{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiWayIf #-}
module Reanimate.GeoProjection
( Projection(..)
, XYCoord(..)
, LonLat(..)
, project
, interpP
, interpBBP
, mergeP
, isValidP
, scaleP
, flipYAxisP
, moveBottomP
, moveTopP
, equirectangularP
, mercatorP
, mollweideP
, hammerP
, cylindricalEqualAreaP
, lambertP
, bottomleyP
, sinusoidalP
, wernerP
, bonneP
, orthoP
, cassiniP
, augustP
, collignonP
, eckert1P
, eckert3P
, eckert5P
, faheyP
, foucautP
, lagrangeP
, drawFeatureCollection
, loadFeatureCollection
, applyProjection
, applyProjection'
, renderGeometry
) where
import Codec.Picture
import Codec.Picture.Types
import Control.Lens ((^.))
import Control.Monad
import Control.Monad.ST
import Control.Monad.ST.Unsafe
import Data.Aeson
import Data.Foldable
import Data.Geospatial hiding (LonLat)
import Data.Hashable
import Data.LinearRing
import qualified Data.LineString as Line
import Data.Vector.Storable (unsafeWith)
import qualified Data.Vector.Unboxed as V
import Debug.Trace
import Foreign
import GHC.Exts (Double (..), cosDouble#, sinDouble#,
(*##), (+##), (-##), (/##))
import Graphics.SvgTree (Tree (None))
import Linear (distance, lerp)
import Linear.V2 hiding (angle)
import Reanimate
import System.IO.Unsafe
{-# INLINE halfPi #-}
{-# INLINE sqrtPi #-}
{-# INLINE sqrt2 #-}
{-# INLINE epsilon #-}
{-# INLINE tau #-}
halfPi, sqrtPi, sqrt2, epsilon, tau :: Double
halfPi = pi/2
sqrtPi = sqrt pi
sqrt2 = sqrt 2
epsilon = 1.0e-12
tau = pi*2
toRads, cot :: Double -> Double
toRads dec = dec/180 * pi
cot = recip . tan
srcPixel :: Pixel pixel => Image pixel -> LonLat -> pixel
srcPixel src (LonLat lam phi) =
unsafePixelAt (imageData src) (pixelBaseIndex src xPx yPx)
where
!xPx = round $ ((lam+pi)/tau) * fromIntegral (imageWidth src-1)
!yPx = round $ (1-((phi+halfPi)/pi)) * fromIntegral (imageHeight src-1)
srcPixelFast :: Image PixelRGBA8 -> Double -> Double -> LonLat -> ST s PixelRGBA8
srcPixelFast src wMax hMax (LonLat lam phi) = unsafeIOToST $
unsafeWith (imageData src) $ \ptr -> do
let ptr' = plusPtr ptr idx
r <- peek ptr'
g <- peek $ plusPtr ptr' 1
b <- peek $ plusPtr ptr' 2
a <- peek $ plusPtr ptr' 3
return $ PixelRGBA8 r g b a
where
!idx = pixelBaseIndex src xPx yPx
!xPx = round $ ((lam+pi)/tau) * wMax
!yPx = round $ (1-((phi+halfPi)/pi)) * hMax
interpP :: Image PixelRGBA8 -> Projection -> Projection -> Double -> Image PixelRGBA8
interpP src p1 _ 0 = project src p1
interpP src _ p2 1 = project src p2
interpP !src (Projection _label1 p1 p1_inv) !(Projection _label2 p2 p2_inv) !t = runST $ do
!img <- newMutableImage w h
let factor = 2
let l1 = do
loopTo (w*factor) $ \x -> do
loopTo (h*factor) $ \y -> do
let !x1' = fromIntegral x / (wMax*fromIntegral factor)
!y1' = fromIntegral y / (hMax*fromIntegral factor)
!lonlat = p1_inv $! XYCoord x1' y1'
when (validLonLat lonlat) $ do
p <- srcPixelFast src wMax hMax lonlat
when (pixelOpacity p /= 0) $ do
let XYCoord x1 y1 = p1 lonlat
XYCoord x2 y2 = p2 lonlat
!x3 = round $ fromToS x1 x2 t * wMax
!y3 = round $ (1 - fromToS y1 y2 t) * hMax
