singletons-2.5.1: A framework for generating singleton types

Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Either

Contents

Description

Defines functions and datatypes relating to the singleton for Either, including a singletons version of all the definitions in Data.Either.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Either. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

The Either singleton

data family Sing :: k -> Type Source #

The singleton kind-indexed data family.

Instances
SDecide k => TestCoercion (Sing :: k -> Type) Source # 
Instance details

Defined in Data.Singletons.Decide

Methods

testCoercion :: Sing a -> Sing b -> Maybe (Coercion a b) #

SDecide k => TestEquality (Sing :: k -> Type) Source # 
Instance details

Defined in Data.Singletons.Decide

Methods

testEquality :: Sing a -> Sing b -> Maybe (a :~: b) #

Show (SSymbol s) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SSymbol s -> ShowS #

show :: SSymbol s -> String #

showList :: [SSymbol s] -> ShowS #

Show (SNat n) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SNat n -> ShowS #

show :: SNat n -> String #

showList :: [SNat n] -> ShowS #

Eq (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

(==) :: Sing a -> Sing a -> Bool #

(/=) :: Sing a -> Sing a -> Bool #

Ord (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

compare :: Sing a -> Sing a -> Ordering #

(<) :: Sing a -> Sing a -> Bool #

(<=) :: Sing a -> Sing a -> Bool #

(>) :: Sing a -> Sing a -> Bool #

(>=) :: Sing a -> Sing a -> Bool #

max :: Sing a -> Sing a -> Sing a #

min :: Sing a -> Sing a -> Sing a #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing [a]) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

showsPrec :: Int -> Sing a -> ShowS #

show :: Sing a -> String #

showList :: [Sing a] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing m => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing Bool => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing Bool => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing [a]) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

data Sing (a :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Bool) where
data Sing (a :: Ordering) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Ordering) where
data Sing (n :: Nat) Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

data Sing (n :: Nat) where
data Sing (n :: Symbol) Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

data Sing (n :: Symbol) where
data Sing (a :: ()) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: ()) where
data Sing (a :: Void) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Void)
data Sing (a :: All) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: All) where
data Sing (a :: Any) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: Any) where
data Sing (a :: PErrorMessage) Source # 
Instance details

Defined in Data.Singletons.TypeError

data Sing (a :: PErrorMessage) where
data Sing (b :: [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: [a]) where
  • SNil :: forall k (b :: [k]). Sing ([] :: [k])
  • SCons :: forall a (b :: [a]) (n :: a) (n :: [a]). Sing n -> Sing n -> Sing (n ': n)
data Sing (b :: Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: Maybe a) where
data Sing (a :: TYPE rep) Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing :: k -> Type` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.TypeRepTYPE

data Sing (a :: TYPE rep) = STypeRep (TypeRep a)
data Sing (b :: Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Min a) where
data Sing (b :: Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Max a) where
data Sing (b :: First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: First a) where
data Sing (b :: Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Last a) where
data Sing (a :: WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: WrappedMonoid m) where
data Sing (b :: Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Option a) where
data Sing (b :: Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: Identity a) where
data Sing (b :: First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

data Sing (b :: First a) where
data Sing (b :: Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

data Sing (b :: Last a) where
data Sing (b :: Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Dual a) where
data Sing (b :: Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Sum a) where
data Sing (b :: Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Product a) where
data Sing (b :: Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

data Sing (b :: Down a) where
data Sing (b :: NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: NonEmpty a) where
data Sing (c :: Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (c :: Either a b) where
data Sing (c :: (a, b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (c :: (a, b)) where
data Sing (c :: Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

data Sing (c :: Arg a b) where
data Sing (f :: k1 ~> k2) Source # 
Instance details

