set-cover-0.1: Solve exact set cover problems like Sudoku, 8 Queens, Soma Cube, Tetris Cube

Safe HaskellSafe
LanguageHaskell98

Math.SetCover.BitSet

Documentation

newtype Set bits Source #

Constructors

Set 

Fields

Instances
Eq bits => Eq (Set bits) Source # 
Instance details

Defined in Math.SetCover.BitSet

Methods

(==) :: Set bits -> Set bits -> Bool #

(/=) :: Set bits -> Set bits -> Bool #

Ord bits => Ord (Set bits) Source # 
Instance details

Defined in Math.SetCover.BitSet

Methods

compare :: Set bits -> Set bits -> Ordering #

(<) :: Set bits -> Set bits -> Bool #

(<=) :: Set bits -> Set bits -> Bool #

(>) :: Set bits -> Set bits -> Bool #

(>=) :: Set bits -> Set bits -> Bool #

max :: Set bits -> Set bits -> Set bits #

min :: Set bits -> Set bits -> Set bits #

Show bits => Show (Set bits) Source # 
Instance details

Defined in Math.SetCover.BitSet

Methods

showsPrec :: Int -> Set bits -> ShowS #

show :: Set bits -> String #

showList :: [Set bits] -> ShowS #

C bits => Semigroup (Set bits) Source # 
Instance details

Defined in Math.SetCover.BitSet

Methods

(<>) :: Set bits -> Set bits -> Set bits #

sconcat :: NonEmpty (Set bits) -> Set bits #

stimes :: Integral b => b -> Set bits -> Set bits #

C bits => Monoid (Set bits) Source # 
Instance details

Defined in Math.SetCover.BitSet

Methods

mempty :: Set bits #

mappend :: Set bits -> Set bits -> Set bits #

mconcat :: [Set bits] -> Set bits #

C a => Choose (Set a) Source # 
Instance details

Defined in Math.SetCover.Exact

Methods

chooseMinimize :: Set a -> [Assign label (Set a)] -> (Set a, [Assign label (Set a)]) Source #

C a => Set (Set a) Source # 
Instance details

Defined in Math.SetCover.Exact

Methods

null :: Set a -> Bool Source #

disjoint :: Set a -> Set a -> Bool Source #

unions :: [Set a] -> Set a Source #

difference :: Set a -> Set a -> Set a Source #

minimize :: Set a -> [Assign label (Set a)] -> [Assign label (Set a)] Source #

empty :: C bits => Set bits Source #

null :: C bits => Set bits -> Bool Source #

keepMinimum :: C bits => Set bits -> Set bits Source #

disjoint :: C bits => Set bits -> Set bits -> Bool Source #

difference :: C bits => Set bits -> Set bits -> Set bits Source #