when (x3 >= 0 && x3 < w && y3 >= 0 && y3 < h) $
writePixel img x3 y3 p
l2 = do
loopTo (w*factor) $ \x ->
loopTo (h*factor) $ \y -> do
let !x2' = fromIntegral x / (wMax*fromIntegral factor)
!y2' = fromIntegral y / (hMax*fromIntegral factor)
!lonlat = p2_inv (XYCoord x2' y2')
when (validLonLat lonlat) $ do
p <- srcPixelFast src wMax hMax lonlat
when (pixelOpacity p /= 0) $ do
let XYCoord x2 y2 = p2 lonlat
XYCoord x1 y1 = p1 lonlat
!x3 = round $ fromToS x1 x2 t * wMax
!y3 = round $ (1 - fromToS y1 y2 t) * hMax
when (x3 >= 0 && x3 < w && y3 >= 0 && y3 < h) $ do
writePixel img x3 y3 p
if t < 0.5
then l1 >> l2
else l2 >> l1
unsafeFreezeImage img
where
loopTo m fn = go m
where go 0 = return ()
go n = fn (n-1) >> go (n-1)
!w = imageWidth src
!h = imageHeight src
!wMax = fromIntegral (w-1)
!hMax = fromIntegral (h-1)
interpBBP :: Image PixelRGBA8 -> Projection -> Projection ->
(Double,Double,Double,Double) -> (Double,Double,Double,Double) -> Double -> Image PixelRGBA8
interpBBP !src (Projection _ p1 p1_inv) !(Projection _ p2 p2_inv) (fx,fy,fw,fh) (tx, ty, tw, th) !t = runST $ do
!img <- newMutableImage w h
let factor = 2
let l1 =
loopTo (w*factor) $ \x -> do
loopTo (h*factor) $ \y -> do
let !x1' = fromIntegral x / (wMax*fromIntegral factor)
!y1' = fromIntegral y / (hMax*fromIntegral factor)
when (x1' >= fx && x1' <= fx+fw && y1' >= fy && y1' <= fy+fh) $ do
let !lonlat = p1_inv $! XYCoord x1' y1'
when (validLonLat lonlat) $ do
p <- srcPixelFast src wMax hMax lonlat
when (pixelOpacity p /= 0) $ do
let XYCoord x1 y1 = p1 lonlat
XYCoord x2 y2 = p2 lonlat
!x3 = round $ fromToS x1 x2 t * wMax
!y3 = round $ (1 - fromToS y1 y2 t) * hMax
when (x3 >= 0 && x3 < w && y3 >= 0 && y3 < h) $
writePixel img x3 y3 p
l2 =
loopTo (w*factor) $ \x ->
loopTo (h*factor) $ \y -> do
let !x2' = fromIntegral x / (wMax*fromIntegral factor)
!y2' = fromIntegral y / (hMax*fromIntegral factor)
when (x2' >= tx && x2' <= tx+tw && y2' >= ty && y2' <= ty+th) $ do
let !lonlat = p2_inv (XYCoord x2' y2')
when (validLonLat lonlat) $ do
p <- srcPixelFast src wMax hMax lonlat
when (pixelOpacity p /= 0) $ do
let XYCoord x2 y2 = p2 lonlat
XYCoord x1 y1 = p1 lonlat
!x3 = round $ fromToS x1 x2 t * wMax
!y3 = round $ (1 - fromToS y1 y2 t) * hMax
when (x3 >= 0 && x3 < w && y3 >= 0 && y3 < h) $ do
writePixel img x3 y3 p
if t < 0.5
then l1 >> l2
else l2 >> l1
unsafeFreezeImage img
where
loopTo m fn = go m
where go 0 = return ()
go n = fn (n-1) >> go (n-1)
!w = imageWidth src
!h = imageHeight src
!wMax = fromIntegral (w-1)
!hMax = fromIntegral (h-1)
eqLonLat :: LonLat -> LonLat -> Bool
eqLonLat (LonLat x1 y1) (LonLat x2 y2)
= eqDouble x1 x2 && eqDouble y1 y2
eqDouble :: Double -> Double -> Bool
eqDouble a b = abs (a-b) < epsilon
data XYCoord = XYCoord !Double !Double
deriving (Read,Show,Eq,Ord)
data LonLat = LonLat !Double !Double
deriving (Read,Show,Eq,Ord)
instance Hashable LonLat where
hashWithSalt s (LonLat a b) = hashWithSalt s (a,b)
data Projection = Projection
{ projectionLabel :: String
, projectionForward :: !(LonLat -> XYCoord)
, projectionInverse :: !(XYCoord -> LonLat)
