:kind! AllIndexes '[2,3,4]
AllIndexes '[2,3,4] :: [[Nat]] = '['[0, 0, 0], '[0, 0, 1], '[0, 0, 2], '[0, 0, 3], '[0, 1, 0], '[0, 1, 1], '[0, 1, 2], '[0, 1, 3], '[0, 2, 0], '[0, 2, 1], '[0, 2, 2], '[0, 2, 3], '[1, 0, 0], '[1, 0, 1], '[1, 0, 2], '[1, 0, 3], '[1, 1, 0], '[1, 1, 1], '[1, 1, 2], '[1, 1, 3], '[1, 2, 0], '[1, 2, 1], '[1, 2, 2], '[1, 2, 3]]
type NatsFromTo (from :: Nat) (to :: Nat) = NatsFromTo' from to (from <=? to) Source #
Generate range of naturals starting from from
param inclusive and up to to
param inclusive.
type family NormalizeDims (dims :: [Nat]) :: [Nat] where ... Source #
Remove unit dimentions, i.e. dimensions with size 1
.
>>>
:kind! NormalizeDims '[2, 1, 3]
'[2, 3]
NormalizeDims '[] = '[] | |
NormalizeDims (1 ': xs) = NormalizeDims xs | |
NormalizeDims (x ': xs) = x ': NormalizeDims xs |
Modifying tensors
:: (IsTensor dims e, ApplyNAry (ElemsNumber dims) e r) | |
=> Tensor dims e | The tensor. |
-> NAry (ElemsNumber dims) e r | Function with number of params equal to number of tensor elements. |
-> r |
Pass tensor elements to a function.
>>>
withTensor (matrix @2 @2 @Float 0 1 2 3) (\a b c d -> a * d - b * c)
-2.0
>>>
withTensor (vector @2 @Float 3 4) (\x y -> sqrt $ x * x + y * y)
5.0
add :: Add dims e => Tensor dims e -> Tensor dims e -> Tensor dims e Source #
Add two tensors element-wise.
type Add (dims :: [Nat]) e = (IsTensor dims e, Num e, ZipWith (ElemsNumber dims), Zip (ElemsNumber dims), Unzip (ElemsNumber dims), Map (ElemsNumber dims)) Source #
Constraints for add
.
diff :: Diff dims e => Tensor dims e -> Tensor dims e -> Tensor dims e Source #
Substract two tensors element-wise.
type Diff (dims :: [Nat]) e = (IsTensor dims e, Num e, ZipWith (ElemsNumber dims), Zip (ElemsNumber dims), Unzip (ElemsNumber dims), Map (ElemsNumber dims)) Source #
Constraints for diff
.
scale :: Scale dims e => Tensor dims e -> e -> Tensor dims e Source #
Multiply every element of a tensor by given value.
type Scale (dims :: [Nat]) e = (IsTensor dims e, Num e, Map (ElemsNumber dims)) Source #
Constraints for scale
.
Concatenation
:: forall (axis :: Nat) (dims :: [Nat]). Cons axis dims e | |
=> Tensor (NormalizeDims (ConsSubtensorDims axis dims)) e | Subtensor to cons. |
-> Tensor dims e | Tensor to cons to. |
-> Tensor (DimsAfterCons axis dims) e |
Prepend a subtensor along axis
to the tensor with shape dims
>>>
cons @0 (enumFromStepN @[3,4] @Int (-1) (-1)) (enumFromN @[2,3,4] 0)
Tensor'3'3'4 [[[ -1, -2, -3, -4] ,[ -5, -6, -7, -8] ,[ -9, -10, -11, -12]] ,[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]]]
>>>
cons @1 (enumFromStepN @[2,4] @Int (-1) (-1)) (enumFromN @[2,3,4] 0)
Tensor'2'4'4 [[[ -1, -2, -3, -4] ,[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ -5, -6, -7, -8] ,[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]]]
>>>
cons @2 (enumFromStepN @[2,3] @Int (-1) (-1)) (enumFromN @[2,3,4] 0)
Tensor'2'3'5 [[[ -1, 0, 1, 2, 3] ,[ -2, 4, 5, 6, 7] ,[ -3, 8, 9, 10, 11]] ,[[ -4, 12, 13, 14, 15] ,[ -5, 16, 17, 18, 19] ,[ -6, 20, 21, 22, 23]]]
type Cons (axis :: Nat) (dims :: [Nat]) e = (SetSlice (ConsSubtensorStartingIndex dims) (ConsSubtensorDims axis dims) (DimsAfterCons axis dims) e, SetSlice (ConsTensorStartingIndex axis dims) dims (DimsAfterCons axis dims) e, dims ~ NormalizeDims dims, Fill (DimsAfterCons axis dims) e) Source #
Constraints for cons
.