Defined in Data.Singletons.Internal

data Sing (f :: k1 ~> k2) = SLambda {}
data Sing (d :: (a, b, c)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (d :: (a, b, c)) where
data Sing (c :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

data Sing (c :: Const a b) where
data Sing (e :: (a, b, c, d)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (e :: (a, b, c, d)) where
data Sing (f :: (a, b, c, d, e)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (f :: (a, b, c, d, e)) where
data Sing (g :: (a, b, c, d, e, f)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (g :: (a, b, c, d, e, f)) where
data Sing (h :: (a, b, c, d, e, f, g)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (h :: (a, b, c, d, e, f, g)) where

Though Haddock doesn't show it, the Sing instance above declares constructors

SLeft  :: Sing a -> Sing (Left a)
SRight :: Sing b -> Sing (Right b)

type SEither = (Sing :: Either a b -> Type) Source #

SEither is a kind-restricted synonym for Sing: type SEither (a :: Either x y) = Sing a

Singletons from Data.Either

either_ :: (a -> c) -> (b -> c) -> Either a b -> c Source #

type family Either_ (a :: (~>) a c) (a :: (~>) b c) (a :: Either a b) :: c where ... Source #

Equations

Either_ f _ (Left x) = Apply f x 
Either_ _ g (Right y) = Apply g y 

sEither_ :: forall a c b (t :: (~>) a c) (t :: (~>) b c) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source #

The preceding two definitions are derived from the function either in Data.Either. The extra underscore is to avoid name clashes with the type Either.

type family Lefts (a :: [Either a b]) :: [a] where ... Source #

Equations

Lefts '[] = '[] 
Lefts ((:) (Left x) xs) = Apply (Apply (:@#@$) x) (Apply LeftsSym0 xs) 
Lefts ((:) (Right _) xs) = Apply LeftsSym0 xs 

sLefts :: forall a b (t :: [Either a b]). Sing t -> Sing (Apply LeftsSym0 t :: [a]) Source #

type family Rights (a :: [Either a b]) :: [b] where ... Source #

Equations

Rights '[] = '[] 
Rights ((:) (Left _) xs) = Apply RightsSym0 xs 
Rights ((:) (Right x) xs) = Apply (Apply (:@#@$) x) (Apply RightsSym0 xs) 

sRights :: forall a b (t :: [Either a b]). Sing t -> Sing (Apply RightsSym0 t :: [b]) Source #

type family PartitionEithers (a :: [Either a b]) :: ([a], [b]) where ... Source #

Equations

PartitionEithers a_6989586621680420343 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let6989586621680420348LeftSym1 a_6989586621680420343)) (Let6989586621680420348RightSym1 a_6989586621680420343))) (Apply (Apply Tuple2Sym0 '[]) '[])) a_6989586621680420343 

sPartitionEithers :: forall a b (t :: [Either a b]). Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b])) Source #

type family IsLeft (a :: Either a b) :: Bool where ... Source #

Equations

IsLeft (Left _) = TrueSym0 
IsLeft (Right _) = FalseSym0 

sIsLeft :: forall a b (t :: Either a b). Sing t -> Sing (Apply IsLeftSym0 t :: Bool) Source #

type family IsRight (a :: Either a b) :: Bool where ... Source #

Equations

IsRight (Left _) = FalseSym0 
IsRight (Right _) = TrueSym0 

sIsRight :: forall a b (t :: Either a b). Sing t -> Sing (Apply IsRightSym0 t :: Bool) Source #

Defunctionalization symbols

data LeftSym0 :: forall (a6989586621679082630 :: Type) (b6989586621679082631 :: Type). (~>) a6989586621679082630 (Either (a6989586621679082630 :: Type) (b6989586621679082631 :: Type)) Source #

Instances
SingI (LeftSym0 :: TyFun a (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