}
project :: Image PixelRGBA8 -> Projection -> Image PixelRGBA8
project src (Projection _label _ pInv) = generateImage fn w h
where
w = imageWidth src
h = imageHeight src
fn xPx yPx =
let x = (fromIntegral xPx / fromIntegral (w-1))
y = 1-(fromIntegral yPx / fromIntegral (h-1))
lonlat = pInv (XYCoord x y)
in
if validLonLat lonlat
then srcPixel src lonlat
else PixelRGBA8 0 0 0 0
validLonLat :: LonLat -> Bool
validLonLat (LonLat lam phi) =
lam >= -pi && lam <= pi && phi >= -pi/2 && phi <= pi/2
_validXYCoord :: XYCoord -> Bool
_validXYCoord (XYCoord x y) = x >= 0 && x <= 1 && y >= 0 && y <= 1
isValidP :: Projection -> Bool
isValidP (Projection _label p pInv) = and
[ check x y
| x <- [0..w-1::Int]
, y <- [0..h-1::Int] ]
where
w = 100
h = 100
check xPx yPx =
let x = (fromIntegral xPx / fromIntegral (w-1))
y = (fromIntegral yPx / fromIntegral (h-1))
lonlat = pInv (XYCoord x y)
lonlat2 = pInv $ p lonlat
in not (validLonLat lonlat) || eqLonLat lonlat lonlat2
|| trace (show (lonlat, lonlat2)) False
moveBottomP :: Double -> Projection -> Projection
moveBottomP offset (Projection label p pInv) = Projection label p' pInv'
where
p' (LonLat lon lat) =
case p (LonLat lon lat) of
XYCoord x y -> XYCoord x (fromToS offset 1 y)
pInv' (XYCoord x y) = pInv (XYCoord x ((y-offset)/(1-offset)))
moveTopP :: Double -> Projection -> Projection
moveTopP offset = flipYAxisP . moveBottomP offset . flipYAxisP
flipYAxisP :: Projection -> Projection
flipYAxisP (Projection label p pInv) = Projection label p' pInv'
where
p' (LonLat lam phi) =
let XYCoord x y = p (LonLat lam (negate phi))
in XYCoord x (1-y)
pInv' (XYCoord x y) =
let LonLat lam phi = pInv (XYCoord x (1-y))
in LonLat lam (negate phi)
scaleP :: Double -> Double -> Projection -> Projection
scaleP xScale yScale (Projection label p pInv) = Projection label forward inverse
where
forward lonlat =
case p lonlat of
XYCoord x y -> XYCoord ((x-0.5)*xScale+0.5) ((y-0.5)*yScale+0.5)
inverse (XYCoord x y) =
pInv $ XYCoord ((x-0.5)/xScale+0.5) ((y-0.5)/yScale+0.5)
mergeP :: Projection -> Projection -> Double -> Projection
mergeP p1 p2 t = Projection (projectionLabel p1 ++ "/" ++ projectionLabel p2) p pInv
where
p lonlat =
let XYCoord x1 y1 = projectionForward p1 lonlat
XYCoord x2 y2 = projectionForward p2 lonlat
in XYCoord (fromToS x1 x2 t) (fromToS y1 y2 t)
pInv coord =
let LonLat lon1 lat1 = projectionInverse p1 coord
LonLat lon2 lat2 = projectionInverse p2 coord
in
if | oob lon1 lat1 && oob lon2 lat2 -> LonLat (0/0) (0/0)
| otherwise -> LonLat (fromToS lon1 lon2 t) (fromToS lat1 lat2 t)
oob lon lat = lon < (-pi) || lon > pi || lat < (-pi/2) || lat > pi/2
equirectangularP :: Projection
equirectangularP = Projection "equirectangular" forward inverse
where
forward (LonLat lam phi) = XYCoord ((lam+pi)/tau) ((phi+pi/2)/pi)
inverse (XYCoord x y) = LonLat xPi yPi
where
xPi = fromToS (-pi) pi x
yPi = fromToS (-pi/2) (pi/2) y
mercatorP :: Projection
mercatorP = Projection "mercator" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((lam+pi)/tau)
(min 1 $ max (0) $ (((log(tan(pi/4+phi/2))) + pi)/tau))