type ConsSubtensorDims (axis :: Nat) (dims :: [Nat]) = ConsSubtensorDims' axis dims 0 Source #
Shape of subtensor being cons'ed to the tensor dims
.
>>>
:kind! ConsSubtensorDims 0 [2,3,4]
ConsSubtensorDims 0 [2,3,4] :: [Nat] = '[1, 3, 4]
>>>
:kind! ConsSubtensorDims 1 [2,3,4]
ConsSubtensorDims 1 [2,3,4] :: [Nat] = '[2, 1, 4]
>>>
:kind! ConsSubtensorDims 2 [2,3,4]
ConsSubtensorDims 2 [2,3,4] :: [Nat] = '[2, 3, 1]
type family DimsAfterCons (axis :: Nat) (dims :: [Nat]) :: [Nat] where ... Source #
Shape of the tensor after cons'ing
>>>
:kind! DimsAfterCons 0 [2,3,4]
DimsAfterCons 0 [2,3,4] :: [Nat] = '[3, 3, 4]
>>>
:kind! DimsAfterCons 1 [2,3,4]
DimsAfterCons 1 [2,3,4] :: [Nat] = '[2, 4, 4]
>>>
:kind! DimsAfterCons 2 [2,3,4]
DimsAfterCons 2 [2,3,4] :: [Nat] = '[2, 3, 5]
DimsAfterCons 0 (d ': ds) = (d + 1) ': ds | |
DimsAfterCons a (d ': ds) = d ': DimsAfterCons (a - 1) ds | |
DimsAfterCons _ '[] = TypeError (Text "DimsAfterCons: axis must be in range [0..(number of dimensions in the tensor)].") |
:: forall (axis :: Nat) (dims :: [Nat]). Snoc axis dims e | |
=> Tensor dims e | Tensor to snoc to. |
-> Tensor (NormalizeDims (SnocSubtensorDims axis dims)) e | Subtensor to snoc. |
-> Tensor (DimsAfterSnoc axis dims) e |
Append a subtensor along axis
to the tensor with shape dims
>>>
snoc @0 (enumFromN @[2,3,4] 0) (enumFromStepN @[3,4] @Int (-1) (-1))
Tensor'3'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]] ,[[ -1, -2, -3, -4] ,[ -5, -6, -7, -8] ,[ -9, -10, -11, -12]]]
>>>
snoc @1 (enumFromN @[2,3,4] 0) (enumFromStepN @[2,4] @Int (-1) (-1))
Tensor'2'4'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11] ,[ -1, -2, -3, -4]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23] ,[ -5, -6, -7, -8]]]
>>>
snoc @2 (enumFromN @[2,3,4] 0) (enumFromStepN @[2,3] @Int (-1) (-1))
Tensor'2'3'5 [[[ 0, 1, 2, 3, -1] ,[ 4, 5, 6, 7, -2] ,[ 8, 9, 10, 11, -3]] ,[[ 12, 13, 14, 15, -4] ,[ 16, 17, 18, 19, -5] ,[ 20, 21, 22, 23, -6]]]
type Snoc (axis :: Nat) (dims :: [Nat]) e = (SetSlice (SnocSubtensorStartingIndex axis dims) (SnocSubtensorDims axis dims) (DimsAfterSnoc axis dims) e, SetSlice (SnocTensorStartingIndex dims) dims (DimsAfterSnoc axis dims) e, dims ~ NormalizeDims dims, Fill (DimsAfterSnoc axis dims) e) Source #
Constraints for snoc
.
type SnocSubtensorDims (axis :: Nat) (dims :: [Nat]) = SnocSubtensorDims' axis dims 0 Source #
Shape of subtensor being snoc'ed to the tensor dims
.