SuppressUnusedWarnings (LeftSym0 :: TyFun a6989586621679082630 (Either a6989586621679082630 b6989586621679082631) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Apply (LeftSym0 :: TyFun a (Either a b6989586621679082631) -> Type) (t6989586621679291704 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Apply (LeftSym0 :: TyFun a (Either a b6989586621679082631) -> Type) (t6989586621679291704 :: a) = (Left t6989586621679291704 :: Either a b6989586621679082631)

type LeftSym1 (t6989586621679291704 :: a6989586621679082630) = Left t6989586621679291704 Source #

data RightSym0 :: forall (a6989586621679082630 :: Type) (b6989586621679082631 :: Type). (~>) b6989586621679082631 (Either (a6989586621679082630 :: Type) (b6989586621679082631 :: Type)) Source #

Instances
SingI (RightSym0 :: TyFun b (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

SuppressUnusedWarnings (RightSym0 :: TyFun b6989586621679082631 (Either a6989586621679082630 b6989586621679082631) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Apply (RightSym0 :: TyFun b (Either a6989586621679082630 b) -> Type) (t6989586621679291706 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Apply (RightSym0 :: TyFun b (Either a6989586621679082630 b) -> Type) (t6989586621679291706 :: b) = (Right t6989586621679291706 :: Either a6989586621679082630 b)

type RightSym1 (t6989586621679291706 :: b6989586621679082631) = Right t6989586621679291706 Source #

data Either_Sym0 :: forall a6989586621680418502 b6989586621680418504 c6989586621680418503. (~>) ((~>) a6989586621680418502 c6989586621680418503) ((~>) ((~>) b6989586621680418504 c6989586621680418503) ((~>) (Either a6989586621680418502 b6989586621680418504) c6989586621680418503)) Source #

Instances
SingI (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

SuppressUnusedWarnings (Either_Sym0 :: TyFun (a6989586621680418502 ~> c6989586621680418503) ((b6989586621680418504 ~> c6989586621680418503) ~> (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (Either_Sym0 :: TyFun (a6989586621680418502 ~> c6989586621680418503) ((b6989586621680418504 ~> c6989586621680418503) ~> (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503)) -> Type) (a6989586621680418538 :: a6989586621680418502 ~> c6989586621680418503) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (Either_Sym0 :: TyFun (a6989586621680418502 ~> c6989586621680418503) ((b6989586621680418504 ~> c6989586621680418503) ~> (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503)) -> Type) (a6989586621680418538 :: a6989586621680418502 ~> c6989586621680418503) = (Either_Sym1 a6989586621680418538 b6989586621680418504 :: TyFun (b6989586621680418504 ~> c6989586621680418503) (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503) -> Type)

data Either_Sym1 (a6989586621680418538 :: (~>) a6989586621680418502 c6989586621680418503) :: forall b6989586621680418504. (~>) ((~>) b6989586621680418504 c6989586621680418503) ((~>) (Either a6989586621680418502 b6989586621680418504) c6989586621680418503) Source #

Instances
SingI d => SingI (Either_Sym1 d b :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

Methods

sing :: Sing (Either_Sym1 d b) Source #

SuppressUnusedWarnings (Either_Sym1 a6989586621680418538 b6989586621680418504 :: TyFun (b6989586621680418504 ~> c6989586621680418503) (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (Either_Sym1 a6989586621680418538 b6989586621680418504 :: TyFun (b6989586621680418504 ~> c6989586621680418503) (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503) -> Type) (a6989586621680418539 :: b6989586621680418504 ~> c6989586621680418503) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (Either_Sym1 a6989586621680418538 b6989586621680418504 :: TyFun (b6989586621680418504 ~> c6989586621680418503) (Either a6989586621680418502 b6989586621680418504 ~> c6989586621680418503) -> Type) (a6989586621680418539 :: b6989586621680418504 ~> c6989586621680418503) = Either_Sym2 a6989586621680418538 a6989586621680418539

data Either_Sym2 (a6989586621680418538 :: (~>) a6989586621680418502 c6989586621680418503) (a6989586621680418539 :: (~>) b6989586621680418504 c6989586621680418503) :: (~>) (Either a6989586621680418502 b6989586621680418504) c6989586621680418503 Source #