inverse (XYCoord x y) = LonLat xPi (atan (sinh yPi))
where
xPi = fromToS (-pi) pi x
yPi = fromToS (-pi) pi y
thetas :: V.Vector Double
thetas = V.fromList $
map (find_theta_fast . fromIndex) [0 .. granularity]
granularity :: Int
granularity = 50000
toIndex :: Double -> Int
toIndex phi = round ((phi+halfPi)/pi * fromIntegral granularity)
fromIndex :: Int -> Double
fromIndex x = fromToS (-halfPi) halfPi (fromIntegral x / fromIntegral granularity)
granualize :: Double -> Double
granualize = fromIndex . toIndex
{-# INLINE mollweideP #-}
mollweideP :: Projection
mollweideP = Projection "mollweide" forward inverse
where
forward (LonLat !lam !phi) =
XYCoord ((x+sqrt2*2)/(4*sqrt2)) ((y+sqrt2)/(2*sqrt2))
where
x = (2*sqrt2)/pi * lam * cos theta
y = sqrt2*sin theta
theta = thetas V.! toIndex phi
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-2*sqrt2) (2*sqrt2) x'
y = fromToS (-1) 1 y'
theta = granualize (asin y)
lam = pi*x/(2*sqrt2*cos theta)
phi = asin ((2*theta+sin(2*theta))/pi)
find_theta_fast :: Double -> Double
find_theta_fast !phi | abs phi == pi/2 = signum phi * halfPi
find_theta_fast !(D# phi) = go phi
where
!(D# pi#) = pi
go acc =
let c = cosDouble# (acc +## acc)
s = sinDouble# (acc +## acc)
next =
acc -##
(acc +## acc +## s -## pi# *## (sinDouble# phi))
/## (2.0## +## c +## c) in
if abs (D# (next -## acc)) < epsilon
then D# next
else go next
hammerP :: Projection
hammerP = Projection "hammer" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((x+sqrt2*2)/(4*sqrt2)) ((y+sqrt2)/(2*sqrt2))
where
x = (2*sqrt2*cos phi*sin (lam/2))/sqrt (1+cos phi*cos (lam/2))
y = (sqrt2*sin phi)/ sqrt (1+cos phi*cos (lam/2))
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-2*sqrt2) (2*sqrt2) x'
y = fromToS (-sqrt2) sqrt2 y'
z = sqrt (1 - (x/4)**2 - (y/2)**2)
lam = 2 * atan2 (z*x) (2*(2*z**2-1))
phi = asin (z*y)
cylindricalEqualAreaP :: Double -> Projection
cylindricalEqualAreaP phi0 = Projection "lambert" forward inverse
where
cosPhi0 = cos phi0
forward (LonLat lam phi) =
XYCoord ((lam+pi)/tau) ((sin phi/cosPhi0+1/cosPhi0)/2/cosPhi0)
inverse (XYCoord x' y') = LonLat x (asin y / (asin cosPhi0 / halfPi))
where
x = fromToS (-pi) pi x'
y = fromToS (-1) 1 y' * cosPhi0
lambertP :: Projection
lambertP = Projection "lambert" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((lam+pi)/tau) ((sin phi+1)/2)
inverse (XYCoord x' y') = LonLat x (asin y)
where
x = fromToS (-pi) pi x'
y = fromToS (-1) 1 y'
bottomleyP :: Double -> Projection
bottomleyP !phi_1 = Projection "bottomley" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((x+pi)/tau) ((y+pi/2)/pi)
where
x = (rho * sin e) / sin phi_1
y = pi/2 - rho * cos e
rho = pi/2 - phi
e = lam * sin phi_1 * sin rho / rho
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-pi) pi x'
y = fromToS (-pi/2) (pi/2) y'
x1 = x * sin phi_1
y1 = pi/2 - y
rho = sqrt (x1*x1 + y1*y1)
e = atan2 x1 y1
lam = (if rho == 0 then 1 else rho / sin rho) * e/sin phi_1
phi = pi/2 - rho
sinusoidalP :: Projection
sinusoidalP = Projection "sinusoidal" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((x+pi)/tau) ((y+pi/2)/pi)