>>>
:kind! SnocSubtensorDims 0 [2,3,4]
SnocSubtensorDims 0 [2,3,4] :: [Nat] = '[1, 3, 4]
>>>
:kind! SnocSubtensorDims 1 [2,3,4]
SnocSubtensorDims 1 [2,3,4] :: [Nat] = '[2, 1, 4]
>>>
:kind! SnocSubtensorDims 2 [2,3,4]
SnocSubtensorDims 2 [2,3,4] :: [Nat] = '[2, 3, 1]
type family DimsAfterSnoc (axis :: Nat) (dims :: [Nat]) :: [Nat] where ... Source #
Shape of the tensor after snoc'ing
>>>
:kind! DimsAfterSnoc 0 [2,3,4]
DimsAfterSnoc 0 [2,3,4] :: [Nat] = '[3, 3, 4]
>>>
:kind! DimsAfterSnoc 1 [2,3,4]
DimsAfterSnoc 1 [2,3,4] :: [Nat] = '[2, 4, 4]
>>>
:kind! DimsAfterSnoc 2 [2,3,4]
DimsAfterSnoc 2 [2,3,4] :: [Nat] = '[2, 3, 5]
DimsAfterSnoc 0 (d ': ds) = (d + 1) ': ds | |
DimsAfterSnoc a (d ': ds) = d ': DimsAfterSnoc (a - 1) ds | |
DimsAfterSnoc _ '[] = TypeError (Text "DimsAfterSnoc: axis must be in range [0..(number of dimensions in the tensor)].") |
:: forall (axis :: Nat) (dims0 :: [Nat]) (dims1 :: [Nat]). Append axis dims0 dims1 e | |
=> Tensor dims0 e | |
-> Tensor dims1 e | |
-> Tensor (DimsAfterAppend axis dims0 dims1) e |
Append the second tensor dims1
to the first tensor dims0
along axis
.
>>>
append @0 (enumFromN @[2,3,4] 0) (enumFromStepN @[2,3,4] @Int (-1) (-1))
Tensor'4'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]] ,[[ -1, -2, -3, -4] ,[ -5, -6, -7, -8] ,[ -9, -10, -11, -12]] ,[[ -13, -14, -15, -16] ,[ -17, -18, -19, -20] ,[ -21, -22, -23, -24]]]
>>>
append @1 (enumFromN @[2,3,4] 0) (enumFromStepN @[2,3,4] @Int (-1) (-1))
Tensor'2'6'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11] ,[ -1, -2, -3, -4] ,[ -5, -6, -7, -8] ,[ -9, -10, -11, -12]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23] ,[ -13, -14, -15, -16] ,[ -17, -18, -19, -20] ,[ -21, -22, -23, -24]]]>>>
append @2 (enumFromN @[2,3,4] 0) (enumFromStepN @[2,3,4] @Int (-1) (-1))
Tensor'2'3'8 [[[ 0, 1, 2, 3, -1, -2, -3, -4] ,[ 4, 5, 6, 7, -5, -6, -7, -8] ,[ 8, 9, 10, 11, -9, -10, -11, -12]] ,[[ 12, 13, 14, 15, -13, -14, -15, -16] ,[ 16, 17, 18, 19, -17, -18, -19, -20] ,[ 20, 21, 22, 23, -21, -22, -23, -24]]]
type Append (axis :: Nat) (dims0 :: [Nat]) (dims1 :: [Nat]) e = (SetSlice (AppendFstTensorStartingIndex dims0) dims0 (DimsAfterAppend axis dims0 dims1) e, SetSlice (AppendSndTensorStartingIndex axis dims1) dims1 (DimsAfterAppend axis dims0 dims1) e, dims0 ~ NormalizeDims dims0, dims1 ~ NormalizeDims dims1, Fill (DimsAfterAppend axis dims0 dims1) e) Source #
Constraints for append
.
