singletons-2.0.0.1: A framework for generating singleton types

Copyright(C) 2014 Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerJan Stolarek (jan.stolarek@p.lodz.pl)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Promotion.Prelude.Base

Contents

Description

Implements promoted functions from GHC.Base module.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Prelude. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

Promoted functions from GHC.Base

type family Foldr a a a :: b Source

Equations

Foldr k z a_1627631719 = Apply (Let1627631724GoSym3 k z a_1627631719) a_1627631719 

type family Map a a :: [b] Source

Equations

Map _z_1627631698 `[]` = `[]` 
Map f ((:) x xs) = Apply (Apply (:$) (Apply f x)) (Apply (Apply MapSym0 f) xs) 

type family a :++ a :: [a] infixr 5 Source

Equations

`[]` :++ ys = ys 
((:) x xs) :++ ys = Apply (Apply (:$) x) (Apply (Apply (:++$) xs) ys) 

type family Otherwise :: Bool Source

Equations

Otherwise = TrueSym0 

type family Id a :: a Source

Equations

Id x = x 

type family Const a a :: a Source

Equations

Const x _z_1627631653 = x 

type family (a :. a) a :: c infixr 9 Source

Equations

(f :. g) a_1627631616 = Apply (Apply (Apply (Apply Lambda_1627631621Sym0 f) g) a_1627631616) a_1627631616 

type family f $ x :: b infixr 0 Source

Instances

type ($) k k1 f x = (@@) k k1 f x Source 

type family f $! x :: b infixr 0 Source

Instances

type ($!) k k1 f x = (@@) k k1 f x Source 

type family Flip a a a :: c Source

Equations

Flip f x y = Apply (Apply f y) x 

type family Until a a a :: a Source

Equations

Until p f a_1627665807 = Apply (Let1627665812GoSym3 p f a_1627665807) a_1627665807 

type family AsTypeOf a a :: a Source

Equations

AsTypeOf a_1627631656 a_1627631658 = Apply (Apply ConstSym0 a_1627631656) a_1627631658 

type family Seq a a :: b infixr 0 Source

Equations

Seq _z_1627631579 x = x 

Defunctionalization symbols

data FoldrSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] k -> *) -> *) -> *) (FoldrSym0 k k) Source 
type Apply (TyFun k1 (TyFun [k] k1 -> *) -> *) (TyFun k (TyFun k1 k1 -> *) -> *) (FoldrSym0 k k1) l0 = FoldrSym1 k k1 l0 Source 

data FoldrSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] k -> *) -> *) (FoldrSym1 k k) Source 
type Apply (TyFun [k1] k -> *) k (FoldrSym1 k1 k l1) l0 = FoldrSym2 k1 k l1 l0 Source 

data FoldrSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] k -> *) (FoldrSym2 k k) Source 
type Apply k1 [k] (FoldrSym2 k k1 l1 l2) l0 = FoldrSym3 k k1 l1 l2 l0 Source 

type FoldrSym3 t t t = Foldr t t t Source

data MapSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun [k] [k] -> *) -> *) (MapSym0 k k) Source 
type Apply (TyFun [k] [k1] -> *) (TyFun k k1 -> *) (MapSym0 k k1) l0 = MapSym1 k k1 l0 Source 

data MapSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun [k] [k] -> *) (MapSym1 k k) Source 
type Apply [k1] [k] (MapSym1 k k1 l1) l0 = MapSym2 k k1 l1 l0 Source 

type MapSym2 t t = Map t t Source

data (:++$) l Source

Instances

SuppressUnusedWarnings (TyFun [k] (TyFun [k] [k] -> *) -> *) ((:++$) k) Source 
type Apply (TyFun [k] [k] -> *) [k] ((:++$) k) l0 = (:++$$) k l0 Source 

data l :++$$ l Source

Instances

SuppressUnusedWarnings ([k] -> TyFun [k] [k] -> *) ((:++$$) k) Source 
type Apply [k] [k] ((:++$$) k l1) l0 = (:++$$$) k l1 l0 Source 

type (:++$$$) t t = (:++) t t Source

data IdSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k k -> *) (IdSym0 k) Source 
type Apply k k (IdSym0 k) l0 = IdSym1 k l0 Source 

type IdSym1 t = Id t Source

data ConstSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k k -> *) -> *) (ConstSym0 k k) Source 
type Apply (TyFun k1 k -> *) k (ConstSym0 k k1) l0 = ConstSym1 k k1 l0 Source 

data ConstSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k k -> *) (ConstSym1 k k) Source 
type Apply k1 k (ConstSym1 k1 k l1) l0 = ConstSym2 k1 k l1 l0 Source 

type ConstSym2 t t = Const t t Source

data (:.$) l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) -> *) ((:.$) k k k) Source 
type Apply (TyFun (TyFun k2 k -> *) (TyFun k2 k1 -> *) -> *) (TyFun k k1 -> *) ((:.$) k k1 k2) l0 = (:.$$) k k1 k2 l0 Source 

data l :.$$ l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) ((:.$$) k k k) Source 
type Apply (TyFun k k2 -> *) (TyFun k k1 -> *) ((:.$$) k1 k2 k l1) l0 = (:.$$$) k1 k2 k l1 l0 Source 

data (l :.$$$ l) l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> (TyFun k k -> *) -> TyFun k k -> *) ((:.$$$) k k k) Source 
type Apply k2 k ((:.$$$) k1 k2 k l1 l2) l0 = (:.$$$$) k1 k2 k l1 l2 l0 Source 

type (:.$$$$) t t t = (:.) t t t Source

data ($$) :: TyFun (TyFun a b -> *) (TyFun a b -> *) -> * Source

Instances

type Apply (TyFun k k1 -> *) (TyFun k k1 -> *) (($$) k k1) arg = ($$$) k k1 arg Source 

data ($$$) :: (TyFun a b -> *) -> TyFun a b -> * Source

Instances

type Apply k1 k (($$$) k k1 f) arg = ($$$$) k1 k f arg Source 

type ($$$$) a b = ($) a b Source

data ($!$) :: TyFun (TyFun a b -> *) (TyFun a b -> *) -> * Source

Instances

type Apply (TyFun k k1 -> *) (TyFun k k1 -> *) (($!$) k k1) arg = ($!$$) k k1 arg Source 

data ($!$$) :: (TyFun a b -> *) -> TyFun a b -> * Source

Instances

type Apply k1 k (($!$$) k k1 f) arg = ($!$$$) k1 k f arg Source 

type ($!$$$) a b = ($!) a b Source

data FlipSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun k k -> *) -> *) -> *) (FlipSym0 k k k) Source 
type Apply (TyFun k1 (TyFun k k2 -> *) -> *) (TyFun k (TyFun k1 k2 -> *) -> *) (FlipSym0 k k1 k2) l0 = FlipSym1 k k1 k2 l0 Source 

data FlipSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun k k -> *) -> *) (FlipSym1 k k k) Source 
type Apply (TyFun k1 k2 -> *) k (FlipSym1 k1 k k2 l1) l0 = FlipSym2 k1 k k2 l1 l0 Source 

data FlipSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun k k -> *) (FlipSym2 k k k) Source 
type Apply k2 k (FlipSym2 k k1 k2 l1 l2) l0 = FlipSym3 k k1 k2 l1 l2 l0 Source 

type FlipSym3 t t t = Flip t t t Source

data UntilSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) -> *) (UntilSym0 k) Source 
type Apply (TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) (TyFun k Bool -> *) (UntilSym0 k) l0 = UntilSym1 k l0 Source 

data UntilSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) (UntilSym1 k) Source 
type Apply (TyFun k k -> *) (TyFun k k -> *) (UntilSym1 k l1) l0 = UntilSym2 k l1 l0 Source 

data UntilSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> (TyFun k k -> *) -> TyFun k k -> *) (UntilSym2 k) Source 
type Apply k k (UntilSym2 k l1 l2) l0 = UntilSym3 k l1 l2 l0 Source 

type UntilSym3 t t t = Until t t t Source

data AsTypeOfSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k k -> *) -> *) (AsTypeOfSym0 k) Source 
type Apply (TyFun k k -> *) k (AsTypeOfSym0 k) l0 = AsTypeOfSym1 k l0 Source 

data AsTypeOfSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k k -> *) (AsTypeOfSym1 k) Source 
type Apply k k (AsTypeOfSym1 k l1) l0 = AsTypeOfSym2 k l1 l0 Source 

data SeqSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k k -> *) -> *) (SeqSym0 k k) Source 
type Apply (TyFun k1 k1 -> *) k (SeqSym0 k k1) l0 = SeqSym1 k k1 l0 Source 

data SeqSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k k -> *) (SeqSym1 k k) Source 
type Apply k k (SeqSym1 k1 k l1) l0 = SeqSym2 k1 k l1 l0 Source 

type SeqSym2 t t = Seq t t Source