where
x = lam * cos phi
y = phi
inverse (XYCoord x' y') = LonLat (x/cos y) y
where
x = fromToS (-pi) pi x'
y = fromToS (-pi/2) (pi/2) y'
wernerP :: Projection
wernerP = moveTopP 0.23 $ Projection "werner" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((x+pi)/tau) ((y+pi/2)/pi)
where
rho = pi/2 - phi
e = if rho == 0 then rho else lam * sin rho / rho
x = rho * sin e
y = pi/2 - rho * cos e
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-pi) pi x'
y = fromToS (-pi/2) (pi/2) y'
rho = sqrt (x**2 + (pi/2 - y)**2)
e = atan2 x (pi/2 -y)
phi = pi/2 - rho
lam = e * rho / sin rho
bonneP :: Double -> Projection
bonneP 0 = sinusoidalP
bonneP phi_0 = moveTopP (-0.17*factor) $ scaleP 1 (fromToS 1 0.65 factor) $
Projection "bonne" forward inverse
where
factor = sin phi_0 / sin (pi/4)
forward (LonLat lam phi ) = XYCoord ((x+pi)/tau) ((y+halfPi)/pi)
where
cotPhi0 = cot phi_0
rho = cotPhi0 + phi_0 - phi
e = (lam * cos phi) / rho
x = rho * sin e
y = cotPhi0 - rho * cos e
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-pi) pi x'
y = fromToS (-pi/2) (pi/2) y'
cotPhi0 = cot phi_0
rho = sqrt (x*x + (cot phi_0 - y)**2)
phi = cotPhi0 + phi_0 - rho
lam = rho / cos phi * atan2 x (cotPhi0-y)
orthoP :: LonLat -> Projection
orthoP (LonLat lam_0 phi_0) = Projection "ortho" forward inverse
where
forward (LonLat lam phi)
| cosc < 0 =
let ang = atan2 y x
xV = cos ang
yV = sin ang
xPos = 7/32 + ((xV+1)/2 * 9/16)
in
XYCoord xPos ((yV+1)/2)
| otherwise = XYCoord ((x+(16/9))/(16/9*2)) ((y+1)/2)
where
x = cos phi * sin (lam - lam_0)
y = cos phi_0 * sin phi - sin phi_0 * cos phi * cos (lam - lam_0)
cosc = sin phi_0 * sin phi + cos phi_0 * cos phi * cos (lam-lam_0)
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-16/9) (16/9) x'
y = fromToS (-1) 1 y'
lam = wrap (-pi) pi $
lam_0 + atan2 (x * sin c) (rho * cos c * cos phi_0 - y * sin c * sin phi_0)
phi = wrap (-pi/2) (pi/2) $
asin (cos c * sin phi_0 + (y * sin c * cos phi_0)/rho)
rho = sqrt (x*x + y*y)
c = asin rho
wrap lower upper v
| v > upper = v-upper+lower
| v < lower = v+upper-lower
| otherwise = v
cassiniP :: Projection
cassiniP = Projection "cassini" forward inverse
where
forward (LonLat lam phi) =
XYCoord ((asin (cos phi * sin lam)+halfPi)/pi) ((atan2 (tan phi) (cos lam)+pi)/tau)
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS (-halfPi) halfPi x'
y = fromToS (-pi) pi y'
lam = atan2 (tan x) (cos y)
phi = asin (sin y * cos x)
augustP :: Projection
augustP = scaleP 0.70 0.70 $ Projection "august" forward inverse
where
xHi = 16/3
xLo = -xHi
yHi = 8 / 3
yLo = -yHi
forward (LonLat lam phi) = XYCoord ((xPos-xLo)/(xHi-xLo)) ((yPos-yLo)/(yHi-yLo))
where
tanPhi = tan (phi/2)
k = sqrt (1 - tanPhi * tanPhi)
c = 1 + k * cos (lam / 2)
x = sin (lam/2) * k / c
y = tanPhi / c
x2 = x*x
y2 = y*y
xPos = 4 / 3 * x * (3+x2 - 3*y2)
yPos = 4 / 3 * y * (3 + 3*x2 - y2)
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x' * 3 / 8
y = fromToS yLo yHi y' * 3 / 8
x2 = x*x
y2 = y*y
s = 1 + x2 + y2
sin3Eta = sqrt ((s - sqrt (s*s - 4 * y * y)) / 2)