type DimsAfterAppend (axis :: Nat) (dims0 :: [Nat]) (dims1 :: [Nat]) = DimsAfterAppend' axis dims0 dims1 0 Source #
Shape of the tensor after appending
>>>
:kind! DimsAfterAppend 0 [2,3,4] [5,3,4]
DimsAfterAppend 0 [2,3,4] [5,3,4] :: [Nat] = '[7, 3, 4]
>>>
:kind! DimsAfterAppend 1 [2,3,4] [2,5,4]
DimsAfterAppend 1 [2,3,4] [2,5,4] :: [Nat] = '[2, 8, 4]
>>>
:kind! DimsAfterAppend 2 [2,3,4] [2,3,5]
DimsAfterAppend 2 [2,3,4] [2,3,5] :: [Nat] = '[2, 3, 9]
Removing slices
:: forall (axis :: Nat) (indexOnAxis :: Nat) (dims :: [Nat]). Remove axis indexOnAxis dims e | |
=> Tensor dims e | |
-> Tensor (DimsAfterRemove axis indexOnAxis dims) e |
Remove a slice from the tensor. We can only remove slices which have one dimension fewer than the tensor, and which span from borders of the tensor to opposite borders of the tensor (i.e. contain all elements of the tensor in their dimensions).
axis
is the index of dimension in dims
indexOnAxis
is offset along axis
that points to the slice to be removed.
For example, suppose we have tensor t :: Tensor '[2,3,4] Float
that is, tensor made of two matrices of 3*4 elements.
If we want to remove first matrix we write remove @0 @0 t
, if second - remove @0 @1 t
.
If we want to remove n-th row in all matrices we write remove @1 @n t
.
If we want to remove n-th column in all matrices we write remove @2 @n t
.
>>>
let t = enumFromN @[2,3,4] @Int 0
>>>
t
Tensor'2'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9,10,11]] ,[[12,13,14,15] ,[16,17,18,19] ,[20,21,22,23]]]>>>
remove @0 @0 t
Tensor'1'3'4 [[[12,13,14,15] ,[16,17,18,19] ,[20,21,22,23]]]>>>
remove @1 @0 t
Tensor'2'2'4 [[[ 4, 5, 6, 7] ,[ 8, 9,10,11]] ,[[16,17,18,19] ,[20,21,22,23]]]>>>
remove @2 @0 t
Tensor'2'3'3 [[[ 1, 2, 3] ,[ 5, 6, 7] ,[ 9,10,11]] ,[[13,14,15] ,[17,18,19] ,[21,22,23]]]
type Remove (axis :: Nat) (indexOnAxis :: Nat) (dims :: [Nat]) e = (IsTensor dims e, IsTensor (DimsAfterRemove axis indexOnAxis dims) e, RemoveWrk (ElemsInSlice (RemoveSliceStartIndex axis indexOnAxis dims) (RemoveSliceDims axis indexOnAxis dims) dims)) Source #
Constraints for remove
.
type family DimsAfterRemove (axis :: Nat) (index :: Nat) (dims :: [Nat]) :: [Nat] where ... Source #
Shape of a tensor dims
after removing a slice at index
along axis
.