Instances
(SingI d1, SingI d2) => SingI (Either_Sym2 d1 d2 :: TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

Methods

sing :: Sing (Either_Sym2 d1 d2) Source #

SuppressUnusedWarnings (Either_Sym2 a6989586621680418539 a6989586621680418538 :: TyFun (Either a6989586621680418502 b6989586621680418504) c6989586621680418503 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (Either_Sym2 a6989586621680418539 a6989586621680418538 :: TyFun (Either a b) c -> Type) (a6989586621680418540 :: Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (Either_Sym2 a6989586621680418539 a6989586621680418538 :: TyFun (Either a b) c -> Type) (a6989586621680418540 :: Either a b) = Either_ a6989586621680418539 a6989586621680418538 a6989586621680418540

type Either_Sym3 (a6989586621680418538 :: (~>) a6989586621680418502 c6989586621680418503) (a6989586621680418539 :: (~>) b6989586621680418504 c6989586621680418503) (a6989586621680418540 :: Either a6989586621680418502 b6989586621680418504) = Either_ a6989586621680418538 a6989586621680418539 a6989586621680418540 Source #

data LeftsSym0 :: forall a6989586621680419980 b6989586621680419981. (~>) [Either a6989586621680419980 b6989586621680419981] [a6989586621680419980] Source #

Instances
SingI (LeftsSym0 :: TyFun [Either a b] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

SuppressUnusedWarnings (LeftsSym0 :: TyFun [Either a6989586621680419980 b6989586621680419981] [a6989586621680419980] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (LeftsSym0 :: TyFun [Either a b] [a] -> Type) (a6989586621680420370 :: [Either a b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (LeftsSym0 :: TyFun [Either a b] [a] -> Type) (a6989586621680420370 :: [Either a b]) = Lefts a6989586621680420370

type LeftsSym1 (a6989586621680420370 :: [Either a6989586621680419980 b6989586621680419981]) = Lefts a6989586621680420370 Source #

data RightsSym0 :: forall a6989586621680419978 b6989586621680419979. (~>) [Either a6989586621680419978 b6989586621680419979] [b6989586621680419979] Source #

Instances
SingI (RightsSym0 :: TyFun [Either a b] [b] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

SuppressUnusedWarnings (RightsSym0 :: TyFun [Either a6989586621680419978 b6989586621680419979] [b6989586621680419979] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (RightsSym0 :: TyFun [Either a b] [b] -> Type) (a6989586621680420365 :: [Either a b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (RightsSym0 :: TyFun [Either a b] [b] -> Type) (a6989586621680420365 :: [Either a b]) = Rights a6989586621680420365

type RightsSym1 (a6989586621680420365 :: [Either a6989586621680419978 b6989586621680419979]) = Rights a6989586621680420365 Source #

data IsLeftSym0 :: forall a6989586621680419974 b6989586621680419975. (~>) (Either a6989586621680419974 b6989586621680419975) Bool Source #

Instances
SingI (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

SuppressUnusedWarnings (IsLeftSym0 :: TyFun (Either a6989586621680419974 b6989586621680419975) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621680420341 :: Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621680420341 :: Either a b) = IsLeft a6989586621680420341

type IsLeftSym1 (a6989586621680420341 :: Either a6989586621680419974 b6989586621680419975) = IsLeft a6989586621680420341 Source #

data IsRightSym0 :: forall a6989586621680419972 b6989586621680419973. (~>) (Either a6989586621680419972 b6989586621680419973) Bool Source #

Instances
SingI (IsRightSym0 :: TyFun (Either a b) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

SuppressUnusedWarnings (IsRightSym0 :: TyFun (Either a6989586621680419972 b6989586621680419973) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (IsRightSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621680420339 :: Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Either

type Apply (IsRightSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621680420339 :: Either a b) = IsRight a6989586621680420339

type IsRightSym1 (a6989586621680420339 :: Either a6989586621680419972 b6989586621680419973) = IsRight a6989586621680420339 Source #