eta = asin sin3Eta / 3
xi = if sin3Eta /= 0 then acosh (abs (y / sin3Eta)) / 3 else asinh (abs x) / 3
cosEta = cos eta
coshXi = cosh xi
d = coshXi * coshXi - cosEta * cosEta
lam = signum x * 2 * atan2 (sinh xi * cosEta) (0.25 - d)
phi = signum y * 2 * atan2 (coshXi * sin eta) (0.25 + d)
collignonP :: Projection
collignonP = Projection "collignon" forward inverse
where
yHi = sqrtPi
yLo = sqrtPi * (1 - sqrt2)
xLo = -pi*(2/sqrtPi)*sqrt2
xHi = pi*(2/sqrtPi)*sqrt2
forward (LonLat lam phi) = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
alpha = sqrt (1 - sin phi)
x = (2 / sqrtPi) * lam * alpha
y = sqrtPi * (1 - alpha)
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x'
y = fromToS yLo yHi y'
l = (y / sqrtPi -1)**2
lam = if l > 0 then x * sqrt (pi / l) / 2 else 0
phi = asin (1-l)
eckert1P :: Projection
eckert1P = Projection "eckert1" forward inverse
where
alpha = sqrt (8 / (3*pi))
yLo = -alpha * halfPi
yHi = alpha * halfPi
xLo = -alpha * pi
xHi = alpha * pi
forward (LonLat lam phi) = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
x = alpha * lam * (1 - abs phi / pi)
y = alpha * phi
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x'
y = fromToS yLo yHi y'
phi = y / alpha
lam = x / (alpha * (1 - abs phi / pi))
eckert3P :: Projection
eckert3P = Projection "eckert3" forward inverse
where
k = sqrt (pi * (4 + pi))
yLo = negate yHi
yHi = 4/k * halfPi
xLo = negate xHi
xHi = 4/k * pi
forward (LonLat lam phi) = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
x = 2 / k * lam * (1 + sqrt (1 - 4*phi*phi/(pi*pi)))
y = 4 / k * phi
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x'
y = fromToS yLo yHi y'
lam = x * k/2 / (1 + sqrt (1 - y*y* (4+pi)/(4*pi)))
phi = y * k/4
eckert5P :: Projection
eckert5P = Projection "eckert5" forward inverse
where
k = sqrt (2 + pi)
yLo = negate yHi
yHi = pi/k
xLo = negate xHi
xHi = tau/k
forward (LonLat lam phi) = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
x = lam * (1 + cos phi) / k
y = 2 * phi / k
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x'
y = fromToS yLo yHi y'
lam = k * x / (1 + cos phi)
phi = y * k / 2
{-# INLINE faheyP #-}
faheyP :: Projection
faheyP = Projection "fahey" forward inverse
where
faheyK = cos (toRads 35)
yLo = negate yHi
yHi = 1 + faheyK
xLo = negate xHi
xHi = pi * faheyK * 16/9
forward (LonLat lam phi) = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
t = tan (phi/2)
x = lam * faheyK * sqrt (1 - t*t)
y = (1 + faheyK) * t
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x'
y = fromToS yLo yHi y'
t = y / (1 + faheyK)
lam = x / (faheyK * sqrt (1 - t*t))
phi = 2 * atan2 y (1 + faheyK)
{-# INLINE foucautP #-}
foucautP :: Projection
foucautP = Projection "foucaut" forward inverse
where
yLo = negate yHi
yHi = sqrtPi * tan (halfPi/2)
xLo = negate xHi
xHi = tau/sqrtPi
forward (LonLat lam phi) = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
k = phi / 2
cosk = cos k
x = 2 * lam / sqrtPi * cos phi * cosk * cosk
y = sqrtPi * tan k
inverse (XYCoord x' y') = LonLat lam phi
where
x = fromToS xLo xHi x'