>>>
:kind! DimsAfterRemove 0 0 [2,3,4]
DimsAfterRemove 0 0 [2,3,4] :: [Nat] = '[1, 3, 4]
>>>
:kind! DimsAfterRemove 1 0 [2,3,4]
DimsAfterRemove 1 0 [2,3,4] :: [Nat] = '[2, 2, 4]
>>>
:kind! DimsAfterRemove 2 0 [2,3,4]
DimsAfterRemove 2 0 [2,3,4] :: [Nat] = '[2, 3, 3]
DimsAfterRemove _ _ '[] = TypeError (Text "DimsAfterRemove: axis must be in range [0..(number of dimensions in the tensor)].") | |
DimsAfterRemove 0 i (d ': ds) = If (i <=? (d - 1)) ((d - 1) ': ds) (TypeError ((((Text "DimsAfterRemove: Index " :<>: ShowType i) :<>: Text " is outside of the range of dimension [0..") :<>: ShowType (d - 1)) :<>: Text "].")) | |
DimsAfterRemove a i (d ': ds) = d ': DimsAfterRemove (a - 1) i ds |
Conversion
type family NestedList (depth :: Nat) (e :: Type) :: Type where ... Source #
Nested list of given depth
.
>>>
:kind! NestedList 3 Float
[[[Float]]]
>>>
:kind! NestedList 2 Float
[[Float]]
NestedList 0 e = e | |
NestedList n e = [NestedList (n - 1) e] |
:: ToNestedList dims e | |
=> Tensor dims e | |
-> NestedList (Length dims) e |
Convert tensor to nested list.
type ToNestedList (dims :: [Nat]) e = (IsTensor dims e, ToNestedListWrk dims e) Source #
Constraints for toNestedList
function.
Tensor elements
:: forall (index :: [Nat]) (dims :: [Nat]). TensorElem index dims e | |
=> Lens' (Tensor dims e) e |
Lens for an element of a tensor.
>>>
let t = enumFromN @[2,3,4] @Int 0
>>>
t
Tensor'2'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]]]>>>
t ^. tensorElem @[1,1,1]
17>>>
set (tensorElem @[1,1,1]) 0 t
Tensor'2'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 0, 18, 19] ,[ 20, 21, 22, 23]]]
type TensorElem index dims e = (SubtensorCtx index dims e, NormalizeDims (SubtensorDims index dims) ~ '[]) Source #
Constraint for tensorElem
function.
Subtensors
type Subtensor index dims e = Tensor (NormalizeDims (SubtensorDims index dims)) e Source #
Subtensor at index
of a tensor of shape dims
.
>>>
:kind! Subtensor '[] '[2,3,4] Float
Subtensor '[] '[2,3,4] Float :: * = Tensor '[2, 3, 4] Float
>>>
:kind! Subtensor '[0] '[2,3,4] Float
Subtensor '[0] '[2,3,4] Float :: * = Tensor '[3, 4] Float
>>>
:kind! Subtensor '[0,0] '[2,3,4] Float
Subtensor '[0,0] '[2,3,4] Float :: * = Tensor '[4] Float
>>>
:kind! Subtensor '[0,0,0] '[2,3,4] Float
Subtensor '[0,0,0] '[2,3,4] Float :: * = Tensor '[] Float
type family SubtensorStartIndex (index :: [Nat]) (dims :: [Nat]) :: [Nat] where ... Source #
Index of the first element of the subtensor of the tensor of shape dims
at index
.
This function returns index with number of dimensions equal to number of dimensions of the
tensor.
>>>
:kind! SubtensorStartIndex '[1] '[2,3,4]
SubtensorStartIndex '[1] '[2,3,4] :: [Nat] = '[1, 0, 0]
>>>
:kind! SubtensorStartIndex '[0,1] '[2,3,4]
SubtensorStartIndex '[0,1] '[2,3,4] :: [Nat] = '[0, 1, 0]
>>>
:kind! SubtensorStartIndex '[1,1] '[2,3,4]
SubtensorStartIndex '[1,1] '[2,3,4] :: [Nat] = '[1, 1, 0]
SubtensorStartIndex '[] '[] = '[] | |
SubtensorStartIndex (i ': is) '[] = TypeError (Text "SubtensorStartIndex: Too many dimensions in the index for subtensor.") | |
SubtensorStartIndex '[] (d ': ds) = 0 ': SubtensorStartIndex '[] ds | |
SubtensorStartIndex (i ': is) (d ': ds) = If (i <=? (d - 1)) (i ': SubtensorStartIndex is ds) (TypeError ((((Text "SubtensorStartIndex: Index " :<>: ShowType i) :<>: Text " is outside of the range of dimension [0..") :<>: ShowType (d - 1)) :<>: Text "].")) |
type family SubtensorDims (index :: [Nat]) (dims :: [Nat]) :: [Nat] where ... Source #
Shape of a subtensor of tensor of shape dims
located at index
. Resulting shape is not normalized.
>>>
:kind! SubtensorDims '[0] '[2,3,4]
SubtensorDims '[0] '[2,3,4] :: [Nat] = '[1, 3, 4]
>>>
:kind! SubtensorDims '[0,0] '[2,3,4]
SubtensorDims '[0,0] '[2,3,4] :: [Nat] = '[1, 1, 4]
SubtensorDims '[] ds = ds | |
SubtensorDims (_ ': _) '[] = TypeError (Text "SubtensorDims: Too many dimensions in the index for subtensor.") | |
SubtensorDims (i ': is) (d ': ds) = If (i <=? (d - 1)) (1 ': SubtensorDims is ds) (TypeError ((((Text "SubtensorDims: Index " :<>: ShowType i) :<>: Text " is outside of the range of dimension [0..") :<>: ShowType (d - 1)) :<>: Text "].")) |
:: forall (index :: [Nat]) (dims :: [Nat]). SubtensorCtx index dims e | |
=> Lens' (Tensor dims e) (Subtensor index dims e) |
Lens for subtensor at given index.
>>>
let t = enumFromN @[2,3,4] @Int 0
>>>
t
Tensor'2'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]]]>>>
t ^. subtensor @'[0]
Tensor'3'4 [[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]]>>>
t ^. subtensor @'[1]
Tensor'3'4 [[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]]>>>
t ^. subtensor @'[0,0]
Tensor'4 [ 0, 1, 2, 3]>>>
t ^. subtensor @'[1,0]
Tensor'4 [ 12, 13, 14, 15]
type SubtensorCtx index dims e = (GetSubtensor index dims e, SetSubtensor index dims e) Source #
Constraint for subtensor
function.
:: forall (index :: [Nat]) (dims :: [Nat]). GetSubtensor index dims e | |
=> Tensor dims e | |
-> Subtensor index dims e |
Extract subtensor at given index.
type GetSubtensor index dims e = GetSlice (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e Source #
Constraint for getSubtensor
function.
:: forall (index :: [Nat]) (dims :: [Nat]). GetSubtensorElems index dims e | |
=> Tensor dims e | |
-> [e] |
Extract elements of subtensor at given index.
Like getSubtensor
, but without building actual subtensor.
type GetSubtensorElems index dims e = GetSliceElems (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e Source #
Constraint for getSubtensorElems
function.
:: forall (index :: [Nat]) (dims :: [Nat]). SetSubtensor index dims e | |
=> Tensor dims e | The tensor. |
-> Subtensor index dims e | New subtensor. |
-> Tensor dims e |
Set subtensor at given index.
type SetSubtensor index dims e = SetSlice (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e Source #
Constraint for setSubtensor
function.
:: forall (index :: [Nat]) (dims :: [Nat]). SetSubtensorElems index dims e | |
=> Tensor dims e | The tensor. |
-> [e] | New elements of the subtensor. |
-> Maybe (Tensor dims e) |
Like setSubtensor
but takes a list of elements instead of a tensor.
Returns Nothing
if list has not enough elements.
type SetSubtensorElems index dims e = SetSliceElems (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e Source #
Constraint for setSubtensorElems
function.
:: forall (index :: [Nat]) (dims :: [Nat]). MapSubtensorElems index dims e | |
=> Tensor dims e | The tensor. |
-> (e -> e) | The mapping function. |
-> Tensor dims e |
Modify subtensor elements with a function.
type MapSubtensorElems index dims e = MapSliceElems (SubtensorStartIndex index dims) (SubtensorDims index dims) dims e Source #
Constraints for mapSubtensorElems
.