y = fromToS yLo yHi y'
k = atan (y / sqrtPi)
cosk = cos k
phi = 2 * k
lam = x * sqrtPi / 2 / (cos phi * cosk * cosk)
{-# INLINE lagrangeP #-}
lagrangeP :: Projection
lagrangeP = Projection "lagrange" forward inverse
where
yLo = negate yHi
yHi = 2
xLo = negate xHi
xHi = 2
n = 0.5
forward (LonLat lam phi)
| abs (abs phi - halfPi) < epsilon = XYCoord 0.5 (if phi < 0 then 0 else 1)
| otherwise = XYCoord ((x-xLo)/(xHi-xLo)) ((y-yLo)/(yHi-yLo))
where
sinPhi = sin phi
v = ((1+sinPhi) / (1 - sinPhi))**(n/2)
c = 0.5 * (v + 1/v) + cos (lam*n)
x = 2 * sin (lam*n) / c
y = (v - 1/v) /c
inverse (XYCoord x' y')
| abs (y'-1) < epsilon
= LonLat 100 100
| otherwise = LonLat lam phi
where
x = fromToS xLo xHi x' / 2
y = fromToS yLo yHi y' / 2
x2 = x * x
y2 = y * y
t = 2 * y / (1 + x2 + y2)
t' = ((1+t) / (1-t)) ** (1/n)
lam = atan2 (2*x) (1-x2-y2) / n
phi = asin ((t'-1)/(t'+1))
drawFeatureCollection :: GeoFeatureCollection a -> (a -> SVG -> SVG) -> SVG
drawFeatureCollection geo fn = mkGroup
[ fn (feature ^. properties) $ renderGeometry (feature ^. geometry)
| feature <- toList (geo ^. geofeatures)
]
{-# INLINE loadFeatureCollection #-}
loadFeatureCollection :: FromJSON a => FilePath -> (a -> SVG -> SVG) -> SVG
loadFeatureCollection path = unsafePerformIO $ do
mbGeo <- decodeFileStrict path
case mbGeo of
Nothing -> error $ "loadFeatureCollection: Invalid GeoJSON: " ++ path
Just geo -> return (drawFeatureCollection geo)
renderGeometry :: GeospatialGeometry -> SVG
renderGeometry shape =
case shape of
MultiPolygon mpolygon ->
mkGroup $ map (renderGeometry . Polygon) $ toList (splitGeoMultiPolygon mpolygon)
Polygon poly ->
mkGroup
[ mkLinePath section
| section <- pure
[ (x, y)
| PointXY x y <- map retrieveXY (fromLinearRing (head (toList (poly^.unGeoPolygon))))
]
]
Line line ->
mkLinePath
[ (x, y)
| PointXY x y <- map retrieveXY (Line.fromLineString (line ^. unGeoLine))
]
MultiLine ml ->
mkGroup $ map (renderGeometry . Line) $ toList (splitGeoMultiLine ml)
_ -> None
applyProjection :: Projection -> SVG -> SVG
applyProjection = applyProjection' 1e-2
applyProjection' :: Double -> Projection -> SVG -> SVG
applyProjection' tolerance p = mapSvgLines start
where
start (LineMove x:rest) = LineMove (proj x) : worker x rest
start _ = []
worker a (LineEnd b : rest) =
let (x:xs) = reverse $ drop 1 $ mkChunks a b
in map (\v -> LineBezier [v]) (map proj $ reverse xs) ++ LineEnd (proj x) : start rest
worker a (LineBezier [b] : rest) =
let (x:xs) = reverse $ drop 1 $ mkChunks a b
in map (\v -> LineBezier [v]) (map proj $ reverse xs) ++ LineBezier [proj x] : worker x rest
worker _ (LineBezier ps : rest) =
LineBezier (map proj ps) : worker (last ps) rest
worker _ (LineMove x:rest) = LineMove (proj x) : worker x rest
worker _ [] = []
lowTolerance = tolerance*tolerance
proj (V2 lam phi) =
case projectionForward p $ LonLat lam phi of
XYCoord x y -> V2 x y
mkChunks a b =
let midway = lerp 0.5 a b in
if distance (proj a) (proj b) < tolerance || distance a b < lowTolerance
then [a, b]
else mkChunks a midway ++ drop 1 (mkChunks midway b)