Slices
type family SliceEndIndex (startIndex :: [Nat]) (sliceDims :: [Nat]) (dims :: [Nat]) :: [Nat] where ... Source #
Index of the end of the slice of the tensor. startIndex
parameter is the starting index of the slice,
sliceDims
is the shape of the slice, dims
is the shape of the tensor.
The slice must be contained inside the tensor.
All dimensions of the slice must be positive.
startIndex
, sliceDims
and dims
must have the same length. If you want to get slice of lower rank than
the tensor's, set one or more dimensions in sliceDims
to 1
.
>>>
:kind! SliceEndIndex '[0,0,0] '[2,2,2] '[2,3,4]
SliceEndIndex '[0,0,0] '[2,2,2] '[2,3,4] :: [Nat] = '[1, 1, 1]
>>>
:kind! SliceEndIndex '[1,1,0] '[1,2,4] '[2,3,4]
SliceEndIndex '[1,1,0] '[1,2,4] '[2,3,4] :: [Nat] = '[1, 2, 3]
SliceEndIndex '[] '[] '[] = '[] | |
SliceEndIndex '[] '[] (d ': ds) = TypeError (Text "SliceEndIndex: Slice and its starting index have not enough dimensions.") | |
SliceEndIndex '[] (sd ': sds) '[] = TypeError (Text "SliceEndIndex: Slice has too many dimensions.") | |
SliceEndIndex '[] (sd ': sds) (d ': ds) = TypeError (Text "SliceEndIndex: Starting index of the slice has not enough dimensions.") | |
SliceEndIndex (si ': sis) '[] '[] = TypeError (Text "SliceEndIndex: Starting index of the slice has too many dimensions.") | |
SliceEndIndex (si ': sis) '[] (d ': ds) = TypeError (Text "SliceEndIndex: Slice has not enough dimensions.") | |
SliceEndIndex (si ': sis) (sd ': sds) '[] = TypeError (Text "SliceEndIndex: Slice and its starting index have too many dimensions.") | |
SliceEndIndex (si ': sis) (sd ': sds) (d ': ds) = SliceEndIndex' (si ': sis) (sd ': sds) (d ': ds) (1 <=? sd) |
type ElemsInSlice (startIndex :: [Nat]) (sliceDims :: [Nat]) (dims :: [Nat]) = ElemsInSlice' startIndex (SliceEndIndex startIndex sliceDims dims) (AllIndexes dims) Source #
Check each element of the tensor of shape dims
if it is inside
the slice from startIndex
of shape sliceDims
.
The slice must be contained inside the tensor.
All dimensions of the slice must be positive.
startIndex
, sliceDims
and dims
must have the same length.
>>>
:kind! ElemsInSlice '[0,0,0] '[2,2,2] '[2,3,4]
ElemsInSlice '[0,0,0] '[2,2,2] '[2,3,4] :: [Bool] = '['True, 'True, 'False, 'False, 'True, 'True, 'False, 'False, 'False, 'False, 'False, 'False, 'True, 'True, 'False, 'False, 'True, 'True, 'False, 'False, 'False, 'False, 'False, 'False]
>>>
:kind! ElemsInSlice '[1,1,0] '[1,2,4] '[2,3,4]
ElemsInSlice '[1,1,0] '[1,2,4] '[2,3,4] :: [Bool] = '['False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'False, 'True, 'True, 'True, 'True, 'True, 'True, 'True, 'True]
:: Slice startIndex sliceDims dims e | |
=> Lens' (Tensor dims e) (Tensor (NormalizeDims sliceDims) e) |
Lens for the slice starting from startIndex
of shape sliceDims
of the tensor of shape dims
.
>>>
let t = (enumFromN @[2,3,4] @Int 0)
>>>
t
Tensor'2'3'4 [[[ 0, 1, 2, 3] ,[ 4, 5, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 12, 13, 14, 15] ,[ 16, 17, 18, 19] ,[ 20, 21, 22, 23]]]>>>
t ^. slice @[0,0,0] @[2,2,2]
Tensor'2'2'2 [[[ 0, 1] ,[ 4, 5]] ,[[ 12, 13] ,[ 16, 17]]]>>>
set (slice @[0,0,0] @[2,2,2]) zero t
Tensor'2'3'4 [[[ 0, 0, 2, 3] ,[ 0, 0, 6, 7] ,[ 8, 9, 10, 11]] ,[[ 0, 0, 14, 15] ,[ 0, 0, 18, 19] ,[ 20, 21, 22, 23]]]
type Slice startIndex sliceDims dims e = (IsTensor dims e, IsTensor (NormalizeDims sliceDims) e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims), SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims)) Source #
Constraints for slice
function.
:: GetSlice startIndex sliceDims dims e | |
=> Tensor dims e | |
-> Tensor (NormalizeDims sliceDims) e |
Extract slice of shape sliceDims
from a tensor of shape dims
starting at startIndex
for each axis.
type GetSlice startIndex sliceDims dims e = (IsTensor dims e, IsTensor (NormalizeDims sliceDims) e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims)) Source #
Constraints for getSlice
.
:: GetSliceElems startIndex sliceDims dims e | |
=> Tensor dims e | |
-> [e] |
Same as slice but returns list of elements instead of tensor data type.
type GetSliceElems startIndex sliceDims dims e = (IsTensor dims e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims)) Source #
Constraints for getSliceElems
.
:: SetSlice startIndex sliceDims dims e | |
=> Tensor dims e | The tensor. |
-> Tensor (NormalizeDims sliceDims) e | New slice. |
-> Tensor dims e |
Set elements of the slice.
type SetSlice startIndex sliceDims dims e = (IsTensor dims e, IsTensor (NormalizeDims sliceDims) e, SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims)) Source #
Constraints for setSlice
.
:: SetSliceElems startIndex sliceDims dims e | |
=> Tensor dims e | The tensor. |
-> [e] | New elements of the slice. |
-> Maybe (Tensor dims e) |
Like setSlice
but takes a list of elements instead of a tensor.
Returns Nothing
if list has less than
elements.ElemsNumber
sliceDims
type SetSliceElems startIndex sliceDims dims e = (IsTensor dims e, SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims)) Source #
Constraints for setSliceElems
.
:: MapSliceElems startIndex sliceDims dims e | |
=> Tensor dims e | The tensor. |
-> (e -> e) | The mapping function. |
-> Tensor dims e |
Modify slice elements with a function.
type MapSliceElems startIndex sliceDims dims e = (IsTensor dims e, GetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims), SetSliceElemsWrk (ElemsInSlice startIndex sliceDims dims), Map (ElemsNumber sliceDims)) Source #
Constraints for mapSliceElems
.
Constraints for instances
type MonoFunctorCtx (dims :: [Nat]) e = (IsTensor dims e, Map (ElemsNumber dims)) Source #
Constraints for MonoFunctor
instance for
.Tensor
dims e
type MonoFoldableCtx (dims :: [Nat]) e = (IsTensor dims e, Foldr (ElemsNumber dims), Foldl (ElemsNumber dims), Foldr1 (ElemsNumber dims), Foldl1 (ElemsNumber dims)) Source #
Constraints for MonoFoldable
instance for
.Tensor
dims e
type MonoTraversableCtx (dims :: [Nat]) e = (IsTensor dims e, Map (ElemsNumber dims), Foldr (ElemsNumber dims), Foldl (ElemsNumber dims), Foldr1 (ElemsNumber dims), Foldl1 (ElemsNumber dims)) Source #
Constraints for MonoTraversable
instance for
.Tensor
dims e
type MonoZipCtx (dims :: [Nat]) e = (IsTensor dims e, Map (ElemsNumber dims), ZipWith (ElemsNumber dims), Zip (ElemsNumber dims), Unzip (ElemsNumber dims)